1
|
Bayram Z, Akcabag E, Ozbey G, Nacitarhan C, Ozdem S, Turkay C, Ozdem SS. THE effect of P2X7 receptor activation on functional responses of human left internal mammary artery. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2027-2037. [PMID: 39225832 DOI: 10.1007/s00210-024-03411-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
The Purinoreceptor 7 (P2X7R) has become a promising drug target in many cardiovascular diseases, including coronary artery disease, since prolonged activation of P2X7R could promote vascular dysfunction, atherosclerosis, and thrombosis. Thus, we aimed to study the effects of P2X7R activation on vascular relaxation responses of the human left internal mammary artery (LIMA). Sections of redundant human LIMA were cut into 3-mm wide rings,, suspended in 20-mL organ baths containing physiologic salt solution, and attached to an isometric force transducer connected to a computer-based data acquisition system. Long-term (60 min) incubation with specific P2X7R agonist Bz-ATP caused significant reductions in relaxation responses of LIMA to ATP and acetylcholine, which were reversed by selective P2X7R antagonists Brilliant Blue G or AZ11645373, whereas there were no changes in relaxation responses to endothelium-independent vasodilators isoprenaline, cAMP analog 8-Br-cAMP, and nitric oxide donor sodium nitroprusside. The impairment in relaxant responses of LIMA to endothelium-dependent vasodilators following activation of P2X7R for the long-term may contribute to postoperative LIMA vasospasm and hypertension. Modulation of P2X7R activity with selective agents may represent a new potential therapeutic approach in patients undergoing coronary artery bypass grafting surgery.
Collapse
Affiliation(s)
- Zeliha Bayram
- Turkish Medicines and Medical Devices Agency, Ankara, Turkey
| | - Esra Akcabag
- Department of Medical Pharmacology, Akdeniz University Medical Faculty, Dumlupinar Avenue, 07070, Antalya, Turkey
| | - Gul Ozbey
- Department of Medical Pharmacology, Akdeniz University Medical Faculty, Dumlupinar Avenue, 07070, Antalya, Turkey
| | - Cahit Nacitarhan
- Department of Medical Pharmacology, Akdeniz University Medical Faculty, Dumlupinar Avenue, 07070, Antalya, Turkey
| | - Sebahat Ozdem
- Department of Medical Biochemistry, Akdeniz University Medical Faculty, Antalya, Turkey
| | - Cengiz Turkay
- Department of Cardiovascular Surgery, Akdeniz University Medical Faculty, Antalya, Turkey
| | - Sadi S Ozdem
- Department of Medical Pharmacology, Akdeniz University Medical Faculty, Dumlupinar Avenue, 07070, Antalya, Turkey.
| |
Collapse
|
2
|
Zhou J, Zhou Z, Liu X, Yin HY, Tang Y, Cao X. P2X7 Receptor-Mediated Inflammation in Cardiovascular Disease. Front Pharmacol 2021; 12:654425. [PMID: 33995071 PMCID: PMC8117356 DOI: 10.3389/fphar.2021.654425] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/09/2021] [Indexed: 02/05/2023] Open
Abstract
Purinergic P2X7 receptor, a nonselective cation channel, is highly expressed in immune cells as well as cardiac smooth muscle cells and endothelial cells. Its activation exhibits to mediate nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome activation, resulting in the release of interleukin-1 beta (IL-1β) and interleukin-18 (IL-18), and pyroptosis, thus triggering inflammatory response. These pathological mechanisms lead to the deterioration of various cardiovascular diseases, including atherosclerosis, arrhythmia, myocardial infarction, pulmonary vascular remodeling, and cardiac fibrosis. All these worsening cardiac phenotypes are proven to be attenuated after the P2X7 receptor inhibition in experimental studies. The present review aimed to summarize key aspects of P2X7 receptor-mediated inflammation and pyroptosis in cardiovascular diseases. The main focus is on the evidence addressing the involvement of the P2X7 receptor in the inflammatory responses to the occurrence and development of cardiovascular disease and therapeutic interventions.
Collapse
Affiliation(s)
- Junteng Zhou
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Xiaojing Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hai-Yan Yin
- School of Acupuncture and Tuina and International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Yong Tang
- School of Acupuncture and Tuina and International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Xin Cao
- School of Acupuncture and Tuina and International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
3
|
The P2X7 purinergic receptor: a potential therapeutic target for lung cancer. J Cancer Res Clin Oncol 2020; 146:2731-2741. [PMID: 32892231 DOI: 10.1007/s00432-020-03379-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Purinergic P2X7 receptor (P2X7R) is a gated ion channel for which adenosine triphosphate (ATP) is a ligand. Activated P2X7R is widely expressed in a variety of immune cells and tissues and is involved in a variety of physiological and pathological processes. Studies have confirmed that P2X7R is involved in the regulation of tumor cell growth, stimulating cell proliferation or inducing apoptosis. Recent studies have found that P2X7R is abnormally expressed in lung cancer and is closely related to the carcinogenesis and development of lung cancer. In this paper, we comprehensively describe the structure, function, and genetic polymorphisms of P2X7R. In particular, the role and therapeutic potential of P2X7R in lung cancer are discussed to provide new targets and new strategies for the treatment and prognosis of clinical lung cancer. METHODS The relevant literature on P2X7R and lung cancer from PubMed databases is reviewed in this article. RESULTS P2X7R regulates the function of lung cancer cells by activating multiple intracellular signaling pathways (such as the JNK, Rho, HMGB1 and EMT pathways), thereby affecting cell survival, growth, invasion, and metastasis and patient prognosis. Targeting P2X7R with inhibitors effectively suppresses the growth and metastasis of lung cancer cells. CONCLUSION In summary, P2X7R is expected to become a potential target for the treatment of lung cancer, and more clinical research is needed in the future to explore the effectiveness of P2X7R antagonists as treatments.
Collapse
|
4
|
Yudushkin I. Control of Akt activity and substrate phosphorylation in cells. IUBMB Life 2020; 72:1115-1125. [PMID: 32125765 PMCID: PMC7317883 DOI: 10.1002/iub.2264] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 02/22/2020] [Indexed: 12/20/2022]
Abstract
Protein kinase B/Akt is a serine/threonine kinase that links receptors coupled to the PI3K lipid kinase to cellular anabolic pathways. Its activity in cells is controlled by reversible phosphorylation and an intramolecular lipid-controlled allosteric switch. In this review, I outline the current progress in understanding Akt regulatory mechanisms, define three models of Akt activation in cells, and highlight how intramolecular allosterism cooperates with cell-autonomous mechanisms to control Akt localization and activity and direct it toward specific sets of substrates in cells.
Collapse
Affiliation(s)
- Ivan Yudushkin
- Department of Structural and Computational BiologyUniversity of ViennaViennaAustria
| |
Collapse
|
5
|
Ahmad S, Ahmad A. Treating fungus-induced allergic asthma: Do VDACs have the answer! J Physiol 2020; 598:1799-1800. [PMID: 32173869 DOI: 10.1113/jp279703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Shama Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aftab Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
6
|
Yu Y, Xiong Y, Ladeiras D, Yang Z, Ming XF. Myosin 1b Regulates Nuclear AKT Activation by Preventing Localization of PTEN in the Nucleus. iScience 2019; 19:39-53. [PMID: 31349190 PMCID: PMC6660601 DOI: 10.1016/j.isci.2019.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/17/2019] [Accepted: 07/05/2019] [Indexed: 02/08/2023] Open
Abstract
Insulin-induced AKT activation is dependent on phosphoinositide 3-kinase and opposed by tumor suppressor phosphatase and tensin homolog (PTEN). Our previous study demonstrates that myosin 1b (MYO1B) mediates arginase-II-induced activation of mechanistic target of rapamycin complex 1 that is regulated by AKT. However, the role of MYO1B in AKT activation is unknown. Here we show that silencing MYO1B in mouse embryonic fibroblasts (MEF) inhibits insulin-induced nuclear but not cytoplasmic AKT activation accompanied by elevated nuclear PTEN level. Co-immunoprecipitation, co-immunostaining, and proximity ligation assay show an interaction of MYO1B and PTEN resulting in reduced nuclear PTEN. Moreover, the elevated nuclear PTEN upon silencing MYO1B promotes apoptosis of MEFs and melanoma B16F10 cells. Taken together, we demonstrate that MYO1B, by interacting with PTEN, prevents nuclear localization of PTEN contributing to nuclear AKT activation and suppression of cell apoptosis. This may present a therapeutic approach for cancer treatment such as melanoma. MYO1B, by interacting with PTEN, prevents PTEN localization in the nucleus MYO1B prevents nuclear localization of PTEN depending on its motor activity This contributes to nuclear AKT activation and suppression of cell apoptosis Targeting MYO1B may represent a therapeutic approach for cancer treatment
Collapse
Affiliation(s)
- Yi Yu
- Cardiovascular and Aging Research, Department of Endocrinology, Metabolism and Cardiovascular System, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, 1700 Fribourg, Switzerland
| | - Yuyan Xiong
- Cardiovascular and Aging Research, Department of Endocrinology, Metabolism and Cardiovascular System, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, 1700 Fribourg, Switzerland
| | - Diogo Ladeiras
- Cardiovascular and Aging Research, Department of Endocrinology, Metabolism and Cardiovascular System, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, 1700 Fribourg, Switzerland
| | - Zhihong Yang
- Cardiovascular and Aging Research, Department of Endocrinology, Metabolism and Cardiovascular System, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, 1700 Fribourg, Switzerland.
| | - Xiu-Fen Ming
- Cardiovascular and Aging Research, Department of Endocrinology, Metabolism and Cardiovascular System, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, 1700 Fribourg, Switzerland.
| |
Collapse
|
7
|
Chen Z, He L, Li L, Chen L. The P2X7 purinergic receptor: An emerging therapeutic target in cardiovascular diseases. Clin Chim Acta 2018; 479:196-207. [PMID: 29366837 DOI: 10.1016/j.cca.2018.01.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 10/24/2022]
Abstract
The P2X7 purinergic receptor, a calcium permeable cationic channel, is activated by extracellular ATP. Most studies show that P2X7 receptor plays an important role in the nervous system diseases, immune response, osteoporosis and cancer. Mounting evidence indicates that P2X7 receptor is also associated with cardiovascular disease. For example, the P2X7 receptor activated by ATP can attenuate myocardial ischemia-reperfusion injury. By contrast, inhibition of P2X7 receptor decreases arrhythmia after myocardial infarction, prolongs cardiac survival after a long term heart transplant, alleviates the dilated cardiomyopathy and the autoimmune myocarditis process. The P2X7 receptor also mitigates vascular diseases including atherosclerosis, hypertension, thrombosis and diabetic retinopathy. This review focuses on the latest research on the role and therapeutic potential of P2X7 receptor in cardiovascular diseases.
Collapse
Affiliation(s)
- Zhe Chen
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Lu He
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China.
| |
Collapse
|
8
|
Ghalali A, Martin-Renedo J, Högberg J, Stenius U. Atorvastatin Decreases HBx-Induced Phospho-Akt in Hepatocytes via P2X Receptors. Mol Cancer Res 2017; 15:714-722. [PMID: 28209758 DOI: 10.1158/1541-7786.mcr-16-0373] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 11/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is rated as the fifth most common malignancy and third in cancer-related deaths worldwide. Statins, HMG-CoA reductase inhibitors, are potent cholesterol-lowering drugs, and recent epidemiologic evidence suggests that statins prevent aggressive HCC development. Previous experiments revealed that statins downregulate phosphorylated Akt (pAkt). Here, it is demonstrated that atorvastatin decreases nuclear pAkt levels in pancreatic and lung cancer cell lines within minutes, and this rapid effect is mediated by the purinergic P2X receptors. Akt is upregulated by hepatitis viruses and has oncogenic activity in HCC; therefore, we tested the possibility that the P2X-Akt pathway is important for the anticipated anticancer effects of statins in hepatocytes. Atorvastatin decreased hepatitis B virus X protein- and insulin-induced pAkt and pGsk3β (Ser9) levels. Furthermore, Akt-induced lipogenesis was counteracted by atorvastatin, and these statin-induced effects were dependent on P2X receptors. Statin also decreased proliferation and invasiveness of hepatocytes. These data provide mechanistic evidence for a P2X receptor-dependent signaling pathway by which statins decrease pAkt, its downstream phosphorylation target pGsk3β, and lipogenesis in hepatocytes.Implications: The Akt pathway is deregulated and may act as a driver in HCC development; the P2X-Akt signaling pathway may have a role in anticancer effects of statins. Mol Cancer Res; 15(6); 714-22. ©2017 AACR.
Collapse
Affiliation(s)
- Aram Ghalali
- Institute of Environment Medicine. Karolinska Institutet, Stockholm, Sweden.
| | | | - Johan Högberg
- Institute of Environment Medicine. Karolinska Institutet, Stockholm, Sweden
| | - Ulla Stenius
- Institute of Environment Medicine. Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Pleiotropic effects of statins: new therapeutic targets in drug design. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:695-712. [PMID: 27146293 DOI: 10.1007/s00210-016-1252-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022]
Abstract
The HMG Co-enzyme inhibitors and new lipid-modifying agents expand their new therapeutic target options in the field of medical profession. Statins have been described as the most effective class of drugs to reduce serum cholesterol levels. Since the discovery of the first statin nearly 30 years ago, these drugs have become the main therapeutic approach to lower cholesterol levels. The present scientific research demonstrates numerous non-lipid modifiable effects of statins termed as pleiotropic effects of statins, which could be beneficial for the treatment of various devastating disorders. The most important positive effects of statins are anti-inflammatory, anti-proliferative, antioxidant, immunomodulatory, neuroprotective, anti-diabetes, and antithrombotic, improving endothelial dysfunction and attenuating vascular remodeling besides many others which are discussed under the scope of this review. In particular, inhibition of Rho and its downstream target, Rho-associated coiled-coil-containing protein kinase (ROCK), and their agonistic action on peroxisome proliferator-activated receptors (PPARs) can be viewed as the principle mechanisms underlying the pleiotropic effects of statins. With gradually increasing knowledge of new therapeutic targets of statins, their use has also been advocated in chronic inflammatory disorders for example rheumatoid arthritis (RA) and in systemic lupus erythematosus (SLE). In the scope of review, we highlight statins and their pleiotropic effects with reference to their harmful and beneficial effects as a novel approach for their use in the treatment of devastating disorders. Graphical abstract Pleiotropic effect of statins.
Collapse
|
10
|
Song S, Jacobson KN, McDermott KM, Reddy SP, Cress AE, Tang H, Dudek SM, Black SM, Garcia JGN, Makino A, Yuan JXJ. ATP promotes cell survival via regulation of cytosolic [Ca2+] and Bcl-2/Bax ratio in lung cancer cells. Am J Physiol Cell Physiol 2015; 310:C99-114. [PMID: 26491047 DOI: 10.1152/ajpcell.00092.2015] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 10/19/2015] [Indexed: 11/22/2022]
Abstract
Adenosine triphosphate (ATP) is a ubiquitous extracellular messenger elevated in the tumor microenvironment. ATP regulates cell functions by acting on purinergic receptors (P2X and P2Y) and activating a series of intracellular signaling pathways. We examined ATP-induced Ca(2+) signaling and its effects on antiapoptotic (Bcl-2) and proapoptotic (Bax) proteins in normal human airway epithelial cells and lung cancer cells. Lung cancer cells exhibited two phases (transient and plateau phases) of increase in cytosolic [Ca(2+)] ([Ca(2+)]cyt) caused by ATP, while only the transient phase was observed in normal cells. Removal of extracellular Ca(2+) eliminated the plateau phase increase of [Ca(2+)]cyt in lung cancer cells, indicating that the plateau phase of [Ca(2+)]cyt increase is due to Ca(2+) influx. The distribution of P2X (P2X1-7) and P2Y (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11) receptors was different between lung cancer cells and normal cells. Proapoptotic P2X7 was nearly undetectable in lung cancer cells, which may explain why lung cancer cells showed decreased cytotoxicity when treated with high concentration of ATP. The Bcl-2/Bax ratio was increased in lung cancer cells following treatment with ATP; however, the antiapoptotic protein Bcl-2 demonstrated more sensitivity to ATP than proapoptotic protein Bax. Decreasing extracellular Ca(2+) or chelating intracellular Ca(2+) with BAPTA-AM significantly inhibited ATP-induced increase in Bcl-2/Bax ratio, indicating that a rise in [Ca(2+)]cyt through Ca(2+) influx is the critical mediator for ATP-mediated increase in Bcl-2/Bax ratio. Therefore, despite high ATP levels in the tumor microenvironment, which would induce cell apoptosis in normal cells, the decreased P2X7 and elevated Bcl-2/Bax ratio in lung cancer cells may enable tumor cells to survive. Increasing the Bcl-2/Bax ratio by exposure to high extracellular ATP may, therefore, be an important selective pressure promoting transformation and cancer progression.
Collapse
Affiliation(s)
- Shanshan Song
- Department of Medicine, Division of Translational and Regenerative Medicine, College of Medicine, The University of Arizona, Tucson, Arizona; Department of Physiology, College of Medicine, The University of Arizona, Tucson, Arizona
| | - Krista N Jacobson
- Department of Medicine, Division of Translational and Regenerative Medicine, College of Medicine, The University of Arizona, Tucson, Arizona; Department of Physiology, College of Medicine, The University of Arizona, Tucson, Arizona
| | - Kimberly M McDermott
- Department of Medicine, Division of Translational and Regenerative Medicine, College of Medicine, The University of Arizona, Tucson, Arizona; Department of Physiology, College of Medicine, The University of Arizona, Tucson, Arizona; Department of Cellular and Molecular Medicine, College of Medicine, The University of Arizona, Tucson, Arizona; and
| | - Sekhar P Reddy
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | - Anne E Cress
- Department of Cellular and Molecular Medicine, College of Medicine, The University of Arizona, Tucson, Arizona; and
| | - Haiyang Tang
- Department of Medicine, Division of Translational and Regenerative Medicine, College of Medicine, The University of Arizona, Tucson, Arizona; Department of Physiology, College of Medicine, The University of Arizona, Tucson, Arizona
| | - Steven M Dudek
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | - Stephen M Black
- Department of Medicine, Division of Translational and Regenerative Medicine, College of Medicine, The University of Arizona, Tucson, Arizona
| | - Joe G N Garcia
- Department of Medicine, Division of Translational and Regenerative Medicine, College of Medicine, The University of Arizona, Tucson, Arizona
| | - Ayako Makino
- Department of Physiology, College of Medicine, The University of Arizona, Tucson, Arizona
| | - Jason X-J Yuan
- Department of Medicine, Division of Translational and Regenerative Medicine, College of Medicine, The University of Arizona, Tucson, Arizona; Department of Physiology, College of Medicine, The University of Arizona, Tucson, Arizona;
| |
Collapse
|
11
|
P2X receptors regulate adenosine diphosphate release from hepatic cells. Purinergic Signal 2014; 10:587-93. [PMID: 25059924 DOI: 10.1007/s11302-014-9419-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 07/15/2014] [Indexed: 12/14/2022] Open
Abstract
Extracellular nucleotides act as paracrine regulators of cellular signaling and metabolic pathways. Adenosine polyphosphate (adenosine triphosphate (ATP) and adenosine diphosphate (ADP)) release and metabolism by human hepatic carcinoma cells was therefore evaluated. Hepatic cells maintain static nanomolar concentrations of extracellular ATP and ADP levels until stress or nutrient deprivation stimulates a rapid burst of nucleotide release. Reducing the levels of media serum or glucose has no effect on ATP levels, but stimulates ADP release by up to 10-fold. Extracellular ADP is then metabolized or degraded and media ADP levels fall to basal levels within 2-4 h. Nucleotide release from hepatic cells is stimulated by the Ca(2+) ionophore, ionomycin, and by the P2 receptor agonist, 2'3'-O-(4-benzoyl-benzoyl)-adenosine 5'-triphosphate (BzATP). Ionomycin (10 μM) has a minimal effect on ATP release, but doubles media ADP levels at 5 min. In contrast, BzATP (10-100 μM) increases both ATP and ADP levels by over 100-fold at 5 min. Ion channel purinergic receptor P2X7 and P2X4 gene silencing with small interference RNA (siRNA) and treatment with the P2X inhibitor, A438079 (100 μM), decrease ADP release from hepatic cells, but have no effect on ATP. P2X inhibitors and siRNA have no effect on BzATP-stimulated nucleotide release. ADP release from human hepatic carcinoma cells is therefore regulated by P2X receptors and intracellular Ca(2+) levels. Extracellular ADP levels increase as a consequence of a cellular stress response resulting from serum or glucose deprivation.
Collapse
|
12
|
Ghalali A, Wiklund F, Zheng H, Stenius U, Högberg J. Atorvastatin prevents ATP-driven invasiveness via P2X7 and EHBP1 signaling in PTEN-expressing prostate cancer cells. Carcinogenesis 2014; 35:1547-55. [PMID: 24451147 DOI: 10.1093/carcin/bgu019] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Epidemiological studies indicate that statins, cholesterol-lowering drugs, prevent aggressive prostate cancer and other types of cancer. Employing essentially non-prostate cell lines, we previously showed that statins rapidly downregulate nuclear levels of phosphorylated Akt via P2X7, a purinergic receptor recently implicated in invasive growth. Here, we present studies on phosphatase and tensin homolog deleted on chromosome 10 (PTEN)-positive prostatic cells. We document an involvement of EH domain-binding protein 1 (EHBP1), previously associated with aggressive prostate cancer and insulin-stimulated trafficking and cell migration, in P2X7 signaling. We also show that EHBP1 is essential for an anti-invasive effect of atorvastatin. Furthermore, EHBP1 interacted with P-Rex1, a guanine nucleotide exchange factor previously implicated in invasive growth. Mevalonate did not prevent this anti-invasive effect of atorvastatin. These data indicate that atorvastatin modulates invasiveness via P2X7, EHBP1 and P-Rex1. Interestingly, the interaction between EHBP1 and P-Rex1 was not induced by extracellular adenosine triphosphate (ATP), the endogenous P2X7 ligand, and statins counteracted invasiveness stimulated by extracellular ATP. In support of these experimental data, a population-based genetic analysis showed that a loss of function allele in the P2X7 gene (rs3751143) associated with non-aggressive cancer, and the common allele with aggressive cancer. Our data indicate a novel signaling pathway that inhibits invasiveness and that is druggable. Statins may reduce the risk of aggressive prostate cancer via P2X7 and by counteracting invasive effects of extracellular ATP.
Collapse
Affiliation(s)
- Aram Ghalali
- Institute of Environment Medicine and Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Huiyuan Zheng
- Institute of Environment Medicine and Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Ulla Stenius
- Institute of Environment Medicine and Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Johan Högberg
- Institute of Environment Medicine and Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| |
Collapse
|
13
|
Martelli AM, Tabellini G, Bressanin D, Ognibene A, Goto K, Cocco L, Evangelisti C. The emerging multiple roles of nuclear Akt. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:2168-78. [PMID: 22960641 DOI: 10.1016/j.bbamcr.2012.08.017] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 08/20/2012] [Accepted: 08/23/2012] [Indexed: 12/26/2022]
|
14
|
Sparks DL, Chatterjee C. Purinergic signaling, dyslipidemia and inflammatory disease. Cell Physiol Biochem 2012; 30:1333-9. [PMID: 23095900 DOI: 10.1159/000343322] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2012] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome is a compound obesity disorder, wherein the abnormal metabolism of glucose and lipid is associated with the development of chronic inflammatory diseases. The prevalence of this disease is increasing in the developed world, but the causative linkage between these metabolic disorders has remained obscure. Metabolic disease may be associated with chronic nucleotide secretion, purinergic signaling and activation of inflammatory pathways. Purinergic signaling has been implicated in impaired glucose metabolism and inflammatory disease and may contribute to dyslipidemia. Our research shows that purinergic signaling disrupts hepatic lipoprotein metabolism by blocking insulin receptor signaling and by activating cellular autophagic pathways. Chronic stimulation of purinergic signaling may therefore be causative to glucose and lipid metabolic disorders and associated with the development of cardiovascular disease.
Collapse
Affiliation(s)
- Daniel L Sparks
- Atherosclerosis, Genetics and Cell Biology Group, University of Ottawa Heart Institute, Ottawa, ON, K1Y 4W7, Canada.
| | | |
Collapse
|
15
|
Reversible inhibition of Chlamydia trachomatis infection in epithelial cells due to stimulation of P2X(4) receptors. Infect Immun 2012; 80:4232-8. [PMID: 22988022 DOI: 10.1128/iai.00441-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Bacterial infections of the mucosal epithelium are a major cause of human disease. The prolonged presence of microbial pathogens stimulates inflammation of the local tissues, which leads to changes in the molecular composition of the extracellular milieu. A well-characterized molecule that is released to the extracellular milieu by stressed or infected cells is extracellular ATP and its ecto-enzymatic degradation products, which function as signaling molecules through ligation of purinergic receptors. There has been little information, however, on the effects of the extracellular metabolites on bacterial growth in inflamed tissues. Millimolar concentrations of ATP have been previously shown to inhibit irreversibly bacterial infection through ligation of P2X(7) receptors. We show here that the proinflammatory mediator, ATP, is released from Chlamydia trachomatis-infected epithelial cells. Moreover, further stimulation of the infected cells with micromolar extracellular ADP or ATP significantly impairs the growth of the bacteria, with a profile characteristic of the involvement of P2X(4) receptors. A specific role for P2X(4) was confirmed using cells overexpressing P2X(4). The chlamydiae remain viable and return to normal growth kinetics after removal of the extracellular stimulus, similar to responses previously described for persistence of chlamydial infection.
Collapse
|
16
|
Grol MW, Zelner I, Dixon SJ. P2X₇-mediated calcium influx triggers a sustained, PI3K-dependent increase in metabolic acid production by osteoblast-like cells. Am J Physiol Endocrinol Metab 2012; 302:E561-75. [PMID: 22185840 DOI: 10.1152/ajpendo.00209.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The P2X₇ receptor is an ATP-gated cation channel expressed by a number of cell types, including osteoblasts. Genetically modified mice with loss of P2X₇ function exhibit altered bone formation. Moreover, activation of P2X₇ in vitro stimulates osteoblast differentiation and matrix mineralization, although the underlying mechanisms remain unclear. Because osteogenesis is associated with enhanced cellular metabolism, our goal was to characterize the effects of nucleotides on metabolic acid production (proton efflux) by osteoblasts. The P2X₇ agonist 2',3'-O-(4-benzoylbenzoyl)ATP (BzATP; 300 μM) induced dynamic membrane blebbing in MC3T3-E1 osteoblast-like cells (consistent with activation of P2X₇ receptors) but did not induce cell death. Using a Cytosensor microphysiometer, we found that 9-min exposure to BzATP (300 μM) caused a dramatic increase in proton efflux from MC3T3-E1 cells (∼2-fold), which was sustained for at least 1 h. In contrast, ATP or UTP (100 μM), which activate P2 receptors other than P2X₇, failed to elicit a sustained increase in proton efflux. Specific P2X₇ receptor antagonists A 438079 and A 740003 inhibited the sustained phase of the BzATP-induced response. Extracellular Ca²⁺ was required during P2X₇ receptor stimulation for initiation of sustained proton efflux, and removal of extracellular glucose within the sustained phase abolished the elevation elicited by BzATP. In addition, inhibition of phosphatidylinositol 3-kinase blocked the maintenance but not initiation of the sustained phase. Taken together, we conclude that brief activation of P2X₇ receptors on osteoblast-like cells triggers a dramatic, Ca²⁺-dependent stimulation of metabolic acid production. This increase in proton efflux is sustained and dependent on glucose and phosphatidylinositol 3-kinase activity.
Collapse
Affiliation(s)
- Matthew W Grol
- Dept. of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, Univ. of Western Ontario, London, ON, Canada
| | | | | |
Collapse
|
17
|
P2X7 Receptor Function in Bone-Related Cancer. J Osteoporos 2012; 2012:637863. [PMID: 22970409 PMCID: PMC3431089 DOI: 10.1155/2012/637863] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/23/2012] [Accepted: 07/25/2012] [Indexed: 01/31/2023] Open
Abstract
Modulation of tumor microenvironment by different mediators is central in determining neoplastic formation and progression. Among these molecules extracellular ATP is emerging as a good candidate in promoting cell growth, neovascularization, tumor-host interactions, and metastatization. This paper summarizes recent findings on expression and function of P2X7 receptor for extracellular ATP in primary and metastatic bone cancers. Search of mRNA expression microchip databases and literature analysis demonstrate a high expression of P2X7 in primary bone tumors as well as in other malignancies such as multiple myeloma, neuroblastoma, breast, and prostate cancer. Evidence that P2X7 triggers NFATc1, PI3K/Akt, ROCK, and VEGF pathways in osteoblasts promoting either primary tumor development or osteoblastic lesions is also reported. Moreover, P2X7 receptor is involved in osteoclast differentiation, RANKL expression, matrix metalloproteases and cathepsin secretion thus promoting bone resorption and osteolytic lesions. Taken together these data point to a pivotal role for the P2X7 receptor in bone cancer biology.
Collapse
|
18
|
Ye ZW, Ghalali A, Högberg J, Stenius U. Silencing p110β prevents rapid depletion of nuclear pAkt. Biochem Biophys Res Commun 2011; 415:613-8. [DOI: 10.1016/j.bbrc.2011.10.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 10/26/2011] [Indexed: 12/21/2022]
|
19
|
Tafani M, Schito L, Pellegrini L, Villanova L, Marfe G, Anwar T, Rosa R, Indelicato M, Fini M, Pucci B, Russo MA. Hypoxia-increased RAGE and P2X7R expression regulates tumor cell invasion through phosphorylation of Erk1/2 and Akt and nuclear translocation of NF-{kappa}B. Carcinogenesis 2011; 32:1167-75. [PMID: 21642357 DOI: 10.1093/carcin/bgr101] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The role of hypoxia in regulating tumor progression is still controversial. Here, we demonstrate that, similarly to what previously observed by us in human prostate and breast tumor samples, hypoxia increases expression of the receptor for advanced glycation end products (RAGE) and the purinergic receptor P2X7 (P2X7R). The role of hypoxia was shown by the fact that hypoxia-inducible factor (HIF)-1α silencing downregulated RAGE and P2X7R protein levels as well as nuclear factor-kappaB (NF-κB) expression. In contrast, NF-κB silencing reduced P2X7R expression without affecting RAGE protein levels or nuclear accumulation of HIF-1α. Treatment of hypoxic tumor cells with HMGB1 and BzATP ligands, respectively, of RAGE and P2X7R, activated a signaling pathway that, through Akt and Erk phosphorylation, determines nuclear accumulation of NF-κB and increases cell invasion. Inhibition of Akt by SH5 and Erk by INH1 prevented both nuclear translocation of NF-κB and cell invasion. Moreover, silencing RAGE and P2X7R abolished nuclear accumulation of NF-κB as well as cell invasion without affecting HIF-1α stabilization. Once in the nucleus, NF-κB would contribute to cell survival and invasion under hypoxia, by maintaining RAGE and P2X7R expression levels and matrix metalloproteinases 2 and 9 synthesis. These results show that, hypoxia can upregulate expression levels of membrane receptors that, by binding extracellular molecules eventually released by necrotic cells, contribute to the increased invasiveness of transformed tumor cells. Moreover, these observations strengthen our working hypothesis that upregulation of damage-associated molecular patterns receptors by HIF-1α represents the crucial event bridging hypoxia and inflammation in obtaining the malignant phenotype.
Collapse
Affiliation(s)
- Marco Tafani
- Department of Experimental Medicine, Sapienza University, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mistafa O, Ghalali A, Kadekar S, Högberg J, Stenius U. Purinergic receptor-mediated rapid depletion of nuclear phosphorylated Akt depends on pleckstrin homology domain leucine-rich repeat phosphatase, calcineurin, protein phosphatase 2A, and PTEN phosphatases. J Biol Chem 2010; 285:27900-10. [PMID: 20605778 DOI: 10.1074/jbc.m110.117093] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Akt is an important oncoprotein, and data suggest a critical role for nuclear Akt in cancer development. We have previously described a rapid (3-5 min) and P2X7-dependent depletion of nuclear phosphorylated Akt (pAkt) and effects on downstream targets, and here we studied mechanisms behind the pAkt depletion. We show that cholesterol-lowering drugs, statins, or extracellular ATP, induced a complex and coordinated response in insulin-stimulated A549 cells leading to depletion of nuclear pAkt. It involved protein/lipid phosphatases PTEN, pleckstrin homology domain leucine-rich repeat phosphatase (PHLPP1 and -2), protein phosphatase 2A (PP2A), and calcineurin. We employed immunocytology, immunoprecipitation, and proximity ligation assay techniques and show that PHLPP and calcineurin translocated to the nucleus and formed complexes with Akt within 3 min. Also PTEN translocated to the nucleus and then co-localized with pAkt close to the nuclear membrane. An inhibitor of the scaffolding immunophilin FK506-binding protein 51 (FKBP51) and calcineurin, FK506, prevented depletion of nuclear pAkt. Furthermore, okadaic acid, an inhibitor of PP2A, prevented the nuclear pAkt depletion. Chemical inhibition and siRNA indicated that PHLPP, PP2A, and PTEN were required for a robust depletion of nuclear pAkt, and in prostate cancer cells lacking PTEN, transfection of PTEN restored the statin-induced pAkt depletion. The activation of protein and lipid phosphatases was paralleled by a rapid proliferating cell nuclear antigen (PCNA) translocation to the nucleus, a PCNA-p21(cip1) complex formation, and cyclin D1 degradation. We conclude that these effects reflect a signaling pathway for rapid depletion of pAkt that may stop the cell cycle.
Collapse
Affiliation(s)
- Oras Mistafa
- Institute of Environmental Medicine, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
21
|
Farooqui AA. Lipid Mediators in the Neural Cell Nucleus: Their Metabolism, Signaling, and Association with Neurological Disorders. Neuroscientist 2009; 15:392-407. [DOI: 10.1177/1073858409337035] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lipid mediators are important endogenous regulators of neural cell proliferation, differentiation, oxidative stress, inflammation, and apoptosis. They originate from enzymic degradation of glycerophospholipids, sphingolipids, and cholesterol by phospholipases, sphingomyelinases, and cytochrome P450 hydroxylases, respectively. Arachidonic acid-derived lipid mediators are called eicosanoids. Eicosanoids have emerged as key regulators of cell proliferation, differentiation, oxidative stress, and neuroinflammation. Another arachidonic acid-derived lipid mediator is lipoxin. Eicosanoids have proinflammatory effects, whereas lipoxins produce antiinflammatrory effects. The crossponding lipid mediators of docosahexaenoic acid metabolism are named docosanoids. They include resolvins, protectins, and neuroprotectins. Docosanoids produce antioxidant, anti-inflammatory, and antiapoptotic effects in the brain tissue. Other glycerophospholipid-derived lipid mediators are platelet-activating factor, lysophosphatidic acid, and endocannabinoids. Degradation of sphingolipids also results in the generation of sphingolipid-derived lipid mediators. Sphingolipid-derived lipid mediators are ceramide, ceramide 1-phosphate, sphingosine, and sphingosine 1-phosphate. They mediate cellular differentiation, cell growth, and apoptosis. Similarly, cholesterol-derived lipid mediators hydroxycholesterol and oxycholesterol produce apoptosis. Most of these mediators originate from the plasma membrane. The nucleus has its own set of enzymes and lipid mediators that originate from the nuclear envelope and matrix. The purpose of this commentary is to describe basic and clinical information on lipid mediators in the nucleus.
Collapse
Affiliation(s)
- Akhlaq A. Farooqui
- Department of Molecular Cellular Biochemistry, The Ohio
State University, Columbus, Ohio,
| |
Collapse
|
22
|
|
23
|
Madsen L, Petersen RK, Steffensen KR, Pedersen LM, Hallenborg P, Ma T, Frøyland L, Døskeland SO, Gustafsson JÅ, Kristiansen K. Activation of Liver X Receptors Prevents Statin-induced Death of 3T3-L1 Preadipocytes. J Biol Chem 2008; 283:22723-36. [DOI: 10.1074/jbc.m800720200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|