1
|
Elleuche S, Krull A, Lorenz U, Antranikian G. Parallel N- and C-Terminal Truncations Facilitate Purification and Analysis of a 155-kDa Cold-Adapted Type-I Pullulanase. Protein J 2017; 36:56-63. [DOI: 10.1007/s10930-017-9703-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
2
|
Rizk M, Antranikian G, Elleuche S. Influence of Linker Length Variations on the Biomass-Degrading Performance of Heat-Active Enzyme Chimeras. Mol Biotechnol 2016; 58:268-79. [PMID: 26921187 DOI: 10.1007/s12033-016-9925-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Plant cell walls are composed of complex polysaccharides such as cellulose and hemicellulose. In order to efficiently hydrolyze cellulose, the synergistic action of several cellulases is required. Some anaerobic cellulolytic bacteria form multienzyme complexes, namely cellulosomes, while other microorganisms produce a portfolio of diverse enzymes that work in synergistic fashion. Molecular biological methods can mimic such effects through the generation of artificial bi- or multifunctional fusion enzymes. Endoglucanase and β-glucosidase from extremely thermophilic anaerobic bacteria Fervidobacterium gondwanense and Fervidobacterium islandicum, respectively, were fused end-to-end in an approach to optimize polysaccharide degradation. Both enzymes are optimally active at 90 °C and pH 6.0-7.0 representing excellent candidates for fusion experiments. The direct linkage of both enzymes led to an increased activity toward the substrate specific for β-glucosidase, but to a decreased activity of endoglucanase. However, these enzyme chimeras were superior over 1:1 mixtures of individual enzymes, because combined activities resulted in a higher final product yield. Therefore, such fusion enzymes exhibit promising features for application in industrial bioethanol production processes.
Collapse
Affiliation(s)
- Mazen Rizk
- Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstr. 12, 21073, Hamburg, Germany
| | - Garabed Antranikian
- Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstr. 12, 21073, Hamburg, Germany
| | - Skander Elleuche
- Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstr. 12, 21073, Hamburg, Germany.
| |
Collapse
|
3
|
|
4
|
von der Heyde A, Lockhauserbäumer J, Uetrecht C, Elleuche S. A hydrolase-based reporter system to uncover the protein splicing performance of an archaeal intein. Appl Microbiol Biotechnol 2015; 99:7613-24. [PMID: 26026939 DOI: 10.1007/s00253-015-6689-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 05/06/2015] [Accepted: 05/17/2015] [Indexed: 11/30/2022]
Abstract
Extein amino acid residues around the splice site junctions affect the functionality of inteins. To identify an optimal sequence context for efficient protein splicing of an intein from the thermoacidophilic archaeon Picrophilus torridus, single extein amino acid residues at the splice site junctions were continuously deleted. The construction of a set of different truncated extein variants showed that this intein tolerates multiple amino acid variations near the excision sites and exhibits full activity when -1 and +1 extein amino acid residues are conserved in an artificial GST-intein-HIS fusion construct. Moreover, splicing of the recombinant intein took place at temperatures between 4 and 42 °C with high efficiency, when produced in Escherichia coli. Therefore, structural model predictions were used to identify optimal insertion sites for the intein to be embedded within a hemicellulase from the psychrophilic bacterium Pseudoalteromonas arctica. The P. torridus intein inserted before amino acid residue Thr75 of the reporter enzyme retained catalytic activity. Moreover, the catalytic activity of the xylan-degrading hydrolase could be easily monitored in routine plate assays and in liquid test measurements at room temperature when produced in recombinant form in E. coli. This tool allows the indirect detection of the intein's catalytic activity to be used in screenings.
Collapse
Affiliation(s)
- Amélie von der Heyde
- Hamburg University of Technology (TUHH), Institute of Technical Microbiology, Kasernenstr. 12, 21073, Hamburg, Germany
| | | | | | | |
Collapse
|
5
|
Marquardt T, von der Heyde A, Elleuche S. Design and establishment of a vector system that enables production of multifusion proteins and easy purification by a two-step affinity chromatography approach. J Microbiol Methods 2014; 105:47-50. [PMID: 25026273 DOI: 10.1016/j.mimet.2014.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 07/04/2014] [Indexed: 10/25/2022]
Abstract
The LE (LguI/Eco81I)-cloning procedure allows a step-wise, directional fusion of multiple DNA-fragments into a vector by utilizing two restriction enzymes generating identical non-palindromic overhangs. This strategy was applied to produce heat-stable cellulase-fusion proteins containing up to five single moieties. Terminal affinity tags enable efficient purification using a simple two-step approach.
Collapse
Affiliation(s)
- Tabea Marquardt
- Technische Universität Hamburg-Harburg, Institut für Technische Mikrobiologie, Kasernenstr. 12, D-21073 Hamburg, Germany
| | - Amélie von der Heyde
- Technische Universität Hamburg-Harburg, Institut für Technische Mikrobiologie, Kasernenstr. 12, D-21073 Hamburg, Germany
| | - Skander Elleuche
- Technische Universität Hamburg-Harburg, Institut für Technische Mikrobiologie, Kasernenstr. 12, D-21073 Hamburg, Germany.
| |
Collapse
|
6
|
Aranko AS, Oeemig JS, Zhou D, Kajander T, Wlodawer A, Iwaï H. Structure-based engineering and comparison of novel split inteins for protein ligation. MOLECULAR BIOSYSTEMS 2014; 10:1023-34. [PMID: 24574026 PMCID: PMC7709711 DOI: 10.1039/c4mb00021h] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protein splicing is an autocatalytic process involving self-excision of an internal protein domain, the intein, and concomitant ligation of the two flanking sequences, the exteins, with a peptide bond. Protein splicing can also take place in trans by naturally split inteins or artificially split inteins, ligating the exteins on two different polypeptide chains into one polypeptide chain. Protein trans-splicing could work in foreign contexts by replacing the native extein sequences with other protein sequences. Protein ligation using protein trans-splicing increasingly becomes a useful tool for biotechnological applications such as semi-synthesis of proteins, segmental isotopic labeling, and in vivo protein engineering. However, only a few split inteins have been successfully applied for protein ligation. Naturally split inteins have been widely used, but they are cross-reactive to each other, limiting their applications to multiple-fragment ligation. Based on the three-dimensional structures including two newly determined intein structures, we derived 21 new split inteins from four highly efficient cis-splicing inteins, in order to develop novel split inteins suitable for protein ligation. We systematically compared trans-splicing of 24 split inteins and tested the cross-activities among them to identify orthogonal split intein fragments that could be used in chemical biology and biotechnological applications.
Collapse
Affiliation(s)
- A Sesilja Aranko
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki, FIN-00014, Finland.
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
Inteins are nature's escape artists; they facilitate their excision from flanking polypeptides (exteins) concomitant with extein ligation to produce a mature host protein. Splicing requires sequential nucleophilic displacement reactions catalyzed by strategies similar to proteases and asparagine lyases. Inteins require precise reaction coordination rather than rapid turnover or tight substrate binding because they are single turnover enzymes with covalently linked substrates. This has allowed inteins to explore alternative mechanisms with different steps or to use different methods for activation and coordination of the steps. Pressing issues include understanding the underlying details of catalysis and how the splicing steps are controlled.
Collapse
Affiliation(s)
- Kenneth V Mills
- From the Department of Chemistry, College of the Holy Cross, Worcester, Massachusetts 01610
| | - Margaret A Johnson
- the Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, and
| | | |
Collapse
|
8
|
Elleuche S, Fodor K, von der Heyde A, Klippel B, Wilmanns M, Antranikian G. Group III alcohol dehydrogenase from Pectobacterium atrosepticum: insights into enzymatic activity and organization of the metal ion-containing region. Appl Microbiol Biotechnol 2013; 98:4041-51. [PMID: 24265029 DOI: 10.1007/s00253-013-5374-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/15/2013] [Accepted: 10/31/2013] [Indexed: 12/01/2022]
Abstract
NAD(P)(+)-dependent alcohol dehydrogenases (ADH) are widely distributed in all phyla. These proteins can be assigned to three nonhomologous groups of isozymes, with group III being highly diverse with regards to catalytic activity and primary structure. Members of group III ADHs share a conserved stretch of amino acid residues important for cofactor binding and metal ion coordination, while sequence identities for complete proteins are highly diverse (<20 to >90 %). A putative group III ADH PaYqhD has been identified in BLAST analysis from the plant pathogenic enterobacterium Pectobacterium atrosepticum. The PaYqhD gene was expressed in the heterologous host Escherichia coli, and the recombinant protein was purified in a two-step purification procedure to homogeneity indicating an obligate dimerization of monomers. Four conserved amino acid residues involved in metal ion coordination were substituted with alanine, and their importance for catalytic activity was confirmed by circular dichroism spectrum determination, in vitro, and growth experiments. PaYqhD exhibits optimal activity at 40 °C with short carbon chain aldehyde compounds and NADPH as cofactor indicating the enzyme to be an aldehyde reductase. No oxidative activities towards alcoholic compounds were detectable. EDTA completely inhibited catalytic activity and was fully restored by the addition of Co(2+). Activity measurements together with sequence alignments and structure analysis confirmed that PaYqhD belongs to the butanol dehydrogenase-like enzymes within group III of ADHs.
Collapse
Affiliation(s)
- Skander Elleuche
- Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstr. 12, 21073, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Albertsen L, Shaw AC, Norrild JC, Strømgaard K. Recombinant production of peptide C-terminal α-amides using an engineered intein. Bioconjug Chem 2013; 24:1883-94. [PMID: 24138202 DOI: 10.1021/bc4002689] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptides are of increasing interest as therapeutics in a wide range of diseases, including metabolic diseases such as diabetes and obesity. In the latter, peptide hormones such as peptide YY (PYY) and pancreatic peptide (PP) are important templates for drug design. Characteristic for these peptides is that they contain a C-terminal that is α-amidated, and this amidation is crucial for biological function. A challenge is to generate such peptides by recombinant means and particularly in a production scale. Here, we have examined an intein-mediated approach to generate a PYY derivative in a larger scale. Initially, we experienced challenges with hydrolysis of the intein fusion protein, which was reduced by a T3C mutation in the intein. Subsequently, we further engineered the intein to decrease the absolute size and improve the relative yield of the PYY derivative, which was achieved by substituting 54 residues of the 198 amino acid intein with an eight amino acid linker. The optimized intein construct was used to produce the PYY derivative under high cell density cultivation conditions, generating the peptide thioester precursor in good yields and subsequent amidation provided the target peptide.
Collapse
|
10
|
Using intein catalysis to probe the origin of major histocompatibility complex class I-presented peptides. Proc Natl Acad Sci U S A 2012; 109:16998-7003. [PMID: 23027972 DOI: 10.1073/pnas.1210271109] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
All vertebrate nucleated cells generate peptides from their expressed gene products and then display them at the cell surface bound to MHC class I molecules. This allows CD8(+) T cells to detect and eliminate abnormal cells that are synthesizing foreign proteins, e.g., from viruses or mutations. To permit the immune system to more uniformly monitor a cell's proteins, regardless of their half-life or location, it has been thought that the products of rapid degradation of the mistakes of protein synthesis (defective ribosomal products, DRiPs) preferentially contribute to the class I-presented peptides. However, using intein catalysis to generate peptide sequences exclusively by posttranslational splicing of mature proteins, we show here that presented peptides can be generated from fully folded and functional proteins. Remarkably, the presentation of peptides from two model mature proteins is just as efficient as from newly synthesized proteins subject to errors in translation or folding. These results indicate that for the constructs we have analyzed, DRiPs are not a more efficient source of class I peptides for antigen presentation than the turnover of mature functional proteins. Accordingly, our data suggest that one of the major ways the immune system evaluates the health of cells is by monitoring the breakdown products of the proteome.
Collapse
|
11
|
Ramsden R, Arms L, Davis TN, Muller EGD. An intein with genetically selectable markers provides a new approach to internally label proteins with GFP. BMC Biotechnol 2011; 11:71. [PMID: 21708017 PMCID: PMC3141402 DOI: 10.1186/1472-6750-11-71] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 06/27/2011] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Inteins are proteins that catalyze their own removal from within larger precursor proteins. In the process they splice the flanking protein sequences, termed the N-and C-terminal exteins. Large inteins frequently have a homing endonuclease that is involved in maintaining the intein in the host. Splicing and nuclease activity are independent and distinct domains in the folded structure. We show here that other biochemical activities can be incorporated into an intein in place of the endonuclease without affecting splicing and that these activities can provide genetic selection for the intein. We have coupled such a genetically marked intein with GFP as the N-terminal extein to create a cassette to introduce GFP within the interior of a targeted protein. RESULTS The Pch PRP8 mini-intein of Penicillium chrysogenum was modified to include: 1) aminoglycoside phosphotransferase; 2) imidazoleglycerol-phosphate dehydratase, His5 from S. pombe ; 3) hygromycin B phosphotransferase; and 4) the transcriptional activator LexA-VP16. The proteins were inserted at the site of the lost endonuclease. When expressed in E. coli, all of the modified inteins spliced at high efficiency. Splicing efficiency was also greater than 96% when expressed from a plasmid in S. cerevisiae. In addition the inteins conferred either G418 or hygromycin resistance, or histidine or leucine prototropy, depending on the inserted marker and the yeast genetic background. DNA encoding the marked inteins coupled to GFP as the N-terminal extein was PCR amplified with ends homologous to an internal site in the yeast calmodulin gene CMD1. The DNA was transformed into yeast and integrants obtained by direct selection for the intein's marker. The His5-marked intein yielded a fully functional calmodulin that was tagged with GFP within its central linker. CONCLUSIONS Inteins continue to show their flexibility as tools in molecular biology. The Pch PRP8 intein can successfully tolerate a variety of genetic markers and still retain high splicing efficiency. We have shown that a genetically marked intein can be used to insert GFP in one-step within a target protein in vivo.
Collapse
Affiliation(s)
- Richard Ramsden
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Luther Arms
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Trisha N Davis
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Eric GD Muller
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
12
|
Ren Y, Yao X, Dai H, Li S, Fang H, Chen H, Zhou C. Production of Nα-acetylated thymosin α1 in Escherichia coli. Microb Cell Fact 2011; 10:26. [PMID: 21513520 PMCID: PMC3103413 DOI: 10.1186/1475-2859-10-26] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 04/22/2011] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Thymosin α1 (Tα1), a 28-amino acid Nα-acetylated peptide, has a powerful general immunostimulating activity. Although biosynthesis is an attractive means of large-scale manufacture, to date, Tα1 can only be chemosynthesized because of two obstacles to its biosynthesis: the difficulties in expressing small peptides and obtaining Nα-acetylation. In this study, we describe a novel production process for Nα-acetylated Tα1 in Escherichia coli. RESULTS To obtain recombinant Nα-acetylated Tα1 efficiently, a fusion protein, Tα1-Intein, was constructed, in which Tα1 was fused to the N-terminus of the smallest mini-intein, Spl DnaX (136 amino acids long, from Spirulina platensis), and a His tag was added at the C-terminus. Because Tα1 was placed at the N-terminus of the Tα1-Intein fusion protein, Tα1 could be fully acetylated when the Tα1-Intein fusion protein was co-expressed with RimJ (a known prokaryotic Nα-acetyltransferase) in Escherichia coli. After purification by Ni-Sepharose affinity chromatography, the Tα1-Intein fusion protein was induced by the thiols β-mercaptoethanol or d,l-dithiothreitol, or by increasing the temperature, to release Tα1 through intein-mediated N-terminal cleavage. Under the optimal conditions, more than 90% of the Tα1-Intein fusion protein was thiolyzed, and 24.5 mg Tα1 was obtained from 1 L of culture media. The purity was 98% after a series of chromatographic purification steps. The molecular weight of recombinant Tα1 was determined to be 3107.44 Da by mass spectrometry, which was nearly identical to that of the synthetic version (3107.42 Da). The whole sequence of recombinant Tα1 was identified by tandem mass spectrometry and its N-terminal serine residue was shown to be acetylated. CONCLUSIONS The present data demonstrate that Nα-acetylated Tα1 can be efficiently produced in recombinant E. coli. This bioprocess could be used as an alternative to chemosynthesis for the production of Tα1. The described methodologies may also be helpful for the biosynthesis of similar peptides.
Collapse
Affiliation(s)
- Yuantao Ren
- Institute of Biotechnology, Academy of Military Medical Sciences, 20 DongDa Street, FengTai District, Beijing 100071, China
- School of Life Science and Technology, China Pharmaceutical University, 24 Tong JiaXiang, Nanjing 210009, China
| | - Xueqin Yao
- Institute of Neurosurgery, General Hospital of Beijing Military Command, 5 NanMenCang, Beijing 100700, China
| | - Hongmei Dai
- Institute of Biotechnology, Academy of Military Medical Sciences, 20 DongDa Street, FengTai District, Beijing 100071, China
| | - Shulong Li
- Institute of Biotechnology, Academy of Military Medical Sciences, 20 DongDa Street, FengTai District, Beijing 100071, China
| | - Hongqing Fang
- Institute of Biotechnology, Academy of Military Medical Sciences, 20 DongDa Street, FengTai District, Beijing 100071, China
| | - Huipeng Chen
- Institute of Biotechnology, Academy of Military Medical Sciences, 20 DongDa Street, FengTai District, Beijing 100071, China
| | - Changlin Zhou
- School of Life Science and Technology, China Pharmaceutical University, 24 Tong JiaXiang, Nanjing 210009, China
| |
Collapse
|
13
|
Elleuche S, Bernhards Y, Schäfers C, Varghese JM, Nolting N, Pöggeler S. The small serine-threonine protein SIP2 interacts with STE12 and is involved in ascospore germination in Sordaria macrospora. Eur J Cell Biol 2010; 89:873-87. [DOI: 10.1016/j.ejcb.2010.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
14
|
Theodoro RC, Bagagli E. Inteins in pathogenic fungi: a phylogenetic tool and perspectives for therapeutic applications. Mem Inst Oswaldo Cruz 2009; 104:497-504. [PMID: 19547879 DOI: 10.1590/s0074-02762009000300017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 03/13/2009] [Indexed: 01/18/2023] Open
Abstract
Inteins or 'internal proteins' are coding sequences that are transcribed and translated with flanking sequences (exteins). After translation, the inteins are excised by an autocatalytic process and the host protein assumes its normal conformation and develops its expected function. These parasitic genetic elements have been found in important, conserved proteins in all three domains of life. Most of the eukaryotic inteins are present in the fungi kingdom and the PRP8 intein is one of the most widespread inteins, occurring in important pathogens such as Cryptococcus neoformans (varieties grubii and neoformans), Cryptococcus gattii, Histoplasma capsulatum and Paracoccidioides brasiliensis. The knowledge of conserved and non-conserved domains in inteins have opened up new opportunities for the study of population variability in pathogenic fungi, including their phylogenetic relationships and recognition or diagnoses of species. Furthermore, inteins in pathogenic fungi should also be considered a promising therapeutic drug target, since once the autocatalytic splicing is inhibited, the host protein, which is typically vital, will not be able to perform its normal function and the fungal cell will not survive or reproduce.
Collapse
Affiliation(s)
- Raquel Cordeiro Theodoro
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, UNESP, Botucatu, São Paulo, Brasil
| | | |
Collapse
|
15
|
Elleuche S, Pöggeler S. Beta-carbonic anhydrases play a role in fruiting body development and ascospore germination in the filamentous fungus Sordaria macrospora. PLoS One 2009; 4:e5177. [PMID: 19365544 PMCID: PMC2664464 DOI: 10.1371/journal.pone.0005177] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 03/12/2009] [Indexed: 11/18/2022] Open
Abstract
Carbon dioxide (CO(2)) is among the most important gases for all organisms. Its reversible interconversion to bicarbonate (HCO(3) (-)) reaches equilibrium spontaneously, but slowly, and can be accelerated by a ubiquitous group of enzymes called carbonic anhydrases (CAs). These enzymes are grouped by their distinct structural features into alpha-, beta-, gamma-, delta- and zeta-classes. While physiological functions of mammalian, prokaryotic, plant and algal CAs have been extensively studied over the past years, the role of beta-CAs in yeasts and the human pathogen Cryptococcus neoformans has been elucidated only recently, and the function of CAs in multicellular filamentous ascomycetes is mostly unknown. To assess the role of CAs in the development of filamentous ascomycetes, the function of three genes, cas1, cas2 and cas3 (carbonic anhydrase of Sordaria) encoding beta-class carbonic anhydrases was characterized in the filamentous ascomycetous fungus Sordaria macrospora. Fluorescence microscopy was used to determine the localization of GFP- and DsRED-tagged CAs. While CAS1 and CAS3 are cytoplasmic enzymes, CAS2 is localized to the mitochondria. To assess the function of the three isoenzymes, we generated knock-out strains for all three cas genes (Deltacas1, Deltacas2, and Deltacas3) as well as all combinations of double mutants. No effect on vegetative growth, fruiting-body and ascospore development was seen in the single mutant strains lacking cas1 or cas3, while single mutant Deltacas2 was affected in vegetative growth, fruiting-body development and ascospore germination, and the double mutant strain Deltacas1/2 was completely sterile. Defects caused by the lack of cas2 could be partially complemented by elevated CO(2) levels or overexpression of cas1, cas3, or a non-mitochondrial cas2 variant. The results suggest that CAs are required for sexual reproduction in filamentous ascomycetes and that the multiplicity of isoforms results in redundancy of specific and non-specific functions.
Collapse
Affiliation(s)
- Skander Elleuche
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August University, Göttingen, Germany
- Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Bochum, Germany
| | - Stefanie Pöggeler
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August University, Göttingen, Germany
- * E-mail:
| |
Collapse
|
16
|
Elleuche S, Pelikan C, Nolting N, Pöggeler S. Inteins and introns within the prp8 -gene of four Eupenicillium species. J Basic Microbiol 2009; 49:52-7. [PMID: 19253333 DOI: 10.1002/jobm.200800168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Inteins are protein-intervening sequences that are translated with the host protein and can self-excise themselves post-translationally in an autocatalytic process. The flanking regions--called exteins--are then re-ligated with a new peptide bond, resulting in a mature host protein. Previously, we have identified inteins in the highly conserved 3.2 region of the PRP8 protein from species of the genus Penicillium. These inteins are integrated at the same position as that which has recently been described in PRP8 proteins from different strains of Cryptococcus neoformans and several ascomycetes. In this study, we investigated the presence of PRP8 inteins in four members of the genus Eupenicillium. Two species of this genus, Eupenicillium crustaceum and Eupenicillium baarnense, contain an intein at the same insertion site. Both inteins are mini-inteins and undergo self-splicing when heterologously expressed with a model host protein in Escherichia coli. Interestingly, we identified introns in the prp8-sequence encoding the 3.2 regions of the PRP8 protein in Eupenicillium meridianum and Eupenicillium terrenum. The introns are located 13 bps and 15 bps downstream of the putative intein insertion site. Here, we consider that the lack of inteins in these two species might be due to the prevention of endonuclease-mediated intein propagation in the intron-containing prp8-sequences.
Collapse
Affiliation(s)
- Skander Elleuche
- Georg-August Universität Göttingen, Institut für Mikrobiologie und Genetik, Abteilung für Genetik eukaryotischer Mikroorganismen, 37077 Göttingen, Germany
| | | | | | | |
Collapse
|
17
|
Elleuche S, Pöggeler S. A cyanase is transcriptionally regulated by arginine and involved in cyanate decomposition in Sordaria macrospora. Fungal Genet Biol 2008; 45:1458-69. [PMID: 18796334 DOI: 10.1016/j.fgb.2008.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 08/04/2008] [Accepted: 08/15/2008] [Indexed: 10/21/2022]
Abstract
Cyanase degrades toxic cyanate to NH3 and CO2 in a bicarbonate-dependent reaction. High concentrations of cyanate are fairly toxic to organisms. Here, we characterize a eukaryotic cyanase for the first time. We have isolated the cyn1 gene encoding a cyanase from the filamentous ascomycete Sordaria macrospora and functionally characterized the cyn1 product after heterologous expression in Escherichia coli. Site-directed mutagenesis confirmed a predicted catalytic centre of three conserved amino-acids. A Deltacyn1 knockout in S. macrospora was totally devoid of cyanase activity and showed an increased sensitivity to exogenously supplied cyanate in an arginine-depleted medium, defects in ascospore germination, but no other obvious morphological phenotype. By means of real-time PCR we have demonstrated that the transcriptional level of cyn1 is markedly elevated in the presence of cyanate and down-regulated by addition of arginine. The putative functions of cyanase in fungi are discussed.
Collapse
Affiliation(s)
- Skander Elleuche
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August University, Grisebachstr. 8, D-37077 Göttingen, Germany
| | | |
Collapse
|