1
|
Silva GD, Brochers-Lacchini FC, Leopoldino AM. How do sphingolipids play a role in epigenetic mechanisms and gene expression? Epigenomics 2021; 14:219-222. [PMID: 34905958 DOI: 10.2217/epi-2021-0425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Gabriel da Silva
- Depto de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernanda Coeli Brochers-Lacchini
- Depto de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Andréia Machado Leopoldino
- Depto de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
2
|
The involvement of Nile tilapia (Oreochromis niloticus) Neu4 sialidase in neural differentiation during early ontogenesis. Biochimie 2021; 185:105-116. [PMID: 33746065 DOI: 10.1016/j.biochi.2021.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/19/2021] [Accepted: 03/09/2021] [Indexed: 11/21/2022]
Abstract
Neurogenesis is an important process for the formation of the central nervous system during ontogenesis. Mammalian sialidases are involved in neurogenesis through desialylation of sialo-glycoconjugates. However, the significance of fish sialidases, unlike that of mammals, in neurogenesis has not been investigated. The present study focuses on Nile tilapia (Oreochromis niloticus) because of its unique profiles of sialidases related to enzymatic properties, subcellular localization, and tissue-specific gene expression. First, the fish were cultured under aphotic condition, which is known to cause the delayed development of the retina and brain in various fish. Next, we investigate the effect of aphotic condition on the levels of tilapia sialidases. Our results revealed that the tilapia showed a decrease in the number of ganglion cell in the retina. The expression level of neu4 mRNA is up-regulated in the eyes from tilapia reared in Dark accompanied by the increase of retinal differentiation markers. These results indicated that tilapia Neu4 is involved in retinal development in Nile tilapia. Furthermore, we tried to clarify the function of tilapia Neu4 in the neuronal cells using two neuroblast cell lines (SH-SY5Y and Neuro2a cell lines). Tilapia Neu4 decreased sialic acid level of both nuclear glycoproteins as well as glycolipids. Moreover, tilapia Neu4 accelerated neurite formation in both two neural cell lines and, increased the acetylcholinesterase activity, but it did not affect cell proliferation. Collectively, these results suggest that Neu4 accelerates neurite differentiation during ontogenesis in tilapia.
Collapse
|
3
|
Histone deacetylases inhibitors as new potential drugs against Leishmania braziliensis, the main causative agent of new world tegumentary leishmaniasis. Biochem Pharmacol 2020; 180:114191. [PMID: 32777278 DOI: 10.1016/j.bcp.2020.114191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022]
Abstract
The protozoan parasite Leishmania braziliensis is a major causative agent of the neglected tropical diseases Cutaneous and Mucocutaneous Leishmaniases in the New World. There are no vaccines to prevent the infection and the treatment relies on few drugs that often display high toxicity and costs. Thus, chemotherapeutic alternatives are required. Histone Deacetylases (HDACs) are epigenetic enzymes involved in the control of chromatin structure. In this work, we tested an in-house library of 78 hydroxamic acid derivatives as putative inhibitors of L. braziliensis HDACs (HDACi). The compounds were evaluated in relation to the toxicity to the host cell macrophage and to the leishmanicidal effect against L. braziliensis during in vitro infection. Eight HDACi showed significant leishmanicidal effects and the top 5 compounds showed effective concentrations (EC50) in the range of 4.38 to 10.21 μM and selectivity indexes (SI) from of 6 to 21.7. Analyses by Transmission Electron Microscopy (TEM) indicated induction of apoptotic cell death of L. braziliensis amastigotes with a necrotic phenotype. An altered chromatin condensation pattern and cellular disorganization of intracellular amastigotes was also observed. A tight connection between the mitochondrion and nuclear protrusions, presumably of endoplasmic reticulum origin, was found in parasites but not in the host cell. In flow cytometry (FC) analyses, HDACi promoted parasite cell cycle arrest in the G2-M phase and no changes were found in macrophages. In addition, the direct effect of HDACi against the promastigotes showed apoptosis as the main mechanism of cell death. The FC results corroborate the TEM analyses indicating that the HDACi lead to changes in the cell cycle and induction of apoptosis of L. braziliensis. The production of nitric oxide by the infected macrophages was not altered after treatment with the top 5 compounds. Taken together, our results evidenced new HDACi as promising agents for the development of new treatments for American Tegumentary Leishmaniasis caused by L. braziliensis.
Collapse
|
4
|
Bottai D, Adami R, Ghidoni R. The crosstalk between glycosphingolipids and neural stem cells. J Neurochem 2018; 148:698-711. [PMID: 30269334 DOI: 10.1111/jnc.14600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 01/19/2023]
Abstract
Until a few years ago, the majority of cell functions were envisioned as the result of protein and DNA activity. The cell membranes were considered as a mere structure of support and/or separation. In the last years, the function of cell membranes has, however, received more attention and their components of lipid nature have also been depicted as important cell mediators and the membrane organization was described as an important determinant for membrane-anchored proteins activity. In particular, because of their high diversity, glycosphingolipids offer a wide possibility of regulation. Specifically, the role of glycosphingolipids, in the fine-tuning of neuron activity, has recently received deep attention. For their pivotal role in vertebrate and mammals neural development, neural stem cells regulation is of main interest especially concerning their further functions in neurological pathology progression and treatment. Glycosphingolipids expression present a developmental regulation. In this view, glycosphingolipids can hold an important role in neural stem cells features because of their heterogeneity and their consequent capacity for eclectic interaction with other cell components.
Collapse
Affiliation(s)
- Daniele Bottai
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Raffaella Adami
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Riccardo Ghidoni
- Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Nuclear Lipids in the Nervous System: What they do in Health and Disease. Neurochem Res 2016; 42:321-336. [PMID: 27766461 DOI: 10.1007/s11064-016-2085-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/21/2016] [Accepted: 10/11/2016] [Indexed: 12/18/2022]
Abstract
In the last 20 years it has been widely demonstrated that cell nucleus contains neutral and polar lipids localized in nuclear membranes, nucleoli, nuclear matrix and chromatin. Nuclear lipids may show specific organization forming nuclear lipid microdomains and have both structural and functional roles. Depending on their localization, nuclear lipids play different roles such as the regulation of nuclear membrane and nuclear matrix fluidity but they also can act as platforms for vitamin and hormone function, for active chromatin anchoring, and for the regulation of gene expression, DNA duplication and transcription. Crosstalk among different kinds of lipid signalling pathways influence the physiopathology of numerous cell types. In neural cells the nuclear lipids are involved in cell proliferation, differentiation, inflammation, migration and apoptosis. Abnormal metabolism of nuclear lipids might be closely associated with tumorigenesis and neurodegenerative diseases such as Alzheimer disease and Parkinson disease among others.
Collapse
|
6
|
Itokazu Y, Tsai YT, Yu RK. Epigenetic regulation of ganglioside expression in neural stem cells and neuronal cells. Glycoconj J 2016; 34:749-756. [PMID: 27540730 DOI: 10.1007/s10719-016-9719-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/03/2016] [Accepted: 07/21/2016] [Indexed: 10/21/2022]
Abstract
The structural diversity and localization of cell surface glycosphingolipids (GSLs), including gangliosides, in glycolipid-enriched microdomains (GEMs, also known as lipid rafts) render them ideally suited to play important roles in mediating intercellular recognition, interactions, adhesion, receptor function, and signaling. Gangliosides, sialic acid-containing GSLs, are most abundant in the nerve tissues. The quantity and expression pattern of gangliosides in brain change drastically throughout development and these changes are mainly regulated through stage-specific expression of glycosyltransferase genes. We previously demonstrated for the first time that efficient histone acetylation of the glycosyltransferase genes in mouse brain contributes to the developmental alteration of ganglioside expression. We further demonstrated that acetylation of histones H3 and H4 on the N-acetylgalactosaminyltransferase I (GalNAcT, GA2/GM2/GD2/GT2-synthase; B4galnt1) gene promoter resulted in recruitment of trans-activation factors. In addition, we showed that epigenetic activation of the GalNAcT gene was detected and accompanied by an apparent induction of neuronal differentiation of neural stem cells (NSCs) responding to an exogenous supplement of ganglioside GM1. Most recently, we found that nuclear GM1 binds with acetylated histones on the promoters of the GalNAcT as well as on the NeuroD1 genes in differentiated neurons. Here, we will introduce epigenetic regulation of ganglioside synthase genes in neural development and neuronal differentiation of NSCs.
Collapse
Affiliation(s)
- Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.,Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - Yi-Tzang Tsai
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.,Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA. .,Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA.
| |
Collapse
|
7
|
Tsai YT, Itokazu Y, Yu RK. GM1 Ganglioside is Involved in Epigenetic Activation Loci of Neuronal Cells. Neurochem Res 2015; 41:107-15. [PMID: 26498762 DOI: 10.1007/s11064-015-1742-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/15/2015] [Accepted: 10/17/2015] [Indexed: 11/26/2022]
Abstract
Gangliosides are sialic acid-containing glycosphingolipids that are most abundant in the nerve tissues. The quantity and expression pattern of gangliosides in brain change drastically throughout development and are mainly regulated through stage-specific expression of glycosyltransferase (ganglioside synthase) genes. We previously demonstrated that acetylation of histones H3 and H4 on the N-acetylgalactosaminyltransferase I (GalNAcT, GA2/GM2/GD2/GT2-synthase) gene promoter resulted in recruitment of trans-activation factors. In addition, we reported that epigenetic activation of the GalNAcT gene was also detected as accompanied by an apparent induction of neuronal differentiation in neural stem cells responding to an exogenous supplement of ganglioside GM1. Here, we present evidence supporting the concept that nuclear GM1 is associated with gene regulation in neuronal cells. We found that nuclear GM1 binds acetylated histones on the promoters of the GalNAcT and NeuroD1 genes in differentiated neurons. Our study demonstrates for the first time that GM1 interacts with chromatin via acetylated histones at the nuclear periphery of neuronal cells.
Collapse
Affiliation(s)
- Yi-Tzang Tsai
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA.
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA.
| |
Collapse
|
8
|
Activation of muscarinic receptors in rat parotid acinar cells induces AQP5 trafficking to nuclei and apical plasma membrane. Biochim Biophys Acta Gen Subj 2015; 1850:784-93. [PMID: 25603543 DOI: 10.1016/j.bbagen.2015.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/24/2014] [Accepted: 01/12/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND The subcellular distribution of aquaporin-5 (AQP5) in rat parotid acinar cells in response to muscarinic acetylcholine receptor (mAChR) activation remains unclear. METHODS Immunoconfocal and immunoelectron microscopy were used to visualize the distribution of AQP5 in parotid acinar cells. Western blotting was used to analyze AQP5 levels in membranes. To clarify the characteristics of membrane domains associated with AQP5, detergent solubility and sucrose-density flotation experiments were performed. RESULTS Under control conditions, AQP5 was diffusely distributed on the apical plasma membrane (APM) and apical plasmalemmal region and throughout the cytoplasm. Upon mAChR activation, AQP5 was predominantly located in the nucleus, APM and lateral plasma membrane (LPM). Subsequently, localization of AQP5 in the nucleus, APM and LPM was decreased. Prolonged atropine treatment inhibited mAChR agonist-induced translocation of AQP5 to the nucleus, APM and LPM. AQP5 levels were enhanced in isolated nuclei and nuclear membranes prepared from parotid tissues incubated with mAChR agonist. mAChR agonist induced AQP5 levels in both soluble and insoluble nuclear fractions solubilized with Triton X-100 or Lubrol WX. Small amounts of AQP5 in nuclei were detected using low-density sucrose gradient. When AQP5 was present in the nuclear membrane, nuclear size decreased. CONCLUSION The activation of mAChR induced AQP5 translocation to the nucleus, APM and LPM, and AQP5 may trigger water transport across the nuclear membrane and plasma membrane in rat parotid acinar cells. GENERAL SIGNIFICANCE AQP5 translocates to the nuclear membrane and may trigger the movement of water, inducing shrinkage of the nucleus and the start of nuclear functions.
Collapse
|
9
|
Saito M, Saito M. Involvement of sphingolipids in ethanol neurotoxicity in the developing brain. Brain Sci 2013; 3:670-703. [PMID: 24961420 PMCID: PMC4061845 DOI: 10.3390/brainsci3020670] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/30/2013] [Accepted: 04/12/2013] [Indexed: 12/16/2022] Open
Abstract
Ethanol-induced neuronal death during a sensitive period of brain development is considered one of the significant causes of fetal alcohol spectrum disorders (FASD). In rodent models, ethanol triggers robust apoptotic neurodegeneration during a period of active synaptogenesis that occurs around the first two postnatal weeks, equivalent to the third trimester in human fetuses. The ethanol-induced apoptosis is mitochondria-dependent, involving Bax and caspase-3 activation. Such apoptotic pathways are often mediated by sphingolipids, a class of bioactive lipids ubiquitously present in eukaryotic cellular membranes. While the central role of lipids in ethanol liver toxicity is well recognized, the involvement of sphingolipids in ethanol neurotoxicity is less explored despite mounting evidence of their importance in neuronal apoptosis. Nevertheless, recent studies indicate that ethanol-induced neuronal apoptosis in animal models of FASD is mediated or regulated by cellular sphingolipids, including via the pro-apoptotic action of ceramide and through the neuroprotective action of GM1 ganglioside. Such sphingolipid involvement in ethanol neurotoxicity in the developing brain may provide unique targets for therapeutic applications against FASD. Here we summarize findings describing the involvement of sphingolipids in ethanol-induced apoptosis and discuss the possibility that the combined action of various sphingolipids in mitochondria may control neuronal cell fate.
Collapse
Affiliation(s)
- Mariko Saito
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA.
| | - Mitsuo Saito
- Division of Analytical Psychopharmacology, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA.
| |
Collapse
|
10
|
Abstract
Nuclear lipid metabolism is implicated in various processes, including transcription, splicing, and DNA repair. Sphingolipids play roles in numerous cellular functions, and an emerging body of literature has identified roles for these lipid mediators in distinct nuclear processes. Different sphingolipid species are localized in various subnuclear domains, including chromatin, the nuclear matrix, and the nuclear envelope, where sphingolipids exert specific regulatory and structural functions. Sphingomyelin, the most abundant nuclear sphingolipid, plays both structural and regulatory roles in chromatin assembly and dynamics in addition to being an integral component of the nuclear matrix. Sphingosine-1-phosphate modulates histone acetylation, sphingosine is a ligand for steroidogenic factor 1, and nuclear accumulation of ceramide has been implicated in apoptosis. Finally, nuclear membrane-associated ganglioside GM1 plays a pivotal role in Ca(2+) homeostasis. This review highlights research on the factors that control nuclear sphingolipid metabolism and summarizes the roles of these lipids in various nuclear processes.
Collapse
Affiliation(s)
- Natasha C Lucki
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | |
Collapse
|
11
|
Kim JK, Kim SH, Cho HY, Shin HS, Sung HR, Jung JR, Quan ML, Jiang DH, Bae HR. GD3 accumulation in cell surface lipid rafts prior to mitochondrial targeting contributes to amyloid-β-induced apoptosis. J Korean Med Sci 2010; 25:1492-8. [PMID: 20890432 PMCID: PMC2946661 DOI: 10.3346/jkms.2010.25.10.1492] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 05/03/2010] [Indexed: 12/03/2022] Open
Abstract
Neuronal apoptosis induced by amyloid β-peptide (Aβ) plays an important role in the pathophysiology of Alzheimer's disease (AD). However, the molecular mechanism underlying Aβ-induced apoptosis remains undetermined. The disialoganglioside GD3 involves ceramide-, Fas- and TNF-α-mediated apoptosis in lymphoid cells and hepatocytes. Although the implication of GD3 has been suggested, the precise role of GD3 in Aβ-induced apoptosis is still unclear. Here, we investigated the changes of GD3 metabolism and characterized the distribution and trafficking of GD3 during Aβ-induced apoptosis using human brain-derived TE671 cells. Extracellular Aβ-induced apoptosis in a mitochondrial-dependent manner. GD3 level was negligible in the basal condition. However, in response to extracellular Aβ, both the expression of GD3 synthase mRNA and the intracellular GD3 level were dramatically increased. Neosynthesized GD3 rapidly accumulated in cell surface lipid microdomains, and was then translocated to mitochondria to execute the apoptosis. Disruption of membrane lipid microdomains with methyl-β-cyclodextrin significantly prevented both GD3 accumulation in cell surface and Aβ-induced apoptosis. Our data suggest that rapidly accumulated GD3 in plasma membrane lipid microdomains prior to mitochondrial translocation is one of the key events in Aβ-induced apoptosis.
Collapse
Affiliation(s)
- Jong-Kook Kim
- Department of Neurology, Dong-A University College of Medicine, Medical Science Research Center, Busan, Korea
| | - Sang-Ho Kim
- Department of Neurology, Dong-A University College of Medicine, Medical Science Research Center, Busan, Korea
| | - Hee-Young Cho
- Department of Neurology, Dong-A University College of Medicine, Medical Science Research Center, Busan, Korea
| | - Hee-Soo Shin
- Department of Neurology, Dong-A University College of Medicine, Medical Science Research Center, Busan, Korea
| | - Hye-Ryen Sung
- Department of Neurology, Dong-A University College of Medicine, Medical Science Research Center, Busan, Korea
| | - Jin-Ran Jung
- Department of Physiology, Dong-A University College of Medicine, Medical Science Research Center, Busan, Korea
| | - Mei-Lian Quan
- Department of Physiology, Dong-A University College of Medicine, Medical Science Research Center, Busan, Korea
| | - Dong-Hong Jiang
- Department of Physiology, Dong-A University College of Medicine, Medical Science Research Center, Busan, Korea
| | - Hae-Rahn Bae
- Department of Physiology, Dong-A University College of Medicine, Medical Science Research Center, Busan, Korea
| |
Collapse
|
12
|
Abstract
Apoptosis proceeds through a set of evolutionarily conserved processes that co-ordinate the elimination of damaged or unneeded cells. This program of cell death is carried out by organelle-directed regulators, including the Bcl-2 proteins, and ultimately executed by proteases of the caspase family. Although the biochemical mechanisms of apoptosis are increasingly understood, the underlying cell biology orchestrating programmed cell death remains enigmatic. In this review, we summarize the current understanding of Bcl-2 protein regulation and caspase activation while examining cell biological mechanisms and consequences of apoptotic induction. Organellar contributions to apoptotic induction include death receptor endocytosis, mitochondrial and lysosomal permeabilization, endoplasmic reticulum calcium release and fragmentation of the Golgi apparatus. These early apoptotic events are accompanied by stabilization of the microtubule cytoskeleton and translocation of organelles to the microtubule organizing center. Together, these phenomena establish a model of apoptotic induction whereby a cytoskeletal-dependent coalescence and 'scrambling' of organelles in the paranuclear region co-ordinates apoptotic communication, caspase activation and cell death.
Collapse
Affiliation(s)
- Joseph E Aslan
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | | |
Collapse
|
13
|
Wang Y, Sun L, Xia C, Ye L, Wang B. P38MAPK regulates caspase-3 by binding to caspase-3 in nucleus of human hepatoma Bel-7402 cells during anti-Fas antibody- and actinomycin D-induced apoptosis. Biomed Pharmacother 2008; 63:343-50. [PMID: 18640003 DOI: 10.1016/j.biopha.2008.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 05/21/2008] [Indexed: 10/21/2022] Open
Abstract
Anti-Fas antibody- and actinomycin D (FA/AD) has been shown to have anti-tumor activity in some tumor cells. However, many of the molecular mechanism of FA/AD-induced apoptosis of human hepatoma Bel-7402 cells have not been fully clarified. In the present study, therefore, the effect of FA/AD in presence or absence of p38MAPK inhibitor SB203580 on the proliferation, apoptosis, p38MAPK, caspase-3, location of p38MAPK and caspase-3, and interaction between p38MAPK and caspase-3 in Bel-7402 cell was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT), annexin V-FITC/propidium iodide (PI) double staining, electron microscopy, immunoblot, immunofluorescence and immunoprecipitation/immunoblot assay, respectively. We found that FA/AD significantly resulted in the inhibition of proliferation, induction of apoptosis, activation and up-regulation of p38MAPK, activation and up-regulation of caspase-3, translocation of p38MAPK and caspase-3 from cytosol to nucleus, and formation of p38MAPK/caspase-3 complex in Bel-7402 cells. In contrast, SB203580, a p38MAPK-specific inhibitor, apparently blocked induction of apoptosis, activation and up-regulation of p38MAPK, activation and up-regulation of caspase-3, and translocation of p38MAPK and caspase-3 from cytosol to nucleus in FA/AD-treated Bel-7402 cells. Taken together, we conclude that p38MAPK regulates caspase-3 by binding to caspase-3 in nucleus of Bel-7402 cells during FA/AD-induced apoptosis.
Collapse
Affiliation(s)
- Yu Wang
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001, PR China
| | | | | | | | | |
Collapse
|
14
|
Abstract
Sphingolipids are most prominently expressed in the plasma membrane, but recent studies have pointed to important signaling and regulatory roles in the nucleus. The most abundant nuclear sphingolipid is sphingomyelin (SM), which occurs in the nuclear envelope (NE) as well as intranuclear sites. The major metabolic product of SM is ceramide, which is generated by nuclear sphingomyelinase and triggers apoptosis and other metabolic changes. Ceramide is further hydrolyzed to free fatty acid and sphingosine, the latter undergoing conversion to sphingosine phosphate by action of a specific nuclear kinase. Gangliosides are another type of sphingolipid found in the nucleus, members of the a-series of gangliotetraose gangliosides (GM1, GD1a) occurring in the NE and endonuclear compartments. GM1 in the inner membrane of the NE is tightly associated with a Na(+)/Ca(2+) exchanger whose activity it potentiates, thereby contributing to regulation of Ca(2+) homeostasis in the nucleus. This was shown to exert a cytoprotective role as absence or inactivation of this nuclear complex rendered cells vulnerable to apoptosis. This was demonstrated in the greatly enhanced kainite-induced seizure activity in knockout mice lacking gangliotetraose gangliosides. The pathology included apoptotic destruction of neurons in the CA3 region of the hippocampus. Ca(2+) homeostasis was restored in these animals with LIGA-20, a membrane-permeant derivative of GM1 that entered the NE and activated the nuclear Na(+)/Ca(2+) exchanger. Some evidence suggests the presence of uncharged glycosphingolipids in the nucleus.
Collapse
Affiliation(s)
- Robert W Ledeen
- Department of Neurology & Neurosciences, New Jersey Medical School, The University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA.
| | | |
Collapse
|