1
|
Luo Q, Luo L, Zhao J, Wang Y, Luo H. Biological potential and mechanisms of Tea's bioactive compounds: An Updated review. J Adv Res 2024; 65:345-363. [PMID: 38056775 PMCID: PMC11519742 DOI: 10.1016/j.jare.2023.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Tea (Camellia sinensis) has a rich history and is widely consumed across many countries, and is categorized into green tea, white tea, oolong tea, yellow tea, black tea, and dark tea based on the level of fermentation. Based on a review of previous literature, the commonly recognized bioactive substances in tea include tea polyphenols, amino acids, polysaccharides, alkaloids, terpenoids, macro minerals, trace elements, and vitamins, which have been known to have various potential health benefits, such as anticancer, antioxidant, anti-inflammatory, anti-diabetes, and anti-obesity properties, cardiovascular protection, immune regulation, and control of the intestinal microbiota. Most studies have only pointed out the characteristics of tea's bioactivities, so a comprehensive summary of the pharmacological characteristics and mechanisms of tea's bioactivities and their use risks are vital. AIM OF REVIEW This paper aims to summarize tea's bioactive substances of tea and their pharmacological characteristics and mechanisms, providing a scientific basis for the application of bioactive substances in tea and outlining future research directions for the study of bioactive substances in tea. KEY SCIENTIFIC CONCEPTS OF REVIEW This review summarizes the main biologically active substances, pharmacological effects, and mechanisms and discusses the potential risks. It may help researchers grasp more comprehensive progress in the study of tea bioactive substances to further promote the application of tea as a natural bioactive substance in the medical field.
Collapse
Affiliation(s)
- Qiaoxian Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China
| | - Longbiao Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China
| | - Jinmin Zhao
- College of Pharmacy, Guangxi Medical University, Nanning, 530021, PR China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China.
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China; College of Pharmacy, Guangxi Medical University, Nanning, 530021, PR China.
| |
Collapse
|
2
|
de la Rubia Ortí JE, Moneti C, Serrano-Ballesteros P, Castellano G, Bayona-Babiloni R, Carriquí-Suárez AB, Motos-Muñoz M, Proaño B, Benlloch M. Liposomal Epigallocatechin-3-Gallate for the Treatment of Intestinal Dysbiosis in Children with Autism Spectrum Disorder: A Comprehensive Review. Nutrients 2023; 15:3265. [PMID: 37513683 PMCID: PMC10383799 DOI: 10.3390/nu15143265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is characterized by varying degrees of difficulty in social interaction and communication. These deficits are often associated with gastrointestinal symptoms, indicating alterations in both intestinal microbiota composition and metabolic activities. The intestinal microbiota influences the function and development of the nervous system. In individuals with ASD, there is an increase in bacterial genera such as Clostridium, as well as species involved in the synthesis of branched-chain amino acids (BCAA) like Prevotella copri. Conversely, decreased amounts of Akkermansia muciniphila and Bifidobacterium spp. are observed. Epigallocatechin-3-gallate (EGCG) is one of the polyphenols with the greatest beneficial activity on microbial growth, and its consumption is associated with reduced psychological distress. Therefore, the objective of this review is to analyze how EGCG and its metabolites can improve the microbial dysbiosis present in ASD and its impact on the pathology. The analysis reveals that EGCG inhibits the growth of pathogenic bacteria like Clostridium perfringens and Clostridium difficile. Moreover, it increases the abundance of Bifidobacterium spp. and Akkermansia spp. As a result, EGCG demonstrates efficacy in increasing the production of metabolites involved in maintaining epithelial integrity and improving brain function. This identifies EGCG as highly promising for complementary treatment in ASD.
Collapse
Affiliation(s)
| | - Costanza Moneti
- Doctoral School, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | | | - Gloria Castellano
- Centro de Investigación Traslacional San Alberto Magno (CITSAM), Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Raquel Bayona-Babiloni
- Department of Basic Medical Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Ana Belén Carriquí-Suárez
- Department of Basic Medical Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - María Motos-Muñoz
- Department of Personality Psychology, Treatment and Methodology, Catholic University of Valencia San Vicente Mártir, 46100 Valencia, Spain
- Child Neurorehabilitation Unit, Manises Hospital, 46940 Valencia, Spain
| | - Belén Proaño
- Department of Basic Medical Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - María Benlloch
- Department of Basic Medical Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| |
Collapse
|
3
|
Duda-Chodak A, Tarko T. Possible Side Effects of Polyphenols and Their Interactions with Medicines. Molecules 2023; 28:molecules28062536. [PMID: 36985507 PMCID: PMC10058246 DOI: 10.3390/molecules28062536] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Polyphenols are an important component of plant-derived food with a wide spectrum of beneficial effects on human health. For many years, they have aroused great interest, especially due to their antioxidant properties, which are used in the prevention and treatment of many diseases. Unfortunately, as with any chemical substance, depending on the conditions, dose, and interactions with the environment, it is possible for polyphenols to also exert harmful effects. This review presents a comprehensive current state of the knowledge on the negative impact of polyphenols on human health, describing the possible side effects of polyphenol intake, especially in the form of supplements. The review begins with a brief overview of the physiological role of polyphenols and their potential use in disease prevention, followed by the harmful effects of polyphenols which are exerted in particular situations. The individual chapters discuss the consequences of polyphenols’ ability to block iron uptake, which in some subpopulations can be harmful, as well as the possible inhibition of digestive enzymes, inhibition of intestinal microbiota, interactions of polyphenolic compounds with drugs, and impact on hormonal balance. Finally, the prooxidative activity of polyphenols as well as their mutagenic, carcinogenic, and genotoxic effects are presented. According to the authors, there is a need to raise public awareness about the possible side effects of polyphenols supplementation, especially in the case of vulnerable subpopulations.
Collapse
|
4
|
Shamansoori MT, Karimi E, Oskoueian E. Rheum ribes extract-loaded nanoliposome as a novel phytogenic antibiotic alternative in mice challenged by Escherichia coli (O157:H7). Biotechnol Appl Biochem 2022; 69:2540-2549. [PMID: 34894162 DOI: 10.1002/bab.2303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/30/2021] [Indexed: 12/27/2022]
Abstract
This study was performed to compare the noncapsulated with nanoliposome-encapsulated phenolic-rich fraction (PRF) obtained from Rheum ribes as a dietary additive and to assess their health-promoting potentials in the mice infected by enteropathogenic Escherichia coli (O157:H7). Upon fractionation, the ethyl acetate fraction with 46.9 ± 2.17 mg GAE/g DW was found as a highest phenolic content. The PRF successfully loaded into nanoliposome structure with a nanometer in size (193.2 nm) and spherical shape and homogeneous dispersion. The gallic acid, salicylic acid, caffeic acid, cinnamic acid, catechin, ellagic acid, and ferulic acid are bioactive phenolics present in the nanoliposome-loaded PRF; however, the main bioactive compounds are cinnamic acid (911 μg/g DW) and ellagic acid (826 μg/g DW). The infection caused by E. coil impaired the weight gain and food intake, liver function, morpho structural characteristics of jejunum, upregulated the expression of inflammatory genes (Cox2, iNOS), downregulation of antioxidant-related genes (SOD, GPX), and increased the ileal population of E. coil. The addition of nonencapsulated PRF and nanoliposome-encapsulated PRF at the concentration of 10 mg TPC/kg BW/day improved these parameters although the nanoliposome-encapsulated PRF revealed more potential as compared with the nonencapsulated PRF in improving the health parameters in mice. The higher health-promoting activity of nanoliposome-encapsulated PRF could be associated with its enhanced intestinal absorption, bioavailability, bioaccessibility, and bioactivity. Consequently, the nanoliposome-encapsulated PRF could be considered as a promising phytobiotic against E. coil infection in mice.
Collapse
Affiliation(s)
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ehsan Oskoueian
- Department of Research and Development, Arka Industrial Cluster, Mashhad, Iran
| |
Collapse
|
5
|
Boyacı D, Kavur PB, Gulec S, Yemenicioğlu A. Physicochemical and Active Properties of Gelatine-Based Composite Gels Loaded with Lysozyme and Green Tea Polyphenols. Food Technol Biotechnol 2021; 59:337-348. [PMID: 34759765 PMCID: PMC8542185 DOI: 10.17113/ftb.59.03.21.7029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 07/14/2021] [Indexed: 12/26/2022] Open
Abstract
Research background The use of gel-based systems as a novel method for the delivery of natural antimicrobial, antioxidant and bioactive compounds is a developing innovative solution for the food industry. This research aims to develop multifunctional active edible gels based on gelatine and its composites with improved mechanical properties. Experimental approach Antilisterial and bioactive composite gels showing different physical and active properties from classical gelatine gel were developed by loading lysozyme and green tea extract into gelatine/starch and gelatine/wax composite gels. Mechanical properties, swelling profiles, colour, release profiles, and antimicrobial and bioactive properties of the gels were characterised. Results and conclusions Gelatine/wax gels showed 1.3- to 2.1-fold higher firmness and cutting strength than gelatine and gelatine/starch composite gels that had similar firmness and cutting strengths. Work to shear of both composite gels was 1.4- to 1.9-fold higher than that of gelatine gel. The gelatine/starch gel showed the highest water absorption capacity. Green tea extract reduced soluble lysozyme in all gels, but composite gels contained higher amount of soluble lysozyme than gelatine gel. All the gels with lysozyme inhibited Listeria innocua growth in the broth media, while green tea extract showed antilisterial activity only in gelatine/wax gels. Gels with green tea extract showed antioxidant, antidiabetic (α-glucosidase and α-amylase inhibition), antihypertensive (angiotensin-converting enzyme inhibition) and antiproliferative activities (on Caco-2 human colon carcinoma cells). However, gelatine and gelatine/wax gels showed the highest antioxidant and antidiabetic activity. The gelatine/wax gels prevented phenolic browning, while green tea extract in other gels showed moderate or extensive browning. Novelty and scientific contribution This work clearly showed the possibility of improving mechanical properties and modifying water absorption and controlled release profiles of gelatine gels using gelatine/starch and gelatine/wax composites. The novel composite gels reduced browning of incorporated polyphenols and showed antilisterial and bioactive properties.
Collapse
Affiliation(s)
- Derya Boyacı
- Department of Food Engineering, Izmir Institute of Technology, 35430 Gulbahce Koyu, Urla, Izmir, Turkey.,School of Engineering, University of Lincoln, LN6 7TS Brayford Pool, Lincoln, United Kingdom
| | - Pelin Barış Kavur
- Department of Food Engineering, Izmir Institute of Technology, 35430 Gulbahce Koyu, Urla, Izmir, Turkey
| | - Sukru Gulec
- Molecular Nutrition and Human Physiology Laboratory, Faculty of Engineering, Izmir Institute of Technology, 35430 Gulbahce Koyu, Urla, Izmir, Turkey
| | - Ahmet Yemenicioğlu
- Department of Food Engineering, Izmir Institute of Technology, 35430 Gulbahce Koyu, Urla, Izmir, Turkey
| |
Collapse
|
6
|
Yang Y, Han X, Chen Y, Wu J, Li M, Yang H, Xu W, Wei L. EGCG Induces Pro-inflammatory Response in Macrophages to Prevent Bacterial Infection through the 67LR/p38/JNK Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5638-5651. [PMID: 33993695 DOI: 10.1021/acs.jafc.1c01353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Extensive studies focused on the therapeutic efficacy of epigallocatechin-3-gallate (EGCG) against bacterial infection. However, little is known about its prophylactic efficacy against bacterial infection. Herein, we found that EGCG showed an effective prophylactic efficacy against bacterial infection with a broad spectrum, including Gram-negative, Gram-positive, and drug-resistant bacteria. Pretreatment with EGCG through intraperitoneal injection, intravenous injection, or intragastric administration significantly reduced the bacterial load, inflammatory response, and mortality in mouse abdominal infection models induced by bacterial inoculation or cecal ligation and puncture. Pretreatment with EGCG by intraperitoneal injection significantly increased the numbers of neutrophils and monocytes/macrophages in the abdominal cavity and peripheral blood of mice, and depletion of neutrophils and monocytes/macrophages by specific antibodies or chemical drugs obviously increased the bacterial load in mice. Of note, EGCG did not directly induce neutrophil and macrophage migration, and it just induced phagocyte migration in the presence of macrophages in a co-cultured system, implying that EGCG-induced phagocyte migration relies on its immunoregulatory effects on macrophages. EGCG markedly induced the production of cytokines and chemokines in macrophages and mouse peritoneal lavage, including tumor necrosis factor-α (TNF-α), interleukin-1 β (IL-1β), IL-6, CXC chemokine ligands 1 and 2 (CXCL1 and 2), and monocyte chemotactic protein-1 (MCP-1). EGCG significantly induced the phosphorylation of p38 and JNK mitogen-activated protein kinases (MAPKs) in macrophages, and inhibition of p38 and JNK MAPKs markedly reduced EGCG-induced chemokine and cytokine production. Anti-67-kDa laminin receptor (67LR) antibody treatment significantly reduced EGCG-induced chemokine production and p38 and JNK phosphorylation in macrophages. Together, EGCG showed an obvious prophylactic efficacy against bacterial infection by inducing a pro-inflammatory response in macrophages through the 67LR/p38/JNK signaling pathway, supporting the further development of EGCG as a potent prophylaxis for bacterial infection and providing new clues to understand the healthcare function of green tea.
Collapse
Affiliation(s)
- Yang Yang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xiaoyang Han
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yue Chen
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jing Wu
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Min Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Hailong Yang
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Wei Xu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Lin Wei
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
7
|
Renzetti A, Betts JW, Fukumoto K, Rutherford RN. Antibacterial green tea catechins from a molecular perspective: mechanisms of action and structure-activity relationships. Food Funct 2021; 11:9370-9396. [PMID: 33094767 DOI: 10.1039/d0fo02054k] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review summarizes the mechanisms of antibacterial action of green tea catechins, discussing the structure-activity relationship (SAR) studies for each mechanism. The antibacterial activity of green tea catechins results from a variety of mechanisms that can be broadly classified into the following groups: (1) inhibition of virulence factors (toxins and extracellular matrix); (2) cell wall and cell membrane disruption; (3) inhibition of intracellular enzymes; (4) oxidative stress; (5) DNA damage; and (6) iron chelation. These mechanisms operate simultaneously with relative importance differing among bacterial strains. In all SAR studies, the highest antibacterial activity is observed for galloylated compounds (EGCG, ECG, and theaflavin digallate). This observation, combined with numerous experimental and theoretical evidence, suggests that catechins share a common binding mode, characterized by the formation of hydrogen bonds and hydrophobic interactions with their target.
Collapse
Affiliation(s)
- Andrea Renzetti
- Global Education Institute, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.
| | | | | | | |
Collapse
|
8
|
Wu M, Brown AC. Applications of Catechins in the Treatment of Bacterial Infections. Pathogens 2021; 10:546. [PMID: 34062722 PMCID: PMC8147231 DOI: 10.3390/pathogens10050546] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 01/08/2023] Open
Abstract
Tea is the second most commonly consumed beverage worldwide. Along with its aromatic and delicate flavors that make it an enjoyable beverage, studies report numerous health advantages in tea consumption, including applications in antimicrobial therapy. The antimicrobial properties of tea are related to catechin and its derivatives, which are natural flavonoids that are abundant in tea. Increasing evidence from in vitro studies demonstrated antimicrobial effects of catechins on both gram-positive and gram-negative bacteria, and proposed direct and indirect therapeutic mechanisms. Additionally, catechins were reported to be effective anti-virulence agents. Furthermore, a number of studies presented evidence that catechins display synergistic effects with certain antibiotics, thus potentiating the activity of antibiotics in resistant bacteria. Despite their numerous beneficial properties, catechins face many challenges in their development as therapeutic agents, including poor absorption, low bioavailability, and rapid degradation. The introduction of nanobiotechnology provides target-based and stable delivery, which enhances catechin bioavailability and optimizes drug efficacy. As further research continues to focus on overcoming the unresolved challenges, catechins are likely to see additional promising applications in our continual fight against bacterial infections.
Collapse
Affiliation(s)
| | - Angela C. Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA;
| |
Collapse
|
9
|
Kasprzak-Drozd K, Oniszczuk T, Stasiak M, Oniszczuk A. Beneficial Effects of Phenolic Compounds on Gut Microbiota and Metabolic Syndrome. Int J Mol Sci 2021; 22:3715. [PMID: 33918284 PMCID: PMC8038165 DOI: 10.3390/ijms22073715] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
The human intestine contains an intricate community of microorganisms, referred to as the gut microbiota (GM), which plays a pivotal role in host homeostasis. Multiple factors could interfere with this delicate balance, including genetics, age, medicines and environmental factors, particularly diet. Growing evidence supports the involvement of GM dysbiosis in gastrointestinal (GI) and extraintestinal metabolic diseases. The beneficial effects of dietary polyphenols in preventing metabolic diseases have been subjected to intense investigation over the last twenty years. As our understanding of the role of the gut microbiota advances and our knowledge of the antioxidant and anti-inflammatory functions of polyphenols accumulates, there emerges a need to examine the prebiotic role of dietary polyphenols. This review firstly overviews the importance of the GM in health and disease and then reviews the role of dietary polyphenols on the modulation of the gut microbiota, their metabolites and how they impact on host health benefits. Inter-dependence between the gut microbiota and polyphenol metabolites and the vital balance between the two in maintaining the host gut homeostasis are also discussed.
Collapse
Affiliation(s)
- Kamila Kasprzak-Drozd
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Tomasz Oniszczuk
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland
| | - Mateusz Stasiak
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland;
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
10
|
Chang EH, Brown AC. Epigallocatechin gallate alters leukotoxin secretion and Aggregatibacter actinomycetemcomitans virulence. J Pharm Pharmacol 2021; 73:505-514. [PMID: 33793838 DOI: 10.1093/jpp/rgaa051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/08/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVES We and others have previously shown that epigallocatechin gallate (EGCg) inhibits the activity of an important virulence factor, leukotoxin (LtxA), produced by the oral bacterium Aggregatibacter actinomycetemcomitans, suggesting the potential use of this molecule as an anti-virulence strategy to treat periodontal infections. Here, we sought to better understand the effects of EGCg on toxin secretion and A. actinomycetemcomitans pathogenicity in a co-culture model. METHODS We used a quantitative immunoblot assay to determine the concentrations of LtxA in the bacterial supernatant and on the bacterial cell surface. Using a co-culture model, consisting of A. actinomycetemcomitans and THP-1 cells, we studied the impact of EGCg-mediated changes in LtxA secretion on the toxicity of A. actinomycetemcomitans. KEY FINDINGS EGCg increased production of LtxA and changed the localization of secreted LtxA from the supernatant to the surface of the bacterial cells. In the co-culture model, a single low dose of EGCg did not protect host THP-1 cells from A. actinomycetemcomitans-mediated cytotoxicity, but a multiple dosing strategy had improved effects. CONCLUSIONS Together, these results demonstrate that EGCg has important, but complicated, effects on toxin secretion and activity; new dosing strategies and comprehensive model systems may be required to properly develop these anti-virulence activities.
Collapse
Affiliation(s)
- En Hyung Chang
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - Angela C Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
11
|
Makarewicz M, Drożdż I, Tarko T, Duda-Chodak A. The Interactions between Polyphenols and Microorganisms, Especially Gut Microbiota. Antioxidants (Basel) 2021; 10:188. [PMID: 33525629 PMCID: PMC7911950 DOI: 10.3390/antiox10020188] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
This review presents the comprehensive knowledge about the bidirectional relationship between polyphenols and the gut microbiome. The first part is related to polyphenols' impacts on various microorganisms, especially bacteria, and their influence on intestinal pathogens. The research data on the mechanisms of polyphenol action were collected together and organized. The impact of various polyphenols groups on intestinal bacteria both on the whole "microbiota" and on particular species, including probiotics, are presented. Moreover, the impact of polyphenols present in food (bound to the matrix) was compared with the purified polyphenols (such as in dietary supplements) as well as polyphenols in the form of derivatives (such as glycosides) with those in the form of aglycones. The second part of the paper discusses in detail the mechanisms (pathways) and the role of bacterial biotransformation of the most important groups of polyphenols, including the production of bioactive metabolites with a significant impact on the human organism (both positive and negative).
Collapse
Affiliation(s)
| | | | | | - Aleksandra Duda-Chodak
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, 30-149 Kraków, Poland; (M.M.); (I.D.); (T.T.)
| |
Collapse
|
12
|
Inhibition of interaction between Staphylococcus aureus α-hemolysin and erythrocytes membrane by hydrolysable tannins: structure-related activity study. Sci Rep 2020; 10:11168. [PMID: 32636484 PMCID: PMC7341856 DOI: 10.1038/s41598-020-68030-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/11/2020] [Indexed: 01/17/2023] Open
Abstract
The objective of the study was a comparative analysis of the antihemolytic activity against two Staphylococcus aureus strains (8325-4 and NCTC 5655) as well as α-hemolysin and of the membrane modifying action of four hydrolysable tannins with different molecular mass and flexibility: 3,6-bis-O-di-O-galloyl-1,2,4-tri-O-galloyl-β-d-glucose (T1), 1,2,3,4,5-penta-O-galloyl-β-d-glucose (T2), 3-O-galloyl-1,2-valoneoyl-β-d-glucose (T3) and 1,2-di-O-galloyl-4,6-valoneoyl-β-d-glucose (T4). We showed that all the compounds studied manifested antihemolytic effects in the range of 5–50 µM concentrations. However, the degree of the reduction of hemolysis by the investigated tannins was not uniform. A valoneoyl group—containing compounds (T3 and T4) were less active. Inhibition of the hemolysis induced by α-hemolysin was also noticed on preincubated with the tannins and subsequently washed erythrocytes. In this case the efficiency again depended on the tannin structure and could be represented by the following order: T1 > T2 > T4 > T3. We also found a relationship between the degree of antihemolytic activity of the tannins studied and their capacity to increase the ordering parameter of the erythrocyte membrane outer layer and to change zeta potential. Overall, our study showed a potential of the T1 and T2 tannins as anti-virulence agents. The results of this study using tannins with different combinations of molecular mass and flexibility shed additional light on the role of tannin structure in activity manifestation.
Collapse
|
13
|
Krueger E, Brown AC. Inhibition of bacterial toxin recognition of membrane components as an anti-virulence strategy. J Biol Eng 2019; 13:4. [PMID: 30820243 PMCID: PMC6380060 DOI: 10.1186/s13036-018-0138-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/27/2018] [Indexed: 12/21/2022] Open
Abstract
Over recent years, the development of new antibiotics has not kept pace with the rate at which bacteria develop resistance to these drugs. For this reason, many research groups have begun to design and study alternative therapeutics, including molecules to specifically inhibit the virulence of pathogenic bacteria. Because many of these pathogenic bacteria release protein toxins, which cause or exacerbate disease, inhibition of the activity of bacterial toxins is a promising anti-virulence strategy. In this review, we describe several approaches to inhibit the initial interactions of bacterial toxins with host cell membrane components. The mechanisms by which toxins interact with the host cell membrane components have been well-studied over the years, leading to the identification of therapeutic targets, which have been exploited in the work described here. We review efforts to inhibit binding to protein receptors and essential membrane lipid components, complex assembly, and pore formation. Although none of these molecules have yet been demonstrated in clinical trials, the in vitro and in vivo results presented here demonstrate their promise as novel alternatives and/or complements to traditional antibiotics.
Collapse
Affiliation(s)
- Eric Krueger
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015 USA
| | - Angela C. Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015 USA
| |
Collapse
|
14
|
De Angelis M, Garruti G, Minervini F, Bonfrate L, Portincasa P, Gobbetti M. The Food-gut Human Axis: The Effects of Diet on Gut Microbiota and Metabolome. Curr Med Chem 2019; 26:3567-3583. [PMID: 28462705 DOI: 10.2174/0929867324666170428103848] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 02/08/2023]
Abstract
Gut microbiota, the largest symbiont community hosted in human organism, is emerging as a pivotal player in the relationship between dietary habits and health. Oral and, especially, intestinal microbes metabolize dietary components, affecting human health by producing harmful or beneficial metabolites, which are involved in the incidence and progression of several intestinal related and non-related diseases. Habitual diet (Western, Agrarian and Mediterranean omnivore diets, vegetarian, vegan and gluten-free diets) drives the composition of the gut microbiota and metabolome. Within the dietary components, polymers (mainly fibers, proteins, fat and polyphenols) that are not hydrolyzed by human enzymes seem to be the main leads of the metabolic pathways of gut microbiota, which in turn directly influence the human metabolome. Specific relationships between diet and microbes, microbes and metabolites, microbes and immune functions and microbes and/or their metabolites and some human diseases are being established. Dietary treatments with fibers are the most effective to benefit the metabolome profile, by improving the synthesis of short chain fatty acids and decreasing the level of molecules, such as p-cresyl sulfate, indoxyl sulfate and trimethylamine N-oxide, involved in disease state. Based on the axis diet-microbiota-health, this review aims at describing the most recent knowledge oriented towards a profitable use of diet to provide benefits to human health, both directly and indirectly, through the activity of gut microbiota.
Collapse
Affiliation(s)
- Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Gabriella Garruti
- Department of Emergency and Organ Transplants, Section of Endocrinology, Andrology and Metabolic Diseases, University of Bari Medical School, Bari, Italy
| | - Fabio Minervini
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Leonilde Bonfrate
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Marco Gobbetti
- Faculty of Science and Technology, Free University of Bozen, Bolzano, Italy
| |
Collapse
|
15
|
Farhadi F, Khameneh B, Iranshahi M, Iranshahy M. Antibacterial activity of flavonoids and their structure-activity relationship: An update review. Phytother Res 2018; 33:13-40. [PMID: 30346068 DOI: 10.1002/ptr.6208] [Citation(s) in RCA: 328] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 08/05/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022]
Abstract
Based on World Health Organization reports, resistance of bacteria to well-known antibiotics is a major global health challenge now and in the future. Different strategies have been proposed to tackle this problem including inhibition of multidrug resistance pumps and biofilm formation in bacteria and development of new antibiotics with novel mechanism of action. Flavonoids are a large class of natural compounds, have been extensively studied for their antibacterial activity, and more than 150 articles have been published on this topic since 2005. Over the past decade, some promising results were obtained with the antibacterial activity of flavonoids. In some cases, flavonoids (especially chalcones) showed up to sixfold stronger antibacterial activities than standard drugs in the market. Some synthetic derivatives of flavonoids also exhibited remarkable antibacterial activities with 20- to 80-fold more potent activity than the standard drug against multidrug-resistant Gram-negative and Gram-positive bacteria (including Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus). This review summarizes the ever changing information on antibacterial activity of flavonoids since 2005, with a special focus on the structure-activity relationship and mechanisms of actions of this broad class of natural compounds.
Collapse
Affiliation(s)
- Faegheh Farhadi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Khameneh
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Green Tea Catechins: Their Use in Treating and Preventing Infectious Diseases. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9105261. [PMID: 30105263 PMCID: PMC6076941 DOI: 10.1155/2018/9105261] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/10/2018] [Indexed: 12/19/2022]
Abstract
Green tea is one of the most popular drinks consumed worldwide. Produced mainly in Asian countries from the leaves of the Camellia sinensis plant, the potential health benefits have been widely studied. Recently, researchers have studied the ability of green tea to eradicate infectious agents and the ability to actually prevent infections. The important components in green tea that show antimicrobial properties are the catechins. The four main catechins that occur in green tea are (-)-epicatechin (EC), (-)-epicatechin-3-gallate (ECG), (-)-epigallocatechin (EGC), and (-)-epigallocatechin-3-gallate (EGCG). Of these catechins, EGCG and EGC are found in the highest amounts in green tea and have been the subject of most of the studies. These catechins have been shown to demonstrate a variety of antimicrobial properties, both to organisms affected and in mechanisms used. Consumption of green tea has been shown to distribute these compounds and/or their metabolites throughout the body, which allows for not only the possibility of treatment of infections but also the prevention of infections.
Collapse
|
17
|
Falcinelli SD, Shi MC, Friedlander AM, Chua J. Green tea and epigallocatechin-3-gallate are bactericidal against Bacillus anthracis. FEMS Microbiol Lett 2018; 364:3866595. [PMID: 28605495 DOI: 10.1093/femsle/fnx127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/09/2017] [Indexed: 01/19/2023] Open
Abstract
Bacillus anthracis, the etiological agent of anthrax, is listed as a category A biothreat agent by the United States Centers for Disease Control and Prevention. The virulence of the organism is due to expression of two exotoxins and capsule, which interfere with host cellular signaling, alter host water homeostasis and inhibit phagocytosis of the pathogen, respectively. Concerns regarding the past and possible future use of B. anthracis as a bioterrorism agent have resulted in an impetus to develop more effective protective measures and therapeutics. In this study, green tea was found to inhibit the in vitro growth of B. anthracis. Epigallocatechin-3-gallate (EGCG), a compound found abundantly in green tea, was shown to be responsible for this activity. EGCG was bactericidal against both the attenuated B. anthracis ANR and the virulent encapsulated B. anthracis Ames strain. This study highlights the antimicrobial activity of green tea and EGCG against anthrax and suggests the need for further investigation of EGCG as a therapeutic candidate against B. anthracis.
Collapse
Affiliation(s)
- Shane D Falcinelli
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Maggie C Shi
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Arthur M Friedlander
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA.,Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Jennifer Chua
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| |
Collapse
|
18
|
Papuc C, Goran GV, Predescu CN, Nicorescu V, Stefan G. Plant Polyphenols as Antioxidant and Antibacterial Agents for Shelf-Life Extension of Meat and Meat Products: Classification, Structures, Sources, and Action Mechanisms. Compr Rev Food Sci Food Saf 2017; 16:1243-1268. [PMID: 33371586 DOI: 10.1111/1541-4337.12298] [Citation(s) in RCA: 304] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 12/27/2022]
Abstract
Oxidative processes and meat spoilage bacteria are major contributors to decreasing the shelf-life of meat and meat products. Oxidative processes occur during processing, storage, and light exposure, lowering the nutritional and sensory value and acceptability of meat and generating toxic compounds for humans. Polyphenols inhibit oxidative processes in 3 ways: as reactive species scavengers, lipoxygenase inhibitors, and reducing agents for metmyoglobin. Thus, polyphenols are candidate antioxidants for meat and meat products. The cross-contamination of meat with spoilage and pathogenic microorganisms can occur in production lines and result in economic losses. The ability of polyphenols to interact with bacterial cell wall components and the bacterial cell membrane can prevent and control biofilm formation, as well as inhibit microbial enzymes, interfere in protein regulation, and deprive bacterial cell enzymes of substrates and metal ions. Thus, polyphenols are candidate antimicrobial agents for use with meat and meat products. Commercially available polyphenols can decrease primary and secondary lipid peroxidation levels, inhibit lipoxygenase activity, improve meat color stability, minimize the degradation of salt-soluble myofibrillar protein and sulfhydryl groups, and retard bacterial growth. Further studies are now needed to clarify the synergistic/antagonistic action of various polyphenols, and to identify the best polyphenol classes, concentrations, and conditions of use.
Collapse
Affiliation(s)
- Camelia Papuc
- UASVM of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 5th district, 050097, Bucharest, Romania
| | - Gheorghe V Goran
- UASVM of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 5th district, 050097, Bucharest, Romania
| | - Corina N Predescu
- UASVM of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 5th district, 050097, Bucharest, Romania
| | - Valentin Nicorescu
- UASVM of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 5th district, 050097, Bucharest, Romania
| | - Georgeta Stefan
- UASVM of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 5th district, 050097, Bucharest, Romania
| |
Collapse
|
19
|
Zhou X, Zhang B, Cui Y, Chen S, Teng Z, Lu G, Wang J, Deng X. Curcumin Promotes the Clearance of Listeria monocytogenes both In Vitro and In Vivo by Reducing Listeriolysin O Oligomers. Front Immunol 2017; 8:574. [PMID: 28567044 PMCID: PMC5434164 DOI: 10.3389/fimmu.2017.00574] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 04/28/2017] [Indexed: 01/28/2023] Open
Abstract
The pore-forming toxin listeriolysin O (LLO), an essential virulence factor that is secreted by Listeria monocytogenes (L. monocytogenes), is responsible for bacterial breaching at the phagosomal membranes and subsequent release into the cytoplasm; it cannot be recognized by the host immune system. The vital role that LLO plays in bacterial pathogenicity and evading host immune clearance makes this virulence a promising target for addressing L. monocytogenes infection. In this study, we hypothesized that curcumin, a polyphenol derived from turmeric that could effectively inhibit LLO pore-forming activity, might be useful in the prevention or treatment of L. monocytogenes infection. Thus, the in vitro protective effects of curcumin against L. monocytogenes infection by targeting LLO were assessed via hemolytic activity assays, cytotoxicity tests, intracellular growth assays, and confocal microscopy. Our results revealed that treating infected macrophages with curcumin can lead to a decrease in LLO-mediated bacteria phagosomal escape and limit the intracellular growth of L. monocytogenes. Moreover, results from animal experiments show that this natural compound effectively increases protection against bacterial infection and helps the host to clear the invading pathogen completely from an animal model, establishing it as a potent antagonist of L. monocytogenes. The results from our molecular modeling and mutational analysis demonstrated that curcumin directly engages with domains 2 and 4 of LLO, thereby decreasing the hemolytic activity of LLO by influencing its oligomerization. Taken together, these results suggest that, as an antitoxin agent, curcumin can be further developed into a novel therapy against L. monocytogenes infections by targeting LLO.
Collapse
Affiliation(s)
- Xuan Zhou
- Center of Infection and Immunity, The First Hospital, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Bing Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yumei Cui
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shuiye Chen
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zihao Teng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Gejin Lu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianfeng Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- Center of Infection and Immunity, The First Hospital, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
20
|
Song M, Teng Z, Li M, Niu X, Wang J, Deng X. Epigallocatechin gallate inhibits Streptococcus pneumoniae virulence by simultaneously targeting pneumolysin and sortase A. J Cell Mol Med 2017; 21:2586-2598. [PMID: 28402019 PMCID: PMC5618700 DOI: 10.1111/jcmm.13179] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/24/2017] [Indexed: 01/11/2023] Open
Abstract
Streptococcus pneumoniae (pneumococcus), the causative agent of several human diseases, possesses numerous virulence factors associated with pneumococcal infection and pathogenesis. Pneumolysin (PLY), an important virulence factor, is a member of the cholesterol-dependent cytolysin family and has cytolytic activity. Sortase A (SrtA), another crucial pneumococcal virulence determinate, contributes greatly to the anchoring of many virulence-associated surface proteins to the cell wall. In this study, epigallocatechin gallate (EGCG), a natural compound with little known antipneumococcal activity, was shown to directly inhibit PLY-mediated haemolysis and cytolysis by blocking the oligomerization of PLY and simultaneously reduce the peptidase activity of SrtA. The biofilm formation, production of neuraminidase A (NanA, the pneumococcal surface protein anchored by SrtA), and bacterial adhesion to human epithelial cells (Hep2) were inhibited effectively when S. pneumoniae D39 was cocultured with EGCG. The results from molecular dynamics simulations and mutational analysis confirmed the interaction of EGCG with PLY and SrtA, and EGCG binds to Glu277, Tyr358, and Arg359 in PLY and Thr169, Lys171, and Phe239 in SrtA. In vivo studies further demonstrated that EGCG protected mice against S. pneumoniae pneumonia. Our results imply that EGCG is an effective inhibitor of both PLY and SrtA and that an antivirulence strategy that directly targets PLY and SrtA using EGCG is a promising therapeutic option for S. pneumoniae pneumonia.
Collapse
Affiliation(s)
- Meng Song
- The First Hospital and Institute of Infection and Immunity, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zihao Teng
- The First Hospital and Institute of Infection and Immunity, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Meng Li
- The First Hospital and Institute of Infection and Immunity, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaodi Niu
- The First Hospital and Institute of Infection and Immunity, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianfeng Wang
- The First Hospital and Institute of Infection and Immunity, Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- The First Hospital and Institute of Infection and Immunity, Jilin University, Changchun, China
| |
Collapse
|
21
|
Guo YJ, Zhang B, Feng XS, Ren HX, Xu JR. Human cathelicidin LL-37 enhance the antibiofilm effect of EGCG on Streptococcus mutans. BMC Oral Health 2016; 16:101. [PMID: 27659310 PMCID: PMC5034579 DOI: 10.1186/s12903-016-0292-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/08/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Streptococcus mutans forms biofilms as a resistance mechanism against antimicrobial agents in the human oral cavity. We recently showed that human cathelicidin LL-37 exhibits inhibitory effects on biofilm formation of S. mutans through interaction with lipoteichoic acid (LTA), but without antibacterial or biofilm dispersal abilities. (-)-Epigallocatechin gallate (EGCG) is the most abundant constituent of tea catechins that has the greatest anti-infective potential to inhibit the growth of various microorganisms and biofilm formation. Therefore, in this study, we evaluated whether LL-37 interacts with EGCG to enhance the antibiofilm effect of EGCG on S. mutans biofilm formation. METHODS Clinical S. mutans strains (n = 10) isolated from children's saliva were tested in a biofilm formation assay. The antibiofilm effect of EGCG with and without LL-37 was analyzed by the minimum biofilm eradication concentration assay and confirmed using field emission-scanning electron microscopy. In addition, the interaction among EGCG, LL-37, and LTA of S. mutans was determined using quartz crystal microbalance analysis. RESULTS EGCG killed 100 % of planktonic S. mutans within 5 h, inhibited biofilm formation within 24 h, and reduced bacteria cells in preformed biofilms within 3 h at a concentration of 0.2 mg/mL. However, EGCG did not appear to interact with LTA. LL-37 effectively enhanced the bactericidal activity of EGCG against biofilm formation and preformed biofilms as determined by quantitative crystal violet staining and field emission-scanning electron microscopy. In addition, quartz crystal microbalance analysis revealed that LL-37 interacted with EGCG and promoted binding between EGCG and LTA of S. mutans. CONCLUSIONS We show that LL-37 enhances the antibiofilm effect of EGCG on S. mutans. This finding provides new knowledge for dental treatment by using LL-37 as a potential antibiofilm compound.
Collapse
Affiliation(s)
- Yi-Jie Guo
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Yanta West Road No.76, Xi'an, 710061, ShaanXi, China. .,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Yanta West Road No.76, Xi'an, 710061, ShaanXi, China.
| | - Bo Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Yanta West Road No.76, Xi'an, 710061, ShaanXi, China.,Clinical Laboratory, AnKang City Central Hospital, Jinzhou South Road No.85, AnKang, 725000, ShaanXi, China
| | - Xue-Song Feng
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Yanta West Road No.76, Xi'an, 710061, ShaanXi, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Yanta West Road No.76, Xi'an, 710061, ShaanXi, China
| | - Hui-Xun Ren
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Yanta West Road No.76, Xi'an, 710061, ShaanXi, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Yanta West Road No.76, Xi'an, 710061, ShaanXi, China
| | - Ji-Ru Xu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Yanta West Road No.76, Xi'an, 710061, ShaanXi, China. .,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Yanta West Road No.76, Xi'an, 710061, ShaanXi, China.
| |
Collapse
|
22
|
Zhang F, Zhu J, Wang H. Inhibitory Activity of Tea Polyphenols on Biofilm Development of Shewanella putrefaciens. J FOOD PROCESS PRES 2015. [DOI: 10.1111/jfpp.12669] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fang Zhang
- College of Food Science and Biotechnology; Zhejiang Gongshang University; Hangzhou 310018 China
| | - Junli Zhu
- College of Food Science and Biotechnology; Zhejiang Gongshang University; Hangzhou 310018 China
| | - Huimin Wang
- College of Food Science and Biotechnology; Zhejiang Gongshang University; Hangzhou 310018 China
| |
Collapse
|
23
|
Patel S, Vajdy M. Induction of cellular and molecular immunomodulatory pathways by vitamin A and flavonoids. Expert Opin Biol Ther 2015; 15:1411-28. [PMID: 26185959 DOI: 10.1517/14712598.2015.1066331] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION A detailed study of reports on the immunomodulatory properties of vitamin A and select flavonoids may pave the way for using these natural compounds or compounds with similar structures in novel drug and vaccine designs against infectious and autoimmune diseases and cancers. AREAS COVERED Intracellular transduction pathways, cellular differentiation and functional immunomodulatory responses have been reviewed. The reported studies encompass in vitro, in vivo preclinical and clinical studies that address the role of vitamin A and select flavonoids in induction of innate and adaptive B- and T-cell responses, including TH1, TH2 and regulatory T cells (Treg). EXPERT OPINION While the immunomodulatory role of vitamin A, and related compounds, is well-established in many preclinical studies, its role in humans has begun to gain wider acceptance. In contrast, the role of flavonoids is mostly controversial in clinical trials, due to the diversity of the various classes of these compounds, and possibly due to the purity and the selected doses of the compounds. However, current preclinical and clinical studies warrant further detailed studies of these promising immunomodulatory compounds.
Collapse
Affiliation(s)
- Sapna Patel
- a EpitoGenesis, Inc. , 1392 Storrs Rd Unit 4213, ATL Building, Rm 101, Storrs, CT 06269, USA
| | - Michael Vajdy
- a EpitoGenesis, Inc. , 1392 Storrs Rd Unit 4213, ATL Building, Rm 101, Storrs, CT 06269, USA
| |
Collapse
|
24
|
Duda-Chodak A, Tarko T, Satora P, Sroka P. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. Eur J Nutr 2015; 54:325-41. [PMID: 25672526 PMCID: PMC4365176 DOI: 10.1007/s00394-015-0852-y] [Citation(s) in RCA: 373] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 01/30/2015] [Indexed: 02/08/2023]
Abstract
The intestinal microbiome plays an important role in the metabolism of chemical compounds found within food. Bacterial metabolites are different from those that can be generated by human enzymes because bacterial processes occur under anaerobic conditions and are based mainly on reactions of reduction and/or hydrolysis. In most cases, bacterial metabolism reduces the activity of dietary compounds; however, sometimes a specific product of bacterial transformation exhibits enhanced properties. Studies on the metabolism of polyphenols by the intestinal microbiota are crucial for understanding the role of these compounds and their impact on our health. This review article presents possible pathways of polyphenol metabolism by intestinal bacteria and describes the diet-derived bioactive metabolites produced by gut microbiota, with a particular emphasis on polyphenols and their potential impact on human health. Because the etiology of many diseases is largely correlated with the intestinal microbiome, a balance between the host immune system and the commensal gut microbiota is crucial for maintaining health. Diet-related and age-related changes in the human intestinal microbiome and their consequences are summarized in the paper.
Collapse
Affiliation(s)
- Aleksandra Duda-Chodak
- Department of Fermentation Technology and Technical Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149, Kraków, Poland,
| | | | | | | |
Collapse
|
25
|
Duda-Chodak A, Tarko T, Satora P, Sroka P. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. Eur J Nutr 2015. [DOI: 10.1007/s00394-015-0852-y pmid: 25672526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
26
|
Wang J, Qiu J, Tan W, Zhang Y, Wang H, Zhou X, Liu S, Feng H, Li W, Niu X, Deng X. Fisetin inhibits Listeria monocytogenes virulence by interfering with the oligomerization of listeriolysin O. J Infect Dis 2014; 211:1376-87. [PMID: 25231018 DOI: 10.1093/infdis/jiu520] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/04/2014] [Indexed: 11/14/2022] Open
Abstract
Listeriolysin O (LLO), an essential virulence determinant of Listeria monocytogenes, is a pore-forming toxin whose primary function is to facilitate cytosolic bacterial replication by breaching the phagosomal membranes, which is critical for the pathogen to evade host immune recognition. The critical role of LLO in the virulence of L. monocytogenes renders it an ideal target for designing novel antivirulence therapeutics. We found that fisetin, a natural flavonoid without antimicrobial activity, is a potent antagonist of LLO-mediated hemolysis. Fisetin effectively inhibits L. monocytogenes infection in both tissue culture and animal infection models. Molecular modeling and mutational analysis revealed that fisetin directly engages loop 2 and loop 3 of LLO, leading to the blockage of cholesterol binding and the reduction of its oligomerization, thus inhibiting its hemolytic activity. Our results establish fisetin as an effective antitoxin agent for LLO, which can be further developed into novel therapeutics against infections caused by L. monocytogenes.
Collapse
Affiliation(s)
- Jianfeng Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine
| | - Jiazhang Qiu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine
| | - Wei Tan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine
| | - Yu Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine
| | - Hongshu Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine
| | - Xuan Zhou
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine
| | - Shui Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine
| | - Haihua Feng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine
| | - Wenhua Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine
| | - Xiaodi Niu
- Department of Food Quality and Safety, Jilin University, Changchun, China
| | - Xuming Deng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine
| |
Collapse
|
27
|
Abstract
Green tea is a popular drink, especially in Asian countries, although its popularity continues to spread across the globe. The health benefits of green tea, derived from the leaves of the Camellia sinensis plant, have been studied for many years. Fairly recently, researchers have begun to look at the possibility of using green tea in antimicrobial therapy, and the potential prevention of infections. The particular properties of catechins found in the tea have shown promise for having antimicrobial effects. There are four main catechins (polyphenols) found in green tea: (-)-epicatechin (EC), (-)-epicatechin-3-gallate (ECG), (-)-epigallocatechin (EGC), and (-)-epigallocatechin-3-gallate (EGCG). Three of these, ECG, EGC, and EGCG have been shown to have antimicrobial effects against a variety of organisms. These catechins have exhibited a variety of antimicrobial mechanisms. The results of studies on the antimicrobial effects of green tea have shown that the potential for preventive and therapeutic purposes is present. Further data collection on studies performed with human consumption during the course of infections, and studies on the occurrence of infections in populations that consume regular amounts of green tea will be necessary to complete the picture of its antimicrobial possibilities.
Collapse
Affiliation(s)
- Wanda C Reygaert
- Department of Biomedical Sciences, Oakland University William Beaumont School of Medicine Rochester, MI, USA
| |
Collapse
|
28
|
Zhao L, Li W, Zhu S, Tsai S, Li J, Tracey KJ, Wang P, Fan S, Sama AE, Wang H. Green tea catechins quench the fluorescence of bacteria-conjugated Alexa fluor dyes. ACTA ACUST UNITED AC 2014; 12:308-14. [PMID: 24011199 PMCID: PMC3796893 DOI: 10.2174/18715281113129990057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/07/2013] [Accepted: 08/08/2013] [Indexed: 01/06/2023]
Abstract
Accumulating evidence suggests that Green tea polyphenolic catechins, especially the (-)-epigallocatechin gallate (EGCG), can be cross-linked to many proteins, and confer a wide range of anti-bacterial activities possibly by damaging microbial cytoplasmic lipids and proteins. At the doses that conferred protection against lethal polymicrobial infection (induced by cecal ligation and puncture), EGCG significantly reduced bacterial loads particularly in the liver and lung. To elucidate its bactericidal mechanisms, we determined whether EGCG affected the fluorescence intensities of bacteria-conjugated Alexa Fluor 488 or 594 dyes. When mixed with unconjugated Alexa Fluor 488 or 594 dyes, EGCG or analogs did not affect the fluorescence intensity of these dyes. In a sharp contrast, EGCG and some analogs (e.g., Catechin Gallate, CG), markedly reduced the fluorescence intensity of Gram-positive Staphylococcus aureus-conjugated Alexa 594 and Gram-negative Escherichia coli-conjugated Alexa 488. Interestingly, co-treatment with ethanol impaired the EGCG-mediated fluorescence quenching of the G(+) S. aureus, but not of the G(-) E. coli-conjugated Alexa Flour dyes. In light of the notion that Alexa Fluor dyes can be quenched by aromatic amino acids, it is plausible that EGCG exerts antimicrobial activities possibly by altering microbial protein conformations and functions. This possibility can now be explored by screening other fluorescence-quenching agents for possible antimicrobial activities.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Emergency Medicine, North Shore University Hospital, 350 Community Drive, Manhasset, NY 11030, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bansal S, Choudhary S, Sharma M, Kumar SS, Lohan S, Bhardwaj V, Syan N, Jyoti S. Tea: A native source of antimicrobial agents. Food Res Int 2013. [PMCID: PMC7126541 DOI: 10.1016/j.foodres.2013.01.032] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tea (Camellia sinensis) is one of the most popular nonalcoholic beverages, consumed by over two-thirds of the world's population because of its refreshing, mild stimulant and medicinal properties. It is processed in different ways in different parts of the world to give green, black, oolong, and pu-erh tea. Among all tea polyphenols, epigallocatechin-3-gallate has been responsible for much of the health promoting abilities of tea including anti-inflammatory, antimicrobial, antitumour, anti-oxidative, protection from cardiovascular disease, anti-obesity, and anti-aging properties. In the present review, the antibacterial, antiviral, and antifungal activities of different types of tea and their polyphenols are reported, highlighting their mechanisms of action and structure–activity relationship. Moreover, considering that the changing patterns of infectious diseases and the emergence of microbial strains resistant to current antibiotics, there is an urgent need to find out new potent antimicrobial agents as adjuvants to antibiotic therapy. The synergistic effect of tea polyphenols in combination with conventional antimicrobial agents against clinical multidrug-resistant microorganisms has also been discussed in this review.
Collapse
Affiliation(s)
- Sumit Bansal
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India
- Corresponding author. Tel.: + 91 1792 239219; fax: + 91 1792 245362.
| | - Shivani Choudhary
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal, Karnataka, India
| | - Manu Sharma
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India
| | - Suthar Sharad Kumar
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India
| | - Sandeep Lohan
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India
| | - Varun Bhardwaj
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India
| | - Navneet Syan
- Department of Pharmaceutical Chemistry, Ganpati Institute of Pharmacy, Bilaspur, Haryana, India
| | - Saras Jyoti
- Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India
| |
Collapse
|
30
|
Yi S, Wang W, Bai F, Zhu J, Li J, Li X, Xu Y, Sun T, He Y. Antimicrobial effect and membrane-active mechanism of tea polyphenols against Serratia marcescens. World J Microbiol Biotechnol 2013; 30:451-60. [PMID: 23979827 DOI: 10.1007/s11274-013-1464-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 08/13/2013] [Indexed: 01/03/2023]
Abstract
In this study, we investigated the antimicrobial effect of tea polyphenols (TP) against Serratia marcescens and examined the related mechanism. Morphology changes of S. marcescens were first observed by transmission electron microscopy after treatment with TP, which indicated that the primary inhibition action of TP was to damage the bacterial cell membranes. The permeability of the outer and inner membrane of S. marcescens dramatically increased after TP treatment, which caused severe disruption of cell membrane, followed by the release of small cellular molecules. Furthermore, a proteomics approach based on two-dimensional gel electrophoresis and MALDI-TOF/TOF MS analysis was used to study the difference of membrane protein expression in the control and TP treatment S. marcescens. The results showed that the expression of some metabolism enzymes and chaperones in TP-treated S. marcescens significantly increased compared to the untreated group, which might result in the metabolic disorder of this bacteria. Taken together, our results first demonstrated that TP had a significant growth inhibition effect on S. marcescens through cell membrane damage.
Collapse
Affiliation(s)
- Shumin Yi
- College of Chemistry, Chemical Engineering and Food Safety, Bohai University, 19 KeJi Road, Jinzhou, 121013, Liaoning, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Netíková L, Bogusch P, Heneberg P. Czech Ethanol-Free Propolis Extract Displays Inhibitory Activity against a Broad Spectrum of Bacterial and Fungal Pathogens. J Food Sci 2013; 78:M1421-9. [DOI: 10.1111/1750-3841.12230] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 06/24/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Ladislava Netíková
- Faculty of Science, Univ. of Hradec Králové; Rokitanského 62; CZ-500 03 Hradec Králové; Czech Republic
| | - Petr Bogusch
- Faculty of Science, Univ. of Hradec Králové; Rokitanského 62; CZ-500 03 Hradec Králové; Czech Republic
| | - Petr Heneberg
- Third Faculty of Medicine, Charles Univ. in Prague; Ruská 87; CZ-100 00 Prague; Czech Republic
| |
Collapse
|
32
|
Sun LM, Zhang CL, Li P. Characterization, antimicrobial activity, and mechanism of a high-performance (-)-epigallocatechin-3-gallate (EGCG)-CuII/polyvinyl alcohol (PVA) nanofibrous membrane. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:5087-5092. [PMID: 21417240 DOI: 10.1021/jf200580t] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) exhibited strong antimicrobial activity. However, the easy oxidation of EGCG has limited its application. To increase the antimicrobial activity and stability of EGCG, the EGCG-Cu(II) complex was formed by chelating copper ions and then electronspun into polyvinyl alcohol (PVA) nanofibers. Electronspun nanofibrous membranes were investigated by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM), which showed that the average fiber diameter was 210 nm. Minimal inhibitory concentrations (MICs) of EGCG-Cu(II)/PVA membranes were tested against the tested strains. The bactericidal activity of EGCG-Cu(II) was suppressed by ethylenediaminetetraacetic acid (EDTA). Cell killing was accompanied by the leakage of intracellular proteins, indicating that the cytoplasmic membrane was badly damaged after exposure to the EGCG-Cu(II)/PVA membrane. We observed the process of cell damage by SEM. On the basis of experimental evidence and theoretical analyses, the mechanism proposed that copper ions played a cooperative role in the bactericidal process of EGCG. To evaluate the antimicrobial activity of the EGCG-Cu(II)/PVA membrane, we developed a rapid detection method by labeling cells with water-soluble CdTe quantum dots.
Collapse
Affiliation(s)
- Li-ming Sun
- School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | | | | |
Collapse
|
33
|
Recent advances in understanding the antibacterial properties of flavonoids. Int J Antimicrob Agents 2011; 38:99-107. [PMID: 21514796 DOI: 10.1016/j.ijantimicag.2011.02.014] [Citation(s) in RCA: 663] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 01/14/2023]
Abstract
Antibiotic resistance is a major global problem and there is a pressing need to develop new therapeutic agents. Flavonoids are a family of plant-derived compounds with potentially exploitable activities, including direct antibacterial activity, synergism with antibiotics, and suppression of bacterial virulence. In this review, recent advances towards understanding these properties are described. Information is presented on the ten most potently antibacterial flavonoids as well as the five most synergistic flavonoid-antibiotic combinations tested in the last 6 years (identified from PubMed and ScienceDirect). Top of these respective lists are panduratin A, with minimum inhibitory concentrations (MICs) of 0.06-2.0 μg/mL against Staphylococcus aureus, and epicatechin gallate, which reduces oxacillin MICs as much as 512-fold. Research seeking to improve such activity and understand structure-activity relationships is discussed. Proposed mechanisms of action are also discussed. In addition to direct and synergistic activities, flavonoids inhibit a number of bacterial virulence factors, including quorum-sensing signal receptors, enzymes and toxins. Evidence of these molecular effects at the cellular level include in vitro inhibition of biofilm formation, inhibition of bacterial attachment to host ligands, and neutralisation of toxicity towards cultured human cells. In vivo evidence of disruption of bacterial pathogenesis includes demonstrated efficacy against Helicobacter pylori infection and S. aureus α-toxin intoxication.
Collapse
|
34
|
Melgarejo E, Medina MA, Sánchez-Jiménez F, Urdiales JL. Targeting of histamine producing cells by EGCG: a green dart against inflammation? J Physiol Biochem 2010; 66:265-70. [PMID: 20652470 DOI: 10.1007/s13105-010-0033-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 06/30/2010] [Indexed: 12/13/2022]
Abstract
The human body is made of some 250 different cell types. From them, only a small subset of cell types is able to produce histamine. They include some neurons, enterochromaffin-like cells, gastrin-containing cells, mast cells, basophils, and monocytes/macrophages, among others. In spite of the reduced number of these histamine-producing cell types, they are involved in very different physiological processes. Their deregulation is related with many highly prevalent, as well as emergent and rare diseases, mainly those described as inflammation-dependent pathologies, including mastocytosis, basophilic leukemia, gastric ulcer, Crohn disease, and other inflammatory bowel diseases. Furthermore, oncogenic transformation switches some non-histamine-producing cells to a histamine producing phenotype. This is the case of melanoma, small cell lung carcinoma, and several types of neuroendocrine tumors. The bioactive compound epigallocatechin-3-gallate (EGCG), a major component of green tea, has been shown to target histamine-producing cells producing great alterations in their behavior, with relevant effects on their proliferative potential, as well as their adhesion, migration, and invasion potentials. In fact, EGCG has been shown to have potent anti-inflammatory, anti-tumoral, and anti-angiogenic effects and to be a potent inhibitor of the histamine-producing enzyme, histidine decarboxylase. Herein, we review the many specific effects of EGCG on concrete molecular targets of histamine-producing cells and discuss the relevance of these data to support the potential therapeutic interest of this compound to treat inflammation-dependent diseases.
Collapse
Affiliation(s)
- Esther Melgarejo
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga and CIBER de Enfermedades Raras (CIBERER), Málaga, Spain
| | | | | | | |
Collapse
|
35
|
Kiran S, Ratho RK, Sharma P, Harjai K, Capalash N, Tiwari RP. Effect of black tea (Camellia sinensis) on virulence traits of clinical isolates of Shigella dysenteriae and Escherichia coli EPEC P2 1265 strain. Eur Food Res Technol 2010. [DOI: 10.1007/s00217-010-1328-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Cooperation between prokaryotic (Lde) and eukaryotic (MRP) efflux transporters in J774 macrophages infected with Listeria monocytogenes: studies with ciprofloxacin and moxifloxacin. Antimicrob Agents Chemother 2008; 52:3040-6. [PMID: 18573933 DOI: 10.1128/aac.00105-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibiotic efflux is observed in both eukaryotic and prokaryotic cells, modulating accumulation and resistance. The present study examines whether eukaryotic and prokaryotic fluoroquinolone transporters can cooperate in the context of an intracellular infection. We have used (i) J774 macrophages (comparing a ciprofloxacin-resistant cell line overexpressing an MRP-like transporter with wild-type cells with basal expression), (ii) Listeria monocytogenes (comparing a clinical isolate [CLIP21369] displaying ciprofloxacin resistance associated with overexpression of the Lde efflux system with a wild-type strain [EGD]), (iii) ciprofloxacin (substrate of both Lde and MRP) and moxifloxacin (nonsubstrate), and (iv) probenecid and reserpine (preferential inhibitors of MRP and Lde, respectively). The ciprofloxacin MICs for EGD were unaffected by reserpine, while those for CLIP21369 were decreased approximately fourfold (and made similar to those of EGD). Neither probenecid nor reserpine affected the moxifloxacin MICs against EGD or CLIP21369. In dose-response studies (0.01x to 100x MIC) in broth, reserpine fully restored the susceptibility of CLIP21369 to ciprofloxacin (no effect on EGD) but did not influence the activity of moxifloxacin. In studies with intracellular bacteria, reserpine, probenecid, and their combination increased the activity of ciprofloxacin in wild-type and ciprofloxacin-resistant macrophages in parallel with an increase in ciprofloxacin accumulation in macrophages for EGD and an increase in accumulation and decrease in MIC (in broth) for CLIP21369. Moxifloxacin accumulation and intracellular activity were consistently not affected by the inhibitors. A bacterial efflux pump may thus actively cooperate with a eukaryotic efflux transporter to reduce the activity of a common substrate (ciprofloxacin) toward an intracellular bacterial target.
Collapse
|