1
|
Chen J, Li ZY, Zheng G, Cao L, Guo YM, Lian Q, Gu B, Yue CF. RNF4 mediated degradation of PDHA1 promotes colorectal cancer metabolism and metastasis. NPJ Precis Oncol 2024; 8:258. [PMID: 39521913 PMCID: PMC11550450 DOI: 10.1038/s41698-024-00724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024] Open
Abstract
This study investigates the role of RNF4-mediated ubiquitination and degradation of PDHA1 in colorectal cancer (CRC) metabolism and metastasis. Integrating (The Cancer Genome Atlas) TCGA and Clinical Proteomic Tumor Analysis Consortium (CPTAC) databases, proteomic, clinical, and metabolomic analyses were performed, revealing PDHA1 as a prognostic marker in CRC. Immunohistochemical staining confirmed lower PDHA1 expression in metastatic CRC tissues. In vitro experiments demonstrated that PDHA1 overexpression inhibited CRC cell proliferation, migration, and invasion. RNF4 was identified as a key mediator in the ubiquitination degradation of PDHA1, influencing glycolytic pathways in CRC cells. Metabolomic analysis of serum samples from metastatic CRC patients further supported these findings. In vivo experiments, including xenograft and metastasis models, validated that RNF4 knockdown stabilized PDHA1, inhibiting tumor formation and metastasis. This study highlights the critical role of RNF4-mediated PDHA1 ubiquitination in promoting glycolytic metabolism, proliferation, and metastasis in CRC.
Collapse
Affiliation(s)
- Jierong Chen
- Department of Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, PR China
| | - Zi-Yue Li
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510000, PR China
| | - Guansheng Zheng
- Department of Clinical Laboratory,Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, PR China
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510180, Guangdong, PR China
| | - Lixue Cao
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, PR China
| | - Yun-Miao Guo
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, 236 Yuanzhu Road, Zhanjiang, 524045, PR China
| | - Qizhou Lian
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510000, PR China.
| | - Bing Gu
- Department of Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, PR China.
| | - Cai-Feng Yue
- Department of Laboratory Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, 236 Yuanzhu Road, Zhanjiang, 524045, PR China.
| |
Collapse
|
2
|
Yamada S, Sato A, Ishihara N, Akiyama H, Sakakibara SI. Drp1 SUMO/deSUMOylation by Senp5 isoforms influences ER tubulation and mitochondrial dynamics to regulate brain development. iScience 2021; 24:103484. [PMID: 34988397 PMCID: PMC8710555 DOI: 10.1016/j.isci.2021.103484] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/01/2021] [Accepted: 11/19/2021] [Indexed: 12/01/2022] Open
Affiliation(s)
- Seiya Yamada
- Laboratory for Molecular Neurobiology, Graduate School of Human Sciences, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
| | - Ayaka Sato
- Laboratory for Molecular Neurobiology, Graduate School of Human Sciences, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
| | - Naotada Ishihara
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hiroki Akiyama
- Laboratory for Molecular Neurobiology, Graduate School of Human Sciences, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
- Advanced Research Center for Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
- Corresponding author
| | - Shin-ichi Sakakibara
- Laboratory for Molecular Neurobiology, Graduate School of Human Sciences, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
- Advanced Research Center for Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
- Corresponding author
| |
Collapse
|
3
|
RNF4-mediated SUMO-targeted ubiquitination relieves PARIS/ZNF746-mediated transcriptional repression. Biochem Biophys Res Commun 2020; 526:110-116. [PMID: 32197837 DOI: 10.1016/j.bbrc.2020.03.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/10/2020] [Indexed: 01/28/2023]
Abstract
The transcriptional repressor PARIS, which is a substrate of the ubiquitin E3 ligase parkin, represses the expression of the transcriptional co-activator, PGC-1α. However, little is known about how its repression activity is regulated. We have previously shown that PARIS is SUMOylated, and this SUMOylation plays an important role in regulating its transcriptional repression activity. In this study, we demonstrated that PARIS SUMOylation induced its ubiquitination and subsequent proteasomal degradation, which was mediated by the SUMO-targeted ubiquitin ligase RNF4. Reporter gene assays revealed that co-expression of SUMO3 and RNF4 relieved PARIS-mediated transcriptional repression. Conversely, the SUMO E3 ligase PIASy inhibited the RNF4-mediated ubiquitination of PARIS and blocked the RNF4-mediated relief of PARIS-mediated transcriptional repression. These results suggest that RNF4 regulates PARIS ubiquitination to control its transcriptional repression activity.
Collapse
|
4
|
mTOR signaling regulates nucleolar targeting of the SUMO-specific isopeptidase SENP3. Mol Cell Biol 2014; 34:4474-84. [PMID: 25288641 DOI: 10.1128/mcb.00801-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ribosome biogenesis is a multistep cellular pathway that involves more than 200 regulatory components to ultimately generate translation-competent 80S ribosomes. The initial steps of this process, particularly rRNA processing, take place in the nucleolus, while later stages occur in the nucleoplasm and cytoplasm. One critical factor of 28S rRNA maturation is the SUMO-isopeptidase SENP3. SENP3 tightly interacts with the nucleolar scaffold protein NPM1 and is associated with nucleolar 60S preribosomes. A central question is how changes in energy supply feed into the regulation of ribosome maturation. Here, we show that the nutrient-sensing mTOR kinase pathway controls the nucleolar targeting of SENP3 by regulating its interaction with NPM1. We define an N-terminal domain in SENP3 as the critical NPM1 binding region and provide evidence that mTOR-mediated phosphorylation of serine/threonine residues within this region fosters the interaction of SENP3 with NPM1. The inhibition of mTOR triggers the nucleolar release of SENP3, thereby likely compromising its activity in rRNA processing. Since mTOR activity is tightly coupled to nutrient availability, we propose that this pathway contributes to the adaptation of ribosome maturation in response to the cellular energy status.
Collapse
|
5
|
Cubeñas-Potts C, Goeres JD, Matunis MJ. SENP1 and SENP2 affect spatial and temporal control of sumoylation in mitosis. Mol Biol Cell 2013; 24:3483-95. [PMID: 24048451 PMCID: PMC3826987 DOI: 10.1091/mbc.e13-05-0230] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proper temporal and spatial regulation of sumoylation during mitosis is critical for mitotic progression. The SUMO isopeptidases SENP1 and SENP2 localize to key mitotic structures, including kinetochores. Overexpression and RNAi studies demonstrate that SENP1 and SENP2 are important modulators of SUMO function in mitosis. Sumoylation of centromere, kinetochore, and other mitotic chromosome-associated proteins is essential for chromosome segregation. The mechanisms regulating spatial and temporal sumoylation of proteins in mitosis, however, are not well understood. Here we show that the small ubiquitin-related modifier (SUMO)–specific isopeptidases SENP1 and SENP2 are targeted to kinetochores in mitosis. SENP2 targeting occurs through a mechanism dependent on the Nup107-160 subcomplex of the nuclear pore complex and is modulated through interactions with karyopherin α. Overexpression of SENP2, but not other SUMO-specific isopeptidases, causes a defect in chromosome congression that depends on its precise kinetochore targeting. By altering SENP1 kinetochore associations, however, this effect on chromosome congression could be phenocopied. In contrast, RNA interference–mediated knockdown of SENP1 delays sister chromatid separation at metaphase, whereas SENP2 knockdown produces no detectable phenotypes. Our findings indicate that chromosome segregation depends on precise spatial and temporal control of sumoylation in mitosis and that SENP1 and SENP2 are important mediators of this control.
Collapse
Affiliation(s)
- Caelin Cubeñas-Potts
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
| | | | | |
Collapse
|
6
|
Ishihara K, Fatma N, Bhargavan B, Chhunchha B, Kubo E, Dey S, Takamura Y, Kumar A, Singh DP. Lens epithelium-derived growth factor deSumoylation by Sumo-specific protease-1 regulates its transcriptional activation of small heat shock protein and the cellular response. FEBS J 2012; 279:3048-70. [PMID: 22748127 DOI: 10.1111/j.1742-4658.2012.08686.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lens epithelium-derived growth factor (LEDGF), a ubiquitously expressed nuclear protein, acts by interacting with DNA and protein and is involved in widely varying cellular functions. Despite its importance, the mechanism(s) that regulate naturally occurring LEDGF activity are unidentified. In the present study, we report that LEDGF is constitutively Sumoylated, and that the dynamical regulatory mechanism(s) (i.e. Sumoylation and deSumoylation) act as a molecular switch in modulating the DNA-binding and transcriptional activity of LEDGF with the functional consequences. Using bioinformatics analysis coupled with in vitro and in vivo Sumoylation assays, we found that lysine (K) 364 of LEDGF was Sumoylated, repressing its transcriptional activity. Conversely, mutation of K364 to arginine (R) or deSumoylation by small ubiquitin-like modifier (Sumo)-specific protease-1, a nuclear deSumoylase, enhanced the transactivation capacity of LEDGF and its cellular abundance. The enhancements were directly correlated with an increase in the DNA-binding activity and small heat shock protein transcription of LEDGF, whereas the process was reversed in cells overexpressing Sumo1. Interestingly, cells expressing Sumoylation-deficient pEGFP-K364R protein showed increased cellular survival compared to wild-type LEDGF protein. The findings provide insights into the regulation and regulatory functions of LEDGF in Sumoylation-dependent transcriptional control that may be essential for modifying the physiology of cells to maintain cellular homeostasis. These studies also provide new evidence of the important role of post-translational modification in controlling LEDGF function.
Collapse
Affiliation(s)
- Keiichi Ishihara
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Churchman ML, Roig I, Jasin M, Keeney S, Sherr CJ. Expression of arf tumor suppressor in spermatogonia facilitates meiotic progression in male germ cells. PLoS Genet 2011; 7:e1002157. [PMID: 21811412 PMCID: PMC3141002 DOI: 10.1371/journal.pgen.1002157] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 05/11/2011] [Indexed: 11/18/2022] Open
Abstract
The mammalian Cdkn2a (Ink4a-Arf) locus encodes two tumor suppressor proteins (p16Ink4a and p19Arf) that respectively enforce the anti-proliferative functions of the retinoblastoma protein (Rb) and the p53 transcription factor in response to oncogenic stress. Although p19Arf is not normally detected in tissues of young adult mice, a notable exception occurs in the male germ line, where Arf is expressed in spermatogonia, but not in meiotic spermatocytes arising from them. Unlike other contexts in which the induction of Arf potently inhibits cell proliferation, expression of p19Arf in spermatogonia does not interfere with mitotic cell division. Instead, inactivation of Arf triggers germ cell–autonomous, p53-dependent apoptosis of primary spermatocytes in late meiotic prophase, resulting in reduced sperm production. Arf deficiency also causes premature, elevated, and persistent accumulation of the phosphorylated histone variant H2AX, reduces numbers of chromosome-associated complexes of Rad51 and Dmc1 recombinases during meiotic prophase, and yields incompletely synapsed autosomes during pachynema. Inactivation of Ink4a increases the fraction of spermatogonia in S-phase and restores sperm numbers in Ink4a-Arf doubly deficient mice but does not abrogate γ-H2AX accumulation in spermatocytes or p53-dependent apoptosis resulting from Arf inactivation. Thus, as opposed to its canonical role as a tumor suppressor in inducing p53-dependent senescence or apoptosis, Arf expression in spermatogonia instead initiates a salutary feed-forward program that prevents p53-dependent apoptosis, contributing to the survival of meiotic male germ cells. The intimately linked Arf and Ink4a genes, encoded in part by overlapping reading frames within the Cdkn2a locus, are induced by oncogenic stress, activating the p53 and Rb tumor suppressors, respectively, to inhibit proliferation of incipient cancer cells. As such, expression of the p19Arf and p16Ink4a proteins is undetected in most normal mouse tissues. However, p19Arf is physiologically expressed in mitotically dividing spermatogonia, the progenitor cells that differentiate to form meiotic spermatocytes in which Arf expression is extinguished. We show that, instead of provoking cell cycle arrest or death, Arf expression in spermatogonia facilitates survival of their meiotic progeny, ensuring production of normal numbers of mature sperm. When Arf is ablated, meiotic defects ensue, along with p53-dependent cell death of spermatocytes, indicating an unexpected role of p53 in monitoring meiotic progression. Surprisingly, it is the absence of p19Arf rather than its induction that enforces p53 expression in this setting. Co-inactivation of Ink4a compensates for Arf loss by fueling proliferation of spermatogonial progenitors, but does not correct meiotic defects triggered by Arf loss. Although the Arf and Ink4a tumor suppressors are expected to restrain cellular self-renewal, Arf plays an unexpected role in male germ cells by facilitating their proper meiotic progression.
Collapse
Affiliation(s)
- Michelle L. Churchman
- Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Ignasi Roig
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Cytology and Histology Unit, Department of Cell Biology, Physiology, and Immunology, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Scott Keeney
- Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Charles J. Sherr
- Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
8
|
Ban R, Nishida T, Urano T. Mitotic kinase Aurora-B is regulated by SUMO-2/3 conjugation/deconjugation during mitosis. Genes Cells 2011; 16:652-69. [PMID: 21554500 DOI: 10.1111/j.1365-2443.2011.01521.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The small ubiquitin-related modifier (SUMO) system of higher eukaryotes plays important roles in normal cell division, especially in chromosome segregation. However, only a few mitotic SUMO substrates have been identified in mammals. Here, we show that the mitotic kinase Aurora-B can be modified by SUMO. The E3 SUMO-protein ligase PIAS3 [protein inhibitor of activated STAT (signal transducer and activator of transcription)] dramatically enhanced poly-SUMO-2/3 conjugation of Aurora-B, whereas the SUMO-specific isopeptidase SENP2 (Sentrin/SUMO-specific protease) specifically deconjugated SUMO from Aurora-B. The Lys-202 residue on human Aurora-B was preferentially modified by SUMO, and enhancement of SUMOylation in cells facilitated Aurora-B autophosphorylation, which is essential for its activation. Conversely, SENP2-mediated deSUMOylation of Aurora-B down-regulated its autophosphorylation in cells and also impaired its re-activation in Aurora inhibitor VX-680-treated mitotic cells. Poly-SUMO-2 conjugation of Aurora-B occurred during the M phase of the cell cycle, and both SUMO-2 and PIAS3 were localized adjacent to Aurora-B in the kinetochores in early mitosis. Based on these results, we propose that Aurora-B is a novel mitotic SUMO substrate and that its kinase activity is fine-tuned by the SUMO system.
Collapse
Affiliation(s)
- Reiko Ban
- Department of Biochemistry, Shimane University School of Medicine, Izumo 693-8501, Japan.
| | | | | |
Collapse
|
9
|
Nishida T, Yamada Y. The nucleolar SUMO-specific protease SMT3IP1/SENP3 attenuates Mdm2-mediated p53 ubiquitination and degradation. Biochem Biophys Res Commun 2011; 406:285-91. [PMID: 21316347 DOI: 10.1016/j.bbrc.2011.02.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 02/07/2011] [Indexed: 11/29/2022]
Abstract
SUMO (small ubiquitin-like modifier) modification plays multiple roles in several cellular processes. Sumoylation is reversibly regulated by SUMO-specific proteases. SUMO-specific proteases have recently been implicated in cell proliferation and early embryogenesis, but the underlying mechanisms remain unknown. Here, we show that a nucleolar SUMO-specific protease, SMT3IP1/SENP3, controls the p53-Mdm2 pathway. We found that SMT3IP1 interacts with p53 and Mdm2, and desumoylates both proteins. Overexpression of SMT3IP1 in cells resulted in the accumulation of Mdm2 in the nucleolus and increased stability of the p53 protein. In addition, SMT3IP1 bound to the acidic domain of Mdm2, which also mediates the p53 interaction, and competed with p53 for binding. Increasing expression of SMT3IP1 suppressed Mdm2-mediated p53 ubiquitination and subsequent proteasomal degradation. Interestingly, the desumoylation activity of SMT3IP1 was not necessary for p53 stabilization. These results suggest that SMT3IP1 is a new regulator of the p53-Mdm2 pathway.
Collapse
Affiliation(s)
- Tamotsu Nishida
- Department of Human Functional Genomics, Life Science Research Center, Mie University, 1577 Kurima-machiya, Tsu 514-8507, Japan.
| | | |
Collapse
|
10
|
The SUMO system controls nucleolar partitioning of a novel mammalian ribosome biogenesis complex. EMBO J 2011; 30:1067-78. [PMID: 21326211 DOI: 10.1038/emboj.2011.33] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 01/21/2011] [Indexed: 11/08/2022] Open
Abstract
Ribosome biogenesis is a tightly controlled pathway that requires an intricate spatial and temporal interplay of protein networks. Most structural rRNA components are generated in the nucleolus and assembled into pre-ribosomal particles, which are transferred for further maturation to the nucleoplasm and cytoplasm. In metazoa, few regulatory components for these processes have been characterized. Previous work revealed a critical role for the SUMO-specific protease SENP3 in the nucleolar steps of ribosome biogenesis. We biochemically purified a SENP3-associated complex comprising PELP1, TEX10 and WDR18, and demonstrate that this complex is involved in maturation and nucleolar release of the large ribosomal subunit. We identified PELP1 and the PELP1-associated factor LAS1L as SENP3-sensitive targets of SUMO, and provide evidence that balanced SUMO conjugation/deconjugation determines the nucleolar partitioning of this complex. This defines the PELP1-TEX10-WDR18 complex as a regulator of ribosome biogenesis and suggests that its SUMO-controlled distribution coordinates the rate of ribosome formation. These findings contribute to the basic understanding of mammalian ribosome biogenesis and shed new light on the role of SUMO in this process.
Collapse
|
11
|
Colombo E, Alcalay M, Pelicci PG. Nucleophosmin and its complex network: a possible therapeutic target in hematological diseases. Oncogene 2011; 30:2595-609. [PMID: 21278791 DOI: 10.1038/onc.2010.646] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nucleophosmin (NPM, also known as B23, numatrin or NO38) is a ubiquitously expressed phosphoprotein belonging to the nucleoplasmin family of chaperones. NPM is mainly localized in the nucleolus where it exerts many of its functions, but a proportion of the protein continuously shuttles between the nucleus and the cytoplasm. A growing number of cellular proteins have been described as physical interactors of NPM, and consequently, NPM is thought to have a relevant role in diverse cellular functions, including ribosome biogenesis, centrosome duplication, DNA repair and response to stress. NPM has been implicated in the pathogenesis of several human malignancies and intriguingly, it has been described both as an activating oncogene and a tumor suppressor, depending on cell type and protein levels. In fact, increased NPM expression is associated with different types of solid tumors whereas an impairment of NPM function is characteristic of a subgroup of hematolologic malignancies. A large body of experimental evidence links the deregulation of specific NPM functions to cellular transformation, yet the molecular mechanisms through which NPM contributes to tumorigenesis remain elusive. In this review, we have summarized current knowledge concerning NPM functions, and attempted to interpret its multifaceted and sometimes apparently contradictory activities in the context of both normal cellular homeostasis and neoplastic transformation.
Collapse
Affiliation(s)
- E Colombo
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy.
| | | | | |
Collapse
|
12
|
NPM1/B23: A Multifunctional Chaperone in Ribosome Biogenesis and Chromatin Remodeling. Biochem Res Int 2010; 2011:195209. [PMID: 21152184 PMCID: PMC2989734 DOI: 10.1155/2011/195209] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 08/29/2010] [Indexed: 12/21/2022] Open
Abstract
At a first glance, ribosome biogenesis and chromatin remodeling are quite different processes, but they share a common problem involving interactions between charged nucleic acids and small basic proteins that may result in unwanted intracellular aggregations. The multifunctional nuclear acidic chaperone NPM1 (B23/nucleophosmin) is active in several stages of ribosome biogenesis, chromatin remodeling, and mitosis as well as in DNA repair, replication and transcription. In addition, NPM1 plays an important role in the Myc-ARF-p53 pathway as well as in SUMO regulation. However, the relative importance of NPM1 in these processes remains unclear. Provided herein is an update on the expanding list of the diverse activities and interacting partners of NPM1. Mechanisms of NPM1 nuclear export functions of NPM1 in the nucleolus and at the mitotic spindle are discussed in relation to tumor development. It is argued that the suggested function of NPM1 as a histone chaperone could explain several, but not all, of the effects observed in cells following changes in NPM1 expression. A future challenge is to understand how NPM1 is activated, recruited, and controlled to carry out its functions.
Collapse
|
13
|
Abstract
The covalent attachment of SUMO (small ubiquitin-like protein modifier) to target proteins results in modifications in their activity, binding interactions, localization or half-life. The reversal of this modification is catalysed by SENPs (SUMO-specific processing proteases). Mammals contain four SUMO paralogues and six SENP enzymes. In the present paper, we describe a systematic analysis of human SENPs, integrating estimates of relative selectivity for SUMO1 and SUMO2, and kinetic measurements of recombinant C-terminal cSENPs (SENP catalytic domains). We first characterized the reaction of each endogenous SENP and cSENPs with HA-SUMO-VS [HA (haemagglutinin)-tagged SUMO-vinyl sulfones], active-site-directed irreversible inhibitors of SENPs. We found that all cSENPs and endogenous SENP1 react with both SUMO paralogues, whereas all other endogenous SENPs in mammalian cells and tissues display high selectivity for SUMO2-VS. To obtain more quantitative data, the kinetic properties of purified cSENPs were determined using SUMO1- or SUMO2-AMC (7-amino-4-methylcoumarin) as substrate. All enzymes bind their respective substrates with high affinity. cSENP1 and cSENP2 process either SUMO substrate with similar affinity and catalytic efficiency; cSENP5 and cSENP6 show marked catalytic specificity for SUMO2 as measured by Km and kcat, whereas cSENP7 works only on SUMO2. Compared with cSENPs, recombinant full-length SENP1 and SENP2 show differences in SUMO selectivity, indicating that paralogue specificity is influenced by the presence of the variable N-terminal domain of each SENP. Our data suggest that SUMO2 metabolism is more dynamic than that of SUMO1 since most SENPs display a marked preference for SUMO2.
Collapse
|
14
|
Meani N, Alcalay M. Role of nucleophosmin in acute myeloid leukemia. Expert Rev Anticancer Ther 2009; 9:1283-94. [PMID: 19761432 DOI: 10.1586/era.09.84] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nucleophosmin (NPM) is a nucleolar phosphoprotein implicated in the regulation of multiple cellular functions, which possesses both oncogenic and tumor-suppressor properties. Mutations of the NPM1 gene leading to the expression of a cytoplasmic mutant protein, NPMc+, are the most frequent genetic abnormalities found in acute myeloid leukemias. Acute myeloid leukemias with mutated NPM1 have distinct characteristics, including a significant association with a normal karyotype, involvement of different hematopoietic lineages, a specific gene-expression profile and clinically, a better response to induction therapy and a favorable prognosis. NPMc+ maintains the capacity of wild-type NPM to interact with a variety of cellular proteins, and impairs their activity by delocalizing them to the cytoplasm. In this review we summarize recent discoveries concerning NPM function, and discuss their possible impact on the pathogenesis of acute myeloid leukemias with mutated NPM1.
Collapse
Affiliation(s)
- Natalia Meani
- Istituto Europeo di Oncologia, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy.
| | | |
Collapse
|