1
|
Kincade JN, Engle TE, Henao-Tamayo M, Eder JM, McDonald EM, Deines DM, Wright BM, Murtazina D, Bishop JV, Hansen TR, Van Campen H. Postnatal epigenetic differences in calves following transient fetal infection with bovine viral diarrhea virus. BMC Genomics 2025; 26:441. [PMID: 40316897 PMCID: PMC12049026 DOI: 10.1186/s12864-025-11562-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/02/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND Bovine viral diarrhea virus (BVDV) is the most detrimental pestivirus within the cattle industry. Infection with vertically transmissible BVDV prior to 125 days of gestation results in the generation of a persistently infected (PI) calf. These PI calves are unable to clear the virus in utero, due to an incomplete immune response. However, when infection with BVDV occurs after 150 days of gestation, the fetus clears the transient infection (TI) in utero and is born with antibodies specific to the infecting strain of BVDV. Variations in DNA methylation have been identified in white blood cells (WBC) from TI heifers at birth. It was hypothesized that epigenomic alterations persist into the postnatal period and contribute to previously undocumented pathologies. To study these possible effects, DNA was isolated from the WBCs of 5 TI heifers and 5 control heifers at 4 months of age and subjected to reduced representation bisulfite sequencing (RRBS). RESULTS Differential analysis of the methylome revealed a total of 3,047 differentially methylated CpG sites (DMSs), 1,349 of which were hypermethylated and the other 1,698 were hypomethylated. Genes containing differential methylation were associated with inflammation, reactive oxygen species (ROS) production, and metabolism. Complete blood count (CBC) data identified a higher lymphocyte percentage in TI heifers. When compared in the context of the CD45+ parent population, spectral flow cytometry revealed increased intermediate monocytes, B cells, and CD25+/CD127- T cells, and decreased CD4+/CD8b+ T cells. Comparative analysis revealed differential methylation of CpG sites contained in 205 genes, 5 promoters, and 10 CpG islands at birth that were also present at 4 months of age. Comparison of differential methylation in TI heifers and PI heifers at 4 months of age showed 465 genes, 18 promoters, and 34 CpG islands in common. CONCLUSION Differential methylation of WBC DNA persists to 4 months of age in TI heifers and is associated with dysregulation of inflammation, metabolism, and growth. Analysis of differential methylation in TI heifers contributes to the understanding of how fetal infection with BVDV induces postnatal detriments related to profit loss.
Collapse
Affiliation(s)
- Jessica N Kincade
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Terry E Engle
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA
| | - Marcela Henao-Tamayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | - Dilyara Murtazina
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jeanette V Bishop
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Thomas R Hansen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Hana Van Campen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
2
|
Wu L, Li Z, Yao Y. Hydrogen peroxide preconditioning is of dual role in cardiac ischemia/reperfusion. Eur J Pharmacol 2023; 947:175684. [PMID: 36997049 DOI: 10.1016/j.ejphar.2023.175684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
Moderate reactive oxygen species (ROS) at reperfusion would trigger cardioprotection and various antioxidants for pharmacological preconditioning failed to achieve cardioprotection. The causes for different roles of preischemic ROS during cardiac ischemia/reperfusion (I/R) require reevaluation. We investigated the precise role of ROS and its working model in this study. Different doses of hydrogen peroxide (H2O2, the most stable form of ROS) were added 5 min before ischemia using isolated perfused rat hearts, only moderate-dose H2O2 preconditioning (H2O2PC) achieved contractile recovery, whereas the low dose and high dose led to injury. Similar results were observed in isolated rat cardiomyocytes on cytosolic free Ca2+ concentration ([Ca2+]c) overload, ROS production, the recovery of Ca2+ transient, and cell shortening. Based on the data mentioned above, we set up a mathematics model to describe the effects of H2O2PC with the fitting curve by the percentage of recovery of heart function and Ca2+ transient in I/R. Besides, we used the two models to define the initial thresholds of H2O2PC achieving cardioprotection. We also detected the expression of redox enzymes and Ca2+ signaling toolkits to explain the mathematics models of H2O2PC in a biological way. The expression of tyrosine 705 phosphorylation of STAT3, Nuclear factor E2-related factor 2, manganese superoxide dismutase, phospholamban, catalase, ryanodine receptors, and sarcoendoplasmic reticulum calcium ATPase 2 were similar with the control I/R and low-dose H2O2PC but were increased in the moderate H2O2PC and decreased in the high-dose H2O2PC. Thus, we concluded that preischemic ROS are of dual role in cardiac I/R.
Collapse
|
3
|
Paredes A, Santos-Clemente R, Ricote M. Untangling the Cooperative Role of Nuclear Receptors in Cardiovascular Physiology and Disease. Int J Mol Sci 2021; 22:ijms22157775. [PMID: 34360540 PMCID: PMC8346021 DOI: 10.3390/ijms22157775] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
The heart is the first organ to acquire its physiological function during development, enabling it to supply the organism with oxygen and nutrients. Given this early commitment, cardiomyocytes were traditionally considered transcriptionally stable cells fully committed to contractile function. However, growing evidence suggests that the maintenance of cardiac function in health and disease depends on transcriptional and epigenetic regulation. Several studies have revealed that the complex transcriptional alterations underlying cardiovascular disease (CVD) manifestations such as myocardial infarction and hypertrophy is mediated by cardiac retinoid X receptors (RXR) and their partners. RXRs are members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors and drive essential biological processes such as ion handling, mitochondrial biogenesis, and glucose and lipid metabolism. RXRs are thus attractive molecular targets for the development of effective pharmacological strategies for CVD treatment and prevention. In this review, we summarize current knowledge of RXR partnership biology in cardiac homeostasis and disease, providing an up-to-date view of the molecular mechanisms and cellular pathways that sustain cardiomyocyte physiology.
Collapse
|
4
|
Yang YP, Zhao JQ, Gao HB, Li JJ, Li XL, Niu XL, Lei YH, Li X. Tannic acid alleviates lipopolysaccharide‑induced H9C2 cell apoptosis by suppressing reactive oxygen species‑mediated endoplasmic reticulum stress. Mol Med Rep 2021; 24:535. [PMID: 34080663 PMCID: PMC8170226 DOI: 10.3892/mmr.2021.12174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/30/2021] [Indexed: 01/08/2023] Open
Abstract
Sepsis‑induced myocardial dysfunction is one of the features of multiple organ dysfunction in sepsis, which is associated with extremely high mortality and is characterized by impaired myocardial compliance. To date, there are few effective treatment options available to cure sepsis. Tannic acid (TA) is reportedly protective during sepsis; however, the underlying mechanisms by which TA protects against septic heart injury remain elusive. The present study investigated the potential effects and underlying mechanisms of TA in alleviating lipopolysaccharide (LPS)‑induced H9C2 cardiomyocyte cell apoptosis. H9C2 cells were treated with LPS (15 µg/ml), TA (10 µM) and TA + LPS; control cells were treated with medium only. Apoptosis was measured using flow cytometry, reverse transcription‑quantitative PCR (RT‑qPCR) and western blot analysis. Additionally, the levels of cellular reactive oxygen species (ROS), malondialdehyde and nicotinamide adenine dinucleotide phosphate were evaluated. Western blotting and RT‑qPCR were also employed to detect the expression levels of endoplasmic reticulum (ER) stress‑associated functional proteins. The present findings demonstrated that TA reduced the degree of LPS‑induced H9C2 cell injury, including inhibition of ROS production and ER stress (ERS)‑associated apoptosis. ERS‑associated functional proteins, including activating transcription factor 6, protein kinase‑like ER kinase, inositol‑requiring enzyme 1, spliced X box‑binding protein 1 and C/EBP‑homologous protein were suppressed in response to TA treatment. Furthermore, the expression levels of ERS‑associated apoptotic proteins, including c‑Jun N‑terminal kinase, Bax, cytochrome c, caspase‑3, caspase‑12 and caspase‑9 were reduced following treatment with TA. Additionally, the protective effects of TA on LPS‑induced H9C2 cells were partially inhibited following treatment with the ROS inhibitor N‑acetylcysteine, which demonstrated that ROS mediated ERS‑associated apoptosis and TA was able to decrease ROS‑mediated ERS‑associated apoptosis. Collectively, the present findings demonstrated that the protective effects of TA against LPS‑induced H9C2 cell apoptosis may be associated with the amelioration of ROS‑mediated ERS. These findings may assist the development of potential novel therapeutic methods to inhibit the progression of myocardial cell injury.
Collapse
Affiliation(s)
- Yan-Ping Yang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jie-Qiong Zhao
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Hai-Bo Gao
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jin-Jing Li
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xiao-Li Li
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xiao-Lin Niu
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yong-Hong Lei
- Department of Plastic Surgery, General Hospital of Chinese PLA, Beijing 100853, P.R. China
| | - Xue Li
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
5
|
Jiang H, Li R, Zhang Z, Chang C, Liu Y, Liu Z, He Q, Wang Q. Retinoid X receptor α (RXRα)-mediated erythroid-2-related factor-2 (NRF2) inactivation contributes to N,N-dimethylformamide (DMF)-induced oxidative stress in HL-7702 and HuH6 cells. J Appl Toxicol 2019; 40:470-482. [PMID: 31875996 DOI: 10.1002/jat.3919] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/24/2022]
Abstract
N,N-dimethylformamide (DMF) is a colorless industrial solvent that is frequently used for chemical reactions. Epidemiologic studies and clinical case reports have consistently indicated that the main toxic effect after exposure to DMF is hepatotoxicity. Previous studies have suggested that oxidative stress is the pivotal molecular event of DMF-mediated hepatotoxicity; however, its underlying mechanism remains unclear. In this study, we found that DMF (0-150 mM) exposure induced an increase in reactive oxygen species (ROS) levels and inhibited the transcriptional activity of nuclear factor erythroid-2-related factor-2 (NRF2) in a dose-dependent manner. Subsequently, our research revealed that the elevated ROS levels and the decline in NRF2-mediated anti-oxidative response in HL-7702 and HuH6 cells might be due to the DMF-induced accumulation of retinoid X receptor α (RXRα) protein. Further investigation demonstrated that phosphorylation of the RXRα protein, which is mediated by the activation of extracellular signal-regulated kinase (ERK), leads to the inhibition of RXRα protein degradation and in turn the accumulation of RXRα after DMF exposure. These findings provide information that improves our understanding of the role of RXRα in DMF-induced hepatotoxicity.
Collapse
Affiliation(s)
- Hongmei Jiang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ruobi Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhen Zhang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chong Chang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ye Liu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ziqi Liu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qianmei He
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qing Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Zha Z, Han Q, Huo S. The protective effects of bexarotene against advanced glycation end-product (AGE)-induced degradation of articular extracellular matrix (ECM). ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 48:1-7. [PMID: 31852246 DOI: 10.1080/21691401.2019.1699802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Zhuqing Zha
- Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Zhengzhou, Henan, China
| | - Qingmin Han
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaochuan Huo
- Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
7
|
Differential effects of and mechanisms underlying the protection of cardiomyocytes by liver-X-receptor subtypes against high glucose stress-induced injury. Biochem Biophys Res Commun 2018; 503:1372-1377. [PMID: 30029876 DOI: 10.1016/j.bbrc.2018.07.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 11/21/2022]
Abstract
Liver-X-receptors (LXRs) are ligand-activated transcription factors belonging to the nuclear receptor superfamily. The two popular homologous receptor subtypes, LXRα and LXRβ, exhibit differential expression patterns, thereby probably playing different roles in different contexts. This study aimed to evaluate the different roles of the two LXR subtypes and the mechanisms underlying their protection of cardiomyocytes against high-glucose stress. Silencing of LXRα, but not LXRβ impaired normal LXR-mediated cardioprotective effects against high glucose-induced oxidative stress, apoptosis, and inflammation. Mechanistically, silencing of small ubiquitin-like modifier (SUMO)1 or SUMO2/3 did not affect LXR-mediated cardioprotective effects; however, these were impaired in response to nuclear receptor corepressor (NCoR) silencing. Together, these findings indicate that LXRα, but not LXRβ, protects against high glucose-induced cardiomyocyte injury, probably via the NCoR-dependent transrepression of downstream target genes.
Collapse
|
8
|
Zhang JY, Guo Y, Si JP, Sun XB, Sun GB, Liu JJ. A polysaccharide of Dendrobium officinale ameliorates H2O2-induced apoptosis in H9c2 cardiomyocytes via PI3K/AKT and MAPK pathways. Int J Biol Macromol 2017; 104:1-10. [DOI: 10.1016/j.ijbiomac.2017.05.169] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/05/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
|
9
|
Zhao Y, Xu L, Ding S, Lin N, Ji Q, Gao L, Su Y, He B, Pu J. Novel protective role of the circadian nuclear receptor retinoic acid-related orphan receptor-α in diabetic cardiomyopathy. J Pineal Res 2017; 62. [PMID: 27862268 DOI: 10.1111/jpi.12378] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/15/2016] [Indexed: 12/11/2022]
Abstract
Diabetic cardiomyopathy is a major complication that significantly contributes to morbidity and mortality in diabetics with few therapies. Moreover, antidiabetic drugs reported inconsistent or even adverse cardiovascular effects, suggesting that it is important to exploit novel therapeutic targets against diabetic cardiomyopathy. Here, we observed that the nuclear melatonin receptor, the retinoic acid-related orphan receptor-α (RORα), was downregulated in diabetic hearts. By utilizing a mouse line with RORα disruption, we demonstrated that RORα deficiency led to significantly augmented diastolic dysfunction and cardiac remodeling induced by diabetes. Microscopic and molecular analyses further indicated that the detrimental effects of RORα deficiency were associated with aggravated myocardial apoptosis, autophagy dysfunction, and oxidative stress by disrupting antioxidant gene expression. By contrast, restoration of cardiac RORα levels in transgenic mice significantly improved cardiac functional and structural parameters at 8 weeks after diabetes induction. Consistent with genetic manipulation, pharmacological activation of RORα by melatonin and SR1078 (a synthetic agonist) showed beneficial effects against diabetic cardiomyopathy, while the RORα inhibitor SR3335 significantly exacerbated cardiac impairments in diabetic mice. Collectively, these findings suggest that cardiac-targeted manipulation of nuclear melatonin receptor RORα may hold promise for delaying diabetic cardiomyopathy development.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Autophagy/drug effects
- Autophagy/genetics
- Benzamides/pharmacology
- Diabetic Cardiomyopathies/drug therapy
- Diabetic Cardiomyopathies/genetics
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/pathology
- Mice
- Mice, Mutant Strains
- Myocardium/metabolism
- Myocardium/pathology
- Nuclear Receptor Subfamily 1, Group F, Member 1/agonists
- Nuclear Receptor Subfamily 1, Group F, Member 1/antagonists & inhibitors
- Nuclear Receptor Subfamily 1, Group F, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism
- Oxidative Stress/drug effects
- Oxidative Stress/genetics
- Receptors, Melatonin/genetics
- Receptors, Melatonin/metabolism
- Sulfonamides/pharmacology
- Thiophenes/pharmacology
Collapse
Affiliation(s)
- Yichao Zhao
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Longwei Xu
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Song Ding
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Lin
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingqi Ji
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lingchen Gao
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanyuan Su
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ben He
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Pu
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Li J, Liu Y, Jin Y, Wang R, Wang J, Lu S, VanBuren V, Dostal DE, Zhang SL, Peng X. Essential role of Cdc42 in cardiomyocyte proliferation and cell-cell adhesion during heart development. Dev Biol 2016; 421:271-283. [PMID: 27986432 DOI: 10.1016/j.ydbio.2016.12.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 11/02/2016] [Accepted: 12/08/2016] [Indexed: 12/12/2022]
Abstract
Cdc42 is a member of the Rho GTPase family and functions as a molecular switch in regulating cell migration, proliferation, differentiation and survival. However, the role of Cdc42 in heart development remains largely unknown. To determine the function of Cdc42 in heart formation, we have generated a Cdc42 cardiomyocyte knockout (CCKO) mouse line by crossing Cdc42 flox mice with myosin light chain (MLC) 2a-Cre mice. The inactivation of Cdc42 in embryonic cardiomyocytes induced lethality after embryonic day 12.5. Histological analysis of CCKO embryos showed cardiac developmental defects that included thin ventricular walls and ventricular septum defects. Microarray and real-time PCR data also revealed that the expression level of p21 was significantly increased and cyclin B1 was dramatically decreased, suggesting that Cdc42 is required for cardiomyocyte proliferation. Phosphorylated Histone H3 staining confirmed that the inactivation of Cdc42 inhibited cardiomyocytes proliferation. In addition, transmission electron microscope studies showed disorganized sarcomere structure and disruption of cell-cell contact among cardiomyocytes in CCKO hearts. Accordingly, we found that the distribution of N-cadherin/β-Catenin in CCKO cardiomyocytes was impaired. Taken together, our data indicate that Cdc42 is essential for cardiomyocyte proliferation, sarcomere organization and cell-cell adhesion during heart development.
Collapse
Affiliation(s)
- Jieli Li
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA
| | - Yang Liu
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA
| | - Yixin Jin
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA
| | - Rui Wang
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA; Department of Cardiology, Yangpu District Central Hospital, Tongji University, China
| | - Jian Wang
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA
| | - Sarah Lu
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA
| | - Vincent VanBuren
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA
| | - David E Dostal
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA
| | - Shenyuan L Zhang
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA.
| | - Xu Peng
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA.
| |
Collapse
|
11
|
Zhao YC, Xu LW, Ding S, Ji QQ, Lin N, He Q, Gao LC, Su YY, Pu J, He B. Nuclear receptor retinoid-related orphan receptor α deficiency exacerbates high-fat diet-induced cardiac dysfunction despite improving metabolic abnormality. Biochim Biophys Acta Mol Basis Dis 2016; 1863:1991-2000. [PMID: 27825849 DOI: 10.1016/j.bbadis.2016.10.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/08/2016] [Accepted: 10/31/2016] [Indexed: 01/16/2023]
Abstract
Retinoid-related orphan receptor α (RORα), a member of the metabolic nuclear receptor superfamily, plays a vital regulatory role in circadian rhythm and metabolism. Here, we investigated the role of RORα in high-fat diet (HFD)-induced cardiac impairments and the underlying mechanisms involved. RORα-deficient stagger mice (sg/sg) and wild type (WT) littermates were fed with either standard diet or HFD. At 20weeks after HFD treatment, RORα deficiency resulted in significantly decreased body weight gain, improved dyslipidemia and ameliorated insulin resistance (evaluated by blood biochemical and glucose/insulin tolerance tests) compared with WT control. However, compared with HFD-treated WT mice, HFD-treated sg/sg mice exhibited significantly augmented myocardial hypertrophy, cardiac fibrosis (wheat germ agglutinin, masson trichrome and sirius red staining) and cardiac dysfunction (echocardiography and hemodynamics). Mechanistically, RORα deficiency impaired mitochondrial biogenesis and function. Additionally, RORα deficiency resulted in inhibition of the AMPK-PGC1α signaling pathway. In contrast, cardiomyocyte-specific RORα overexpression ameliorated myocardial hypertrophy, fibrosis and dysfunction by restoring AMPK-PGC1α signaling, and subsequently normalizing mitochondrial biogenesis. These findings demonstrated for the first time that nuclear receptor RORα deficiency aggravated HFD-induced myocardial dysfunction at least in part by impairing mitochondrial biogenesis in association with disrupting AMPK-PGC1α signaling. This article is part of a Special Issue entitled: Genetic and epigenetic control of heart failure - edited by Jun Ren and Megan Yingmei Zhang.
Collapse
Affiliation(s)
- Yi-Chao Zhao
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China
| | - Long-Wei Xu
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China
| | - Song Ding
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China
| | - Qing-Qi Ji
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China
| | - Nan Lin
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China
| | - Qing He
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China
| | - Ling-Chen Gao
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China
| | - Yuan-Yuan Su
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China
| | - Jun Pu
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China.
| | - Ben He
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China.
| |
Collapse
|
12
|
Myricitrin Protects against Doxorubicin-Induced Cardiotoxicity by Counteracting Oxidative Stress and Inhibiting Mitochondrial Apoptosis via ERK/P53 Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:6093783. [PMID: 27703489 PMCID: PMC5039279 DOI: 10.1155/2016/6093783] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/08/2016] [Accepted: 06/05/2016] [Indexed: 12/20/2022]
Abstract
Doxorubicin (Dox) is one of the most effective and widely used anthracycline antineoplastic antibiotics. Unfortunately, the use of Dox is limited by its cumulative and dose-dependent cardiac toxicity. Myricitrin, a natural flavonoid which is isolated from the ground bark of Myrica rubra, has recently been found to have a strong antioxidative effect. This study aimed to evaluate the possible protective effect of myricitrin against Dox-induced cardiotoxicity and the underlying mechanisms. An in vivo investigation in SD rats demonstrated that myricitrin significantly reduced the Dox-induced myocardial damage, as indicated by the decreases in the cardiac index, amelioration of heart pathological injuries, and decreases in the serum cardiac enzyme levels. In addition, in vitro studies showed that myricitrin effectively reduced the Dox-induced cell toxicity. Further study showed that myricitrin exerted its function by counteracting oxidative stress and increasing the activities of antioxidant enzymes. Moreover, myricitrin suppressed the myocardial apoptosis induced by Dox, as indicated by decreases in the activation of caspase-3 and the numbers of TUNEL-positive cells, maintenance of the mitochondrial membrane potential, and increase in the Bcl-2/Bax ratio. Further mechanism study revealed that myricitrin-induced suppression of myocardial apoptosis relied on the ERK/p53-mediated mitochondrial apoptosis pathway.
Collapse
|
13
|
Yan TT, Fu XL, Li J, Bian YN, Liu DJ, Hua R, Ren LL, Li CT, Sun YW, Chen HY, Fang JY, Hong J. Downregulation of RPL15 may predict poor survival and associate with tumor progression in pancreatic ductal adenocarcinoma. Oncotarget 2016; 6:37028-42. [PMID: 26498693 PMCID: PMC4741913 DOI: 10.18632/oncotarget.5939] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 09/17/2015] [Indexed: 12/29/2022] Open
Abstract
Early diagnosis and treatment in pancreatic ductal adenocarcinoma (PDAC) is still a challenge worldwide. The poor survival of PDAC patients mainly due to early metastasis when first diagnosed and lack of prognostic biomarker. Ribosomal protein L15 (RPL15), an RNA-binding protein, is a component of ribosomal 60S subunit. It was reported that RPL15 is dysregulated in various type of cancers. However, little is known about the role of RPL15 in PDAC carcinogenesis and progression. Herein, we clarified RPL15 expression status may serve as an independent prognostic biomarker in three independent PDAC patient cohorts. We found that RPL15 was dramatically decreased in PDAC tissues and cell lines. The high expression of RPL15 was inversely correlated with TNM stage, histological differentiation, T classification and vascular invasion. Low expression of RPL15 was significantly associated with poor overall survival of PDAC patients. Furthermore, we demonstrated that the reduction of RPL15 may promote invasion ability of pancreatic cell by inducing EMT process. In conclusion, decreased RPL15 expression is associated with invasiveness of PDAC cells, and RPL15 expression status may serve as a reliable prognostic biomarker in PDAC patients.
Collapse
Affiliation(s)
- Ting-Ting Yan
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Institution of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Genes, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Xue-Liang Fu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jiao Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Ying-Nan Bian
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, Shanghai, China
| | - D Jun Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Rong Hua
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Lin-Lin Ren
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Institution of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Genes, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Cheng-Tao Li
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, Shanghai, China
| | - Yong-Wei Sun
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Hao-Yan Chen
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Institution of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Genes, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Institution of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Genes, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jie Hong
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Institution of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Genes, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Lu K, Liu G, Yang L, Liu F, Gao L, Shi J, Deng X, Li Q, Xu D, Shi S. Sustainable inflammation transforms hepatic cells by causing oxidative stress injury and potential epithelial-mesenchymal transition. Int J Oncol 2016; 49:971-80. [PMID: 27315196 DOI: 10.3892/ijo.2016.3580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 05/27/2016] [Indexed: 11/06/2022] Open
Abstract
The inflammatory microenvironment promotes tumorigenesis. However, the mechanism through which inflammation transforms hepatic cells in precancerous lesions remains unclear. Hepatic cells undergo significant changes in metabolism before carcinogenesis, but the specific alterations in gene expression and cellular functions in response to precancerous inflammation have not been elucidated. In this study, a hepatitis-hepatoma mouse model was successfully established. Label-free quantitative (LFQ) proteomics coupled with bioinformatics analysis was then performed to identify differentially expressed proteins and their functions in hepatic cells with precancerous inflammation. We found that different chemical treatments induced several common changes in the model. Hepatic cells underwent serious oxidative stress injury. Canonical pathway analysis using IPA revealed the activation of signaling pathways, such as integrin signaling, signaling by Rho family GTPases, IL-8 signaling, and ILK signaling, as well as the inhibition of RhoGDI signaling. Analysis of the KEGG pathway indicated alteration in the pathways for focal adhesion and regulation of actin cytoskeleton. Results from western blot analysis demonstrated the upregulation of proteins, including p-STAT3, TWIST, SNAIL, Vimentin, and MMP-9, which are involved in epithelial-mesenchymal transition (EMT). These results indicated that hepatic cells were likely to undergo EMT. Interestingly, the expression of E-cadherin was upregulated, but this observation must be further investigated. In conclusion, the results revealed that notable functional and pathway changes occurred during the precancerous inflammation stage in the liver. Our study contributes to understanding of the roles of inflammation in tumorigenesis and provides a molecular basis for further studies on the tumorigenesis of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Kun Lu
- Department of Basic Medicine, Medical College of Xiamen University/Cancer Research Center of Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Guoyan Liu
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Ling Yang
- Department of Basic Medicine, Medical College of Xiamen University/Cancer Research Center of Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Fan Liu
- Department of Basic Medicine, Medical College of Xiamen University/Cancer Research Center of Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Libin Gao
- Department of Basic Medicine, Medical College of Xiamen University/Cancer Research Center of Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Jingxian Shi
- Department of Basic Medicine, Medical College of Xiamen University/Cancer Research Center of Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Xiaoling Deng
- Department of Basic Medicine, Medical College of Xiamen University/Cancer Research Center of Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Qifu Li
- Department of Basic Medicine, Medical College of Xiamen University/Cancer Research Center of Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Donghui Xu
- Department of Hepatic Biliary Pancreatic Vascular Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Songlin Shi
- Department of Basic Medicine, Medical College of Xiamen University/Cancer Research Center of Xiamen University, Xiamen, Fujian 361102, P.R. China
| |
Collapse
|
15
|
Gao L, Cao JT, Liang Y, Zhao YC, Lin XH, Li XC, Tan YJ, Li JY, Zhou CL, Xu HY, Sheng JZ, Huang HF. Calcitriol attenuates cardiac remodeling and dysfunction in a murine model of polycystic ovary syndrome. Endocrine 2016; 52:363-73. [PMID: 26578366 DOI: 10.1007/s12020-015-0797-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/01/2015] [Indexed: 12/25/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a complex reproductive and metabolic disorder affecting 10 % of reproductive-aged women, and is well associated with an increased prevalence of cardiovascular risk factors. However, there are few data concerning the direct association of PCOS with cardiac pathologies. The present study aims to investigate the changes in cardiac structure, function, and cardiomyocyte survival in a PCOS model, and explore the possible effect of calcitriol administration on these changes. PCOS was induced in C57BL/6J female mice by chronic dihydrotestosterone administration, as evidenced by irregular estrous cycles, obesity and dyslipidemia. PCOS mice progressively developed cardiac abnormalities including cardiac hypertrophy, interstitial fibrosis, myocardial apoptosis, and cardiac dysfunction. Conversely, concomitant administration of calcitriol significantly attenuated cardiac remodeling and cardiomyocyte apoptosis, and improved cardiac function. Molecular analysis revealed that the beneficial effect of calcitriol was associated with normalized autophagy function by increasing phosphorylation levels of AMP-activated protein kinase and inhibiting phosphorylation levels of mammalian target of rapamycin complex. Our findings provide the first evidence for the presence of cardiac remodeling in a PCOS model, and vitamin D supplementation may be a potential therapeutic strategy for the prevention and treatment of PCOS-related cardiac remodeling.
Collapse
Affiliation(s)
- Ling Gao
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jia-Tian Cao
- Department of Cardiology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Yan Liang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yi-Chao Zhao
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xian-Hua Lin
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiao-Cui Li
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Ya-Jing Tan
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jing-Yi Li
- Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- The Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, 310058, China
| | - Cheng-Liang Zhou
- The Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, 310058, China
| | - Hai-Yan Xu
- The Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, 310058, China
| | - Jian-Zhong Sheng
- The Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, 310058, China
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - He-Feng Huang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
- The Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, 310058, China.
| |
Collapse
|
16
|
YiXin-Shu, a ShengMai-San-based traditional Chinese medicine formula, attenuates myocardial ischemia/reperfusion injury by suppressing mitochondrial mediated apoptosis and upregulating liver-X-receptor α. Sci Rep 2016; 6:23025. [PMID: 26964694 PMCID: PMC4786861 DOI: 10.1038/srep23025] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/25/2016] [Indexed: 12/14/2022] Open
Abstract
Positive evidence from clinical trials has fueled growing acceptance of traditional Chinese medicine (TCM) for the treatment of cardiac diseases; however, little is known about the underlying mechanisms. Here, we investigated the nature and underlying mechanisms of the effects of YiXin-Shu (YXS), an antioxidant-enriched TCM formula, on myocardial ischemia/reperfusion (MI/R) injury. YXS pretreatment significantly reduced infarct size and improved viable myocardium metabolism and cardiac function in hypercholesterolemic mice. Mechanistically, YXS attenuated myocardial apoptosis by inhibiting the mitochondrial mediated apoptosis pathway (as reflected by inhibition of mitochondrial swelling, cytochrome c release and caspase-9 activity, and normalization of Bcl-2 and Bax levels) without altering the death receptor and endoplasmic reticulum-stress death pathways. Moreover, YXS reduced oxidative/nitrative stress (as reflected by decreased superoxide and nitrotyrosine content and normalized pro- and anti-oxidant enzyme levels). Interestingly, YXS upregulated endogenous nuclear receptors including LXRα, PPARα, PPARβ and ERα, and in-vivo knockdown of cardiac-specific LXRα significantly blunted the cardio-protective effects of YXS. Collectively, these data show that YXS is effective in mitigating MI/R injury by suppressing mitochondrial mediated apoptosis and oxidative stress and by upregulating LXRα, thereby providing a rationale for future clinical trials and clinical applications.
Collapse
|
17
|
Yao J, Jiang M, Zhang Y, Liu X, Du Q, Feng G. Chrysin alleviates allergic inflammation and airway remodeling in a murine model of chronic asthma. Int Immunopharmacol 2016; 32:24-31. [DOI: 10.1016/j.intimp.2016.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 10/22/2022]
|
18
|
Alk7 Depleted Mice Exhibit Prolonged Cardiac Repolarization and Are Predisposed to Ventricular Arrhythmia. PLoS One 2016; 11:e0149205. [PMID: 26882027 PMCID: PMC4755580 DOI: 10.1371/journal.pone.0149205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/28/2016] [Indexed: 12/16/2022] Open
Abstract
We aimed to investigate the role of activin receptor-like kinase (ALK7) in regulating cardiac electrophysiology. Here, we showed that Alk7-/- mice exhibited prolonged QT intervals in telemetry ECG recordings. Furthermore, Langendorff-perfused Alk7-/- hearts had significantly longer action potential duration (APD) and greater incidence of ventricular arrhythmia (AV) induced by burst pacing. Using whole-cell patch clamp, we found that the densities of repolarizing K+ currents Ito and IK1 were profoundly reduced in Alk7-/- ventricular cardiomyocytes. Mechanistically, the expression of Kv4.2 (a major subunit of Ito carrying channel) and KCHIP2 (a key accessory subunit of Ito carrying channel), was markedly decreased in Alk7-/- hearts. These findings suggest that endogenous expression of ALK7 is necessary to maintain repolarizing K+ currents in ventricular cardiomyocytes, and finally prevent action potential prolongation and ventricular arrhythmia.
Collapse
|
19
|
Suman S, Kumar S, Fornace AJ, Datta K. Decreased RXRα is Associated with Increased β-Catenin/TCF4 in (56)Fe-Induced Intestinal Tumors. Front Oncol 2015; 5:218. [PMID: 26500891 PMCID: PMC4597120 DOI: 10.3389/fonc.2015.00218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/23/2015] [Indexed: 12/31/2022] Open
Abstract
Although it is known that accumulation of oncogenic β-catenin is critical for intestinal tumorigenesis, the underlying mechanisms have not yet been fully explored. Post-translational β-catenin level is regulated via the adenomatous polyposis coli (APC)-dependent as well as the APC-independent ubiquitin–proteasome pathway (UPP). Employing an APC-mutant mouse model (APCMin/+) the present study aimed to investigate the status of RXRα, an APC-independent factor involved in targeting β-catenin to UPP for degradation, in tumor-bearing and tumor-free areas of intestine after exposure to energetic 56Fe ions. APCMin/+ mice were exposed to energetic 56Fe ions (4 or 1.6 Gy) and intestinal tumor samples and tumor-free normal intestinal samples were collected 100–110 days after exposure. The status of TCF4, β-catenin, cyclin D1, and RXRα was examined using immunohistochemistry and immunoblots. We observed increased accumulation of the transcription factor TCF4 and its co-activator β-catenin as well as their downstream oncogenic target protein cyclin-D1 in 56Fe ion-induced intestinal tumors. Further, decreased expression of RXRα in tumors as well as in adjacent normal epithelium was indicative of perturbations in β-catenin proteasomal-targeting machinery. This indicates that decreased UPP targeting of β-catenin due to downregulation of RXRα can contribute to further accumulation of β-catenin and to 56Fe-induced tumorigenesis.
Collapse
Affiliation(s)
- Shubhankar Suman
- Department of Biochemistry and Molecular and Cellular Biology, Lombardi Comprehensive Cancer Center, Georgetown University , Washington, DC , USA
| | - Santosh Kumar
- Department of Biochemistry and Molecular and Cellular Biology, Lombardi Comprehensive Cancer Center, Georgetown University , Washington, DC , USA
| | - Albert J Fornace
- Department of Biochemistry and Molecular and Cellular Biology, Lombardi Comprehensive Cancer Center, Georgetown University , Washington, DC , USA ; Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University , Jeddah , Saudi Arabia
| | - Kamal Datta
- Department of Biochemistry and Molecular and Cellular Biology, Lombardi Comprehensive Cancer Center, Georgetown University , Washington, DC , USA
| |
Collapse
|
20
|
Labetalol Prevents Intestinal Dysfunction Induced by Traumatic Brain Injury. PLoS One 2015; 10:e0133215. [PMID: 26186619 PMCID: PMC4505891 DOI: 10.1371/journal.pone.0133215] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 06/23/2015] [Indexed: 02/06/2023] Open
Abstract
Background Beta-adrenergic blockade has been hypothesized to have a protective effect on intestinal dysfunction and increased intestinal permeability associated with the epinephrine surge after traumatic brain injury (TBI). Methods Wister rats were subjected to either a weight drop TBI, and intraperitoneally injected or not with labetalol, or a sham procedure (18 rats per group). After 3, 6, or 12h (6 rats per subgroup), intestinal permeability to 4.4 kDa FITC-Dextran and plasma epinephrine levels were measured as was intestinal tight junction protein ZO-1 expression at 12h. Terminal ileum was harvested to measure levels of intestinal tumor necrosis factor (TNF)-α and to evaluate histopathology. Results In TBI group vs. sham group, intestinal permeability (P<0.01) was significantly higher at all time-points, and intestinal ZO-1 expression was lower at 12h. In TBI with vs. without labetalol group, 1) intestinal permeability was significantly lower at 6 and 12h (94.31±7.64 vs. 102.16±6.40 μg/mL; 110.21±7.52 vs. 118.95±7.11 μg/mL, respectively); 2) levels of plasma epinephrine and intestinal TNF-α were significantly lower at 3, 6 and 12h; and 3) intestinal ZO-1 expression was higher at 3, 6 and 12h (p=0.018). Histopathological evaluation showed that labetalol use preserved intestinal architecture throughout. Conclusion In a rat model of TBI, labetalol reduced TBI-induced sympathetic hyperactivity, and prevented histopathological intestinal injury accompanied by changes in gut permeability and gut TNF-α expression.
Collapse
|
21
|
Urotensin II Protects Cardiomyocytes from Apoptosis Induced by Oxidative Stress through the CSE/H2S Pathway. Int J Mol Sci 2015; 16:12482-98. [PMID: 26047336 PMCID: PMC4490456 DOI: 10.3390/ijms160612482] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 05/22/2015] [Accepted: 05/22/2015] [Indexed: 02/07/2023] Open
Abstract
Plasma urotensin II (UII) has been observed to be raised in patients with acute myocardial infarction; suggesting a possible cardiac protective role for this peptide. However, the molecular mechanism is unclear. Here, we treated cultured cardiomyocytes with H2O2 to induce oxidative stress; observed the effect of UII on H2O2-induced apoptosis and explored potential mechanisms. UII pretreatment significantly reduced the number of apoptotic cardiomyocytes induced by H2O2; and it partly abolished the increase of pro-apoptotic protein Bax and the decrease of anti-apoptotic protein Bcl-2 in cardiomyocytes induced by H2O2. SiRNA targeted to the urotensin II receptor (UT) greatly inhibited these effects. Further analysis revealed that UII increased the production of hydrogen sulfide (H2S) and the level of cystathionine-γ-lyase (CSE) by activating the ERK signaling in H2O2-treated-cardiomyocytes. Si-CSE or ERK inhibitor not only greatly inhibited the increase in CSE level or the phosphorylation of ERK induced by UII but also reversed anti-apoptosis of UII in H2O2-treated-cadiomyocytes. In conclusion, UII rapidly promoted the phosphorylation of ERK and upregulated CSE level and H2S production, which in turn activated ERK signaling to protect cardiomyocytes from apoptosis under oxidative stress. These results suggest that increased plasma UII level may protect cardiomyocytes at the early-phase of acute myocardial infarction in patients.
Collapse
|
22
|
He Q, Pu J, Yuan A, Yao T, Ying X, Zhao Y, Xu L, Tong H, He B. Liver X receptor agonist treatment attenuates cardiac dysfunction in type 2 diabetic db/db mice. Cardiovasc Diabetol 2014; 13:149. [PMID: 25416469 PMCID: PMC4245833 DOI: 10.1186/s12933-014-0149-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 10/20/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Liver X receptor (LXR) plays a critical regulatory role in metabolism and inflammation, and has been demonstrated to be involved in cardiovascular physiology/pathology. In the present study, we investigated the effect of GW3965, a potent LXR agonist, on diabetic cardiomyopathy (DCM) in type 2 diabetic db/db mice. METHODS AND RESULTS Non-diabetic db/+ mice and diabetic db/db mice received either vehicle or LXR agonist GW3965 for 12 weeks. Systemic insulin resistance was evaluated by glucose tolerance test and homeostasis model assessment for insulin resistance. Endpoint cardiac function was assessed by echocardiography and catheterization. Ventricular tissue was collected for histology and gene/protein expression analysis. Untreated db/db diabetic mice exhibited diastolic dysfunction with adverse structural remodeling (including myocardial fibrosis and increased apoptosis). Treatment with GW3965 remarkably attenuated myocardial dysfunction and structural remodeling in diabetic db/db mice. Mechanistically, GW3965 restored Akt phosphorylation and inhibited MAP kinases phosphorylation, and reduced oxidative/nitrative stress and inflammation response in the diabetic myocardium. CONCLUSIONS Our data demonstrate that GW3965 exerts a cardioprotective effect against DCM by (at least in part) attenuating insulin resistance, modulating Akt and MAP kinases pathways, and reducing oxidative/nitrative stress and inflammatory response. These findings strongly suggest that LXR agonist may have therapeutic potential in treating DCM.
Collapse
Affiliation(s)
- Qing He
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jun Pu
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Ancai Yuan
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Tianbao Yao
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Xiaoying Ying
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Yichao Zhao
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Longwei Xu
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Huan Tong
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Ben He
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
23
|
He Q, Pu J, Yuan A, Lau WB, Gao E, Koch WJ, Ma XL, He B. Activation of liver-X-receptor α but not liver-X-receptor β protects against myocardial ischemia/reperfusion injury. Circ Heart Fail 2014; 7:1032-41. [PMID: 25277999 DOI: 10.1161/circheartfailure.114.001260] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Liver-X-receptors, LXRα (NR1H3) and LXRβ (NR1H2), encode 2 different but highly homologous isoforms of transcription factors belonging to the nuclear receptor superfamily. Whether LXRα and LXRβ subtypes have discrete roles in the regulation of cardiac physiology/pathology is unknown. We determine the role of each LXR subtype in myocardial ischemia/reperfusion (MI/R) injury. METHODS AND RESULTS Mice (wild type; those genetically depleted of LXRα, LXRβ, or both; and those overexpressing LXRα or LXRβ by in vivo intramyocardial adenoviral vector) were subjected to MI/R injury. Both LXRα and LXRβ were detected in wild-type mouse heart. LXRα, but not LXRβ, was significantly upregulated after MI/R. Dual activation of LXRα and LXRβ by natural and synthetic agonists reduced myocardial infarction and improved contractile function after MI/R. Mechanistically, LXR activation inhibited MI/R-induced oxidative stress and nitrative stress, attenuated endoplasmic reticulum stress and mitochondrial dysfunction, and reduced cardiomyocyte apoptosis in ischemic/reperfused myocardium. The aforementioned cardioprotective effects of LXR agonists were impaired in the setting of cardiac-specific gene silencing of LXRα, but not LXRβ subtype. Moreover, LXRα/β double-knockout and LXRα-knockout mice, but not LXRβ-knockout mice, increased MI/R injury, exacerbated MI/R-induced oxidative/nitrative stress, and aggravated endoplasmic reticulum stress and mitochondrial dysfunction. Furthermore, cardiac LXRα, not LXRβ, overexpression via adenoviral transfection suppressed MI/R injury. CONCLUSIONS Our study provides the first direct evidence that the LXRα, but not LXRβ, subtype is a novel endogenous cardiac protective receptor against MI/R injury. Drug development strategies specifically targeting LXRα may be beneficial in treating ischemic heart disease.
Collapse
Affiliation(s)
- Qing He
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Q.H., J.P., A.Y., B.H.); Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (W.B.L., X.-L.M.); and Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (E.G., W.J.K.)
| | - Jun Pu
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Q.H., J.P., A.Y., B.H.); Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (W.B.L., X.-L.M.); and Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (E.G., W.J.K.).
| | - Ancai Yuan
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Q.H., J.P., A.Y., B.H.); Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (W.B.L., X.-L.M.); and Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (E.G., W.J.K.)
| | - Wayne Bond Lau
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Q.H., J.P., A.Y., B.H.); Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (W.B.L., X.-L.M.); and Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (E.G., W.J.K.)
| | - Erhe Gao
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Q.H., J.P., A.Y., B.H.); Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (W.B.L., X.-L.M.); and Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (E.G., W.J.K.)
| | - Walter J Koch
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Q.H., J.P., A.Y., B.H.); Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (W.B.L., X.-L.M.); and Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (E.G., W.J.K.)
| | - Xin-Liang Ma
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Q.H., J.P., A.Y., B.H.); Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (W.B.L., X.-L.M.); and Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (E.G., W.J.K.).
| | - Ben He
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Q.H., J.P., A.Y., B.H.); Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (W.B.L., X.-L.M.); and Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (E.G., W.J.K.).
| |
Collapse
|
24
|
Shan PR, Xu WW, Huang ZQ, Pu J, Huang WJ. Protective role of retinoid X receptor in H9c2 cardiomyocytes from hypoxia/reoxygenation injury in rats. World J Emerg Med 2014; 5:122-7. [PMID: 25215161 DOI: 10.5847/wjem.j.issn.1920-8642.2014.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 03/06/2014] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Retinoid X receptor (RXR) plays a central role in the regulation of intracellular receptor signaling pathways. The activation of RXR has protective effect on H2O2-induced apoptosis of H9c2 ventricular cells in rats. But the protective effect and mechanism of activating RXR in cardiomyocytes against hypoxia/reoxygenation (H/R)-induced oxidative iniury are still unclear. METHODS The model of H/R injury was established through hypoxia for 2 hours and reoxygenation for 4 hours in H9c2 cardiomyocytes of rats. 9-cis-retinoic acid (9-cis RA) was obtained as an RXR agonist, and HX531 as an RXR antagonist. Cultured cardiomyocytes were randomly divided into four groups: sham group, H/R group, H/R+9-cis RA -pretreated group (100 nmol/L 9-cis RA), and H/R+9-cis RA+HX531-pretreated group (2.5 μmol/L HX531). The cell viability was measured by MTT, apoptosis rate of cardiomyocytes by flow cytometry analysis, and mitochondrial membrane potential (ΔΨm) by JC-1 fluorescent probe, and protein expressions of Bcl-2, Bax and cleaved caspase-9 with Western blotting. All measurement data were expressed as mean±standard deviation, and analyzed using one-way ANOVA and the Dunnett test. Differences were considered significant when P was <0.05. RESULTS Pretreatment with RXR agonist enhanced cell viability, reduced apoptosis ratio, and stabled ΔΨm. Dot blotting experiments showed that under H/R stress conditions, Bcl-2 protein level decreased, while Bax and cleaved caspase-9 were increased. 9-cis RA administration before H/R stress prevented these effects, but the protective effects of activating RXR on cardiomyocytes against H/R induced oxidative injury were abolished when pretreated with RXR pan-antagonist HX531. CONCLUSION The activation of RXR has protective effects against H/R injury in H9c2 cardiomyocytes of rats through attenuating signaling pathway of mitochondria apoptosis.
Collapse
Affiliation(s)
- Pei-Ren Shan
- Department of Cardiology, First AffiliatedHospital of Wenzhou Medical University, Wenzhou 325100, China
| | - Wei-Wei Xu
- Department of Cardiology, First AffiliatedHospital of Wenzhou Medical University, Wenzhou 325100, China
| | - Zhou-Qing Huang
- Department of Cardiology, First AffiliatedHospital of Wenzhou Medical University, Wenzhou 325100, China
| | - Jun Pu
- Department of Cardiology, First AffiliatedHospital of Wenzhou Medical University, Wenzhou 325100, China
| | - Wei-Jian Huang
- Department of Cardiology, First AffiliatedHospital of Wenzhou Medical University, Wenzhou 325100, China
| |
Collapse
|
25
|
Zhu J, Ning RB, Lin XY, Chai DJ, Xu CS, Xie H, Zeng JZ, Lin JX. Retinoid X receptor agonists inhibit hypertension-induced myocardial hypertrophy by modulating LKB1/AMPK/p70S6K signaling pathway. Am J Hypertens 2014; 27:1112-24. [PMID: 24603314 DOI: 10.1093/ajh/hpu017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Retinoid X receptor (RXR) has been demonstrated to play an important role in cardiac development and has been implicated in cardiovascular diseases. This study aimed to examine the effects of RXRα agonist bexarotene on pathological left ventricular hypertrophy (LVH) in a spontaneously hypertensive rat (SHR) model and the underlying mechanism. METHODS WKY rats served as controls. SHRs were randomized into 3 groups at the age of 4 weeks and were treated (once daily for 12 weeks) with either bexarotene (30 or 100mg/kg body weight) or vehicle alone. Echocardiography was performed to determine cardiac structure and function. Neonatal cardiomyocytes were treated with AngII (10(-7) mmol/L) with or without the indicated concentration of RXRα ligand 9-cis-RA. The protein abundances of β-actin, RXRα, LKB1, phospho-LKB1, AMPK, phospho-AMPK, P70S6K, phospho-P70S6K, ACE, and AT1 receptor were measured along with blood pressure, body weight and angiotensin II (Ang II) levels. The effects of LKB1 downregulation by LKB1 small, interfering RNA were examined. RESULTS Treatment of SHRs with bexarotene resulted in significant inhibition of LVH without eliminating hypertension. Immunoblot with heart tissue homogenates from SHRs revealed that bexarotene activated the LKB1/AMPK signaling pathway and inhibited p70S6K. However, the increased Ang II levels in SHR serum and heart tissue were not reduced by bexarotene treatment. Treatment of cardiomyocytes with Ang II resulted in significantly reduced LKB1/AMPK activity and increased p70S6K activity. 9-cis-RA antagonized Ang II-induced LKB1/AMPK and p70S6K activation changes in vitro. CONCLUSIONS RXR agonists prevent the inhibition of the LKB1/AMPK/p70S6K pathway and regulate protein synthesis to reduce LVH. This antihypertrophic effect of bexarotene is independent of blood pressure.
Collapse
Affiliation(s)
- Jiang Zhu
- First Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Ruo-Bing Ning
- First Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiao-Yan Lin
- Echocardiological Department, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Da-Jun Chai
- Cardiovascular Department, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China;
| | - Chang-Sheng Xu
- Cardiovascular Department, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Hong Xie
- Cardiovascular Department, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Jin-Zhang Zeng
- School of Pharmaceutical Sciences and Institute for Biomedical Research, Xiamen University, Xiamen, China
| | - Jin-Xiu Lin
- Cardiovascular Department, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China;
| |
Collapse
|
26
|
Zhang P, Li T, Griffith BP, Wu ZJ. Multiscale Characterization of Impact of Infarct Size on Myocardial Remodeling in an Ovine Infarct Model. Cells Tissues Organs 2014; 200:349-62. [PMID: 26540290 DOI: 10.1159/000435875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2015] [Indexed: 11/19/2022] Open
Abstract
The surviving myocardium initially compensates the loss of injured myocardium after myocardial infarction (MI) and gradually becomes progressively dysfunctional. There have been limited studies on the effect of infarct size on temporal and spatial alterations in the myocardium during progressive myocardial remodeling. MI with three infarct sizes, i.e. 15, 25 and 35% of the left ventricular (LV) wall, was created in an ovine infarction model. The progressive LV remodeling over a 12-week period was studied. Echocardiography, sonomicrometry, and histological and molecular analyses were carried out to evaluate cardiac function, regional tissue contractile function, structural remodeling and cardiomyocyte hypertrophy, and calcium handling proteins. Twelve weeks after MI, the 15, 25 and 35% MI groups had normalized LV end diastole volumes of 1.4 ± 0.2, 1.7 ± 0.3 and 2.0 ± 0.4 ml/kg, normalized end systole volumes of 1.0 ± 0.1, 1.0 ± 0.2 and 1.3 ± 0.3 ml/kg and LV ejection fractions of 43 ± 3, 42 ± 6 and 34 ± 4%, respectively. They all differed from the sham group (p < 0.05). All the three MI groups exhibited larger wall areal expansion (remodeling strain), larger cardiomyocyte size and altered expression of calcium handing proteins in the adjacent myocardium compared to the remote counterpart from the infarct. A significant correlation was found between cardiomyocyte size and remodeling strain in the adjacent zone. A comparative analysis among the three MI groups showed that a larger infarct size (35 vs. 15% MI) was associated with larger remodeling strain, more serious impairment in the cellular structure and composition, and regional contractile function at regional tissue level and LV function at organ level.
Collapse
Affiliation(s)
- Pei Zhang
- Artificial Organs Laboratory, Department of Surgery, University of Maryland School of Medicine, Baltimore, Md., USA
| | | | | | | |
Collapse
|
27
|
Bouétard A, Besnard AL, Vassaux D, Lagadic L, Coutellec MA. Impact of the redox-cycling herbicide diquat on transcript expression and antioxidant enzymatic activities of the freshwater snail Lymnaea stagnalis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 126:256-265. [PMID: 23237706 DOI: 10.1016/j.aquatox.2012.11.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 11/06/2012] [Accepted: 11/17/2012] [Indexed: 06/01/2023]
Abstract
The presence of pesticides in the environment results in potential unwanted effects on non-target species. Freshwater organisms inhabiting water bodies adjacent to agricultural areas, such as ditches, ponds and marshes, are good models to test such effects as various pesticides may reach these habitats through several ways, including aerial drift, run-off, and drainage. Diquat is a non-selective herbicide used for crop protection or for weed control in such water bodies. In this study, we investigated the effects of diquat on a widely spread aquatic invertebrate, the holarctic freshwater snail Lymnaea stagnalis. Due to the known redox-cycling properties of diquat, we studied transcript expression and enzymatic activities relative to oxidative and general stress in the haemolymph and gonado-digestive complex (GDC). As diquat is not persistent, snails were exposed for short times (5, 24, and 48 h) to ecologically relevant concentrations (22.2, 44.4, and 222.2 μg l(-1)) of diquat dibromide. RT-qPCR was used to quantify the transcription of genes encoding catalase (cat), a cytosolic superoxide dismutase (Cu/Zn-sod), a selenium-dependent glutathione peroxidase (gpx), a glutathione reductase (gred), the retinoid X receptor (rxr), two heat shock proteins (hsp40 and hsp70), cortactin (cor) and the two ribosomal genes r18S and r28s. Enzymatic activities of SOD, Gpx, Gred and glutathione S-transferase (GST) were investigated in the GDC using spectrophoto/fluorometric methods. Opposite trends were obtained in the haemolymph depending on the herbicide concentration. At the lowest concentration, effects were mainly observed after 24 h of exposure, with over-transcription of cor, hsp40, rxr, and sod, whereas higher concentrations down-regulated the expression of most of the studied transcripts, especially after 48 h of exposure. In the GDC, earlier responses were observed and the fold-change magnitude was generally much higher: transcription of all target genes increased significantly (or non-significantly for cat) after 5 h of exposure, and went back to control levels afterwards, suggesting the onset of an early response to oxidative stress associated to the unbalance of reactive oxygen species (ROS) in hepatocytes. Although increases obtained for Gred and SOD activities were globally consistent with their respective transcript expressions, up-regulation of transcription was not always correlated with increase of enzymatic activity, indicating that diquat might affect steps downstream of transcription. However, constitutive levels of enzymatic activities were at least maintained. In conclusion, diquat was shown to affect expression of the whole set of studied transcripts, reflecting their suitability as markers of early response to oxidative stress in L. stagnalis.
Collapse
Affiliation(s)
- Anthony Bouétard
- INRA, UMR INRA-Agrocampus Ouest ESE, Equipe Ecotoxicologie et Qualité des Milieux Aquatiques, Rennes, France.
| | | | | | | | | |
Collapse
|
28
|
Cui G, Shan L, Hung M, Lei S, Choi I, Zhang Z, Yu P, Hoi P, Wang Y, Lee SM. A novel Danshensu derivative confers cardioprotection via PI3K/Akt and Nrf2 pathways. Int J Cardiol 2013; 168:1349-59. [PMID: 23290949 DOI: 10.1016/j.ijcard.2012.12.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 10/25/2012] [Accepted: 12/05/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND Danshensu (3-(3,4-dihydroxyphenyl) lactic acid, DSS) is one of the most promising cardioprotective components in the root of Salvia miltiorrhiza but its poor chemical stability poses hurdles in its therapeutic development. It is therefore desirable to enhance the stability of DSS by chemical modification to improve its activities. In the present study, a novel DSS derivative named ADTM was synthesized and characterized for its cardioprotective properties. METHODS Oxidative stress was induced in H9c2 cardiomyoblast cells by tert-butylhydroperoxide (t-BHP) and the protective effects of ADTM were evaluated. For in vivo study, adult rats were treated with vehicle, DSS, ADTM or amlodipine (n=6-8/group) for 24h before the induction of acute myocardial ischemia. At the end of each experiment, infarct size was measured. Underlying the mechanisms of the cardioprotective effects of ADTM were further investigated in H9c2 cells and rat myocardium by evaluating the effects of Nrf2 (NF-E2-related factor 2) and Akt/PI3K pathways. RESULTS ADTM was approximately 10 times more effective than DSS against t-BHP-induced cell injury in H9c2 cells. In rat myocardial ischemia model, ADTM treatment significantly alleviated myocardial infarction. Akt/PI3K and Nrf2 pathways were demonstrated to be involved in both in vitro and in vivo experiments. CONCLUSIONS These results demonstrated that ADTM displayed much better cardioprotective effects than its parent compounds both in vitro and in vivo. This cardioprotection is mediated, at least in part, through Akt/PI3K and Nrf2 pathways. This novel compound represents a promising candidate for the treatment of cardiovascular diseases (CVDs), particularly myocardial infarction.
Collapse
Affiliation(s)
- Guozhen Cui
- State Key Laboratory of Quality Research in Chinese Medicine (University of Macau), Avenue Padre Tomás Pereira S.J., Macao SAR, China; Institute of Chinese Medical Sciences, University of Macau, Avenue Padre Tomás Pereira S.J., Taipa, Macao SAR, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Pu J, Yuan A, Shan P, Gao E, Wang X, Wang Y, Lau WB, Koch W, Ma XL, He B. Cardiomyocyte-expressed farnesoid-X-receptor is a novel apoptosis mediator and contributes to myocardial ischaemia/reperfusion injury. Eur Heart J 2012; 34:1834-45. [PMID: 22307460 DOI: 10.1093/eurheartj/ehs011] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
AIMS Emerging evidence indicates that nuclear receptors play a critical regulatory role in cardiovascular physiology/pathology. Recently, farnesoid-X-receptor (FXR), a member of the metabolic nuclear receptor superfamily, has been demonstrated to be expressed in vascular cells, with important roles in vascular physiology/pathology. However, the potential cardiac function of FXR remains unclear. We investigated the cardiac expression and biological function of FXR. METHODS AND RESULTS Farnesoid-X-receptor was detected in both isolated neonatal rat cardiac myocytes and fibroblasts. Natural and synthetic FXR agonists upregulated cardiac FXR expression, stimulated myocyte apoptosis, and reduced myocyte viability dose- and time-dependently. Mechanistic studies demonstrated that FXR agonists disrupted mitochondria, characterized by mitochondrial permeability transition pores activation, mitochondrial potential dissipation, cytochrome c release, and both caspase-9 and -3 activation. Such mitochondrial apoptotic responses were abolished by siRNA-mediated silencing of endogenous FXR or pharmacological inhibition of mitochondrial death signalling. Furthermore, low levels of FXR were detected in the adult mouse heart, with significant (∼2.0-fold) upregulation after myocardial ischaemia/reperfusion (MI/R). Pharmacological inhibition or genetic ablation of FXR significantly reduced myocardial apoptosis by 29.0-53.4%, decreased infarct size by 23.4-49.7%, and improved cardiac function in ischaemic/reperfused myocardium. CONCLUSION These results demonstrate that nuclear receptor FXR acts as a novel functional receptor in cardiac tissue, regulates apoptosis in cardiomyocytes, and contributes to MI/R injury.
Collapse
Affiliation(s)
- Jun Pu
- Department of Cardiology, Shanghai Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sun X, Sun GB, Wang M, Xiao J, Sun XB. Protective effects of cynaroside against H2O2-induced apoptosis in H9c2 cardiomyoblasts. J Cell Biochem 2011; 112:2019-29. [DOI: 10.1002/jcb.23121] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Jean E, Laoudj-Chenivesse D, Notarnicola C, Rouger K, Serratrice N, Bonnieu A, Gay S, Bacou F, Duret C, Carnac G. Aldehyde dehydrogenase activity promotes survival of human muscle precursor cells. J Cell Mol Med 2011; 15:119-33. [PMID: 19840193 PMCID: PMC3822499 DOI: 10.1111/j.1582-4934.2009.00942.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aldehyde dehydrogenases (ALDH) are a family of enzymes that efficiently detoxify aldehydic products generated by reactive oxygen species and might therefore participate in cell survival. Because ALDH activity has been used to identify normal and malignant cells with stem cell properties, we asked whether human myogenic precursor cells (myoblasts) could be identified and isolated based on their levels of ALDH activity. Human muscle explant-derived cells were incubated with ALDEFLUOR, a fluorescent substrate for ALDH, and we determined by flow cytometry the level of enzyme activity. We found that ALDH activity positively correlated with the myoblast-CD56+ fraction in those cells, but, we also observed heterogeneity of ALDH activity levels within CD56-purified myoblasts. Using lentiviral mediated expression of shRNA we demonstrated that ALDH activity was associated with expression of Aldh1a1 protein. Surprisingly, ALDH activity and Aldh1a1 expression levels were very low in mouse, rat, rabbit and non-human primate myoblasts. Using different approaches, from pharmacological inhibition of ALDH activity by diethylaminobenzaldehyde, an inhibitor of class I ALDH, to cell fractionation by flow cytometry using the ALDEFLUOR assay, we characterized human myoblasts expressing low or high levels of ALDH. We correlated high ALDH activity ex vivo to resistance to hydrogen peroxide (H2O2)-induced cytotoxic effect and in vivo to improved cell viability when human myoblasts were transplanted into host muscle of immune deficient scid mice. Therefore detection of ALDH activity, as a purification strategy, could allow non-toxic and efficient isolation of a fraction of human myoblasts resistant to cytotoxic damage.
Collapse
Affiliation(s)
- Elise Jean
- INSERM, ERI 25, Muscle et Pathologies, Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Guleria RS, Choudhary R, Tanaka T, Baker KM, Pan J. Retinoic acid receptor-mediated signaling protects cardiomyocytes from hyperglycemia induced apoptosis: role of the renin-angiotensin system. J Cell Physiol 2011; 226:1292-307. [PMID: 20945395 PMCID: PMC3043168 DOI: 10.1002/jcp.22457] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetes mellitus (DM) is a primary risk factor for cardiovascular diseases and heart failure. Activation of the retinoic acid receptor (RAR) and retinoid X receptor (RXR) has an anti-diabetic effect; but, a role in diabetic cardiomyopathy remains unclear. Using neonatal and adult cardiomyocytes, we determined the role of RAR and RXR in hyperglycemia-induced apoptosis and expression of renin-angiotensin system (RAS) components. Decreased nuclear expression of RARα and RXRα, activation of apoptotic signaling and cell apoptosis was observed in high glucose (HG) treated neonatal and adult cardiomyocytes and diabetic hearts in Zucker diabetic fatty (ZDF) rats. HG-induced apoptosis and reactive oxygen species (ROS) generation was prevented by both RAR and RXR agonists. Silencing expression of RARα and RXRα, by small interference RNA, promoted apoptosis under normal conditions and significantly enhanced HG-induced apoptosis, indicating that RARα and RXRα are required in regulating cell apoptotic signaling. Blocking angiotensin type 1 receptor (AT(1) R); but, not AT(2) R, attenuated HG-induced apoptosis and ROS generation. Moreover, HG induced gene expression of angiotensinogen, renin, AT(1) R, and angiotensin II (Ang II) synthesis were inhibited by RARα agonists and promoted by silencing RARα. Activation of RXRα, downregulated the expression of AT(1) R; and RXRα silencing accelerated HG induced expression of angiotensinogen and Ang II synthesis, whereas there was no significant effect on renin gene expression. These results indicate that reduction in the expression of RARα and RXRα has an important role in hyperglycemia mediated apoptosis and expression of RAS components. Activation of RAR/RXR signaling protects cardiomyocytes from hyperglycemia, by reducing oxidative stress and inhibition of the RAS.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Angiotensin Receptor Antagonists/pharmacology
- Animals
- Animals, Newborn
- Apoptosis/drug effects
- Blood Glucose/metabolism
- Cells, Cultured
- Diabetes Mellitus/drug therapy
- Diabetes Mellitus/genetics
- Diabetes Mellitus/metabolism
- Diabetes Mellitus/pathology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Gene Expression Regulation
- Hyperglycemia/drug therapy
- Hyperglycemia/genetics
- Hyperglycemia/metabolism
- Hyperglycemia/pathology
- Hypoglycemic Agents/pharmacology
- Male
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Oxidative Stress/drug effects
- RNA Interference
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Rats, Zucker
- Reactive Oxygen Species/metabolism
- Receptor, Angiotensin, Type 1/drug effects
- Receptor, Angiotensin, Type 1/metabolism
- Receptors, Retinoic Acid/agonists
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Renin-Angiotensin System/drug effects
- Renin-Angiotensin System/genetics
- Retinoic Acid Receptor alpha
- Retinoid X Receptor alpha/agonists
- Retinoid X Receptor alpha/genetics
- Retinoid X Receptor alpha/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Time Factors
- Tretinoin/pharmacology
Collapse
Affiliation(s)
- Rakeshwar S. Guleria
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M Health Science Center; Scott and White; Central Texas Veterans Health Care System, Temple, Texas
| | - Rashmi Choudhary
- Division of Hematology/Oncology, University of Colorado, Denver, CO
| | - Takemi Tanaka
- Brown Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX
| | - Kenneth M. Baker
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M Health Science Center; Scott and White; Central Texas Veterans Health Care System, Temple, Texas
| | - Jing Pan
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M Health Science Center; Scott and White; Central Texas Veterans Health Care System, Temple, Texas
| |
Collapse
|
33
|
Modulation of RXR function through ligand design. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:57-69. [PMID: 21515403 DOI: 10.1016/j.bbalip.2011.04.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/06/2011] [Accepted: 04/07/2011] [Indexed: 12/22/2022]
Abstract
As the promiscuous partner of heterodimeric associations, retinoid X receptors (RXRs) play a key role within the Nuclear Receptor (NR) superfamily. Some of the heterodimers (PPAR/RXR, LXR/RXR, FXR/RXR) are "permissive" as they become transcriptionally active in the sole presence of either an RXR-selective ligand ("rexinoid") or a NR partner ligand. In contrast, "non-permissive" heterodimers (including RAR/RXR, VDR/RXR and TR/RXR) are unresponsive to rexinoids alone but these agonists superactivate transcription by synergizing with partner agonists. Despite their promiscuity in heterodimer formation and activation of multiple pathways, RXR is a target for drug discovery. Indeed, a rexinoid is used in the clinic for the treatment of cutaneous T-cell lymphoma. In addition to cancer RXR modulators hold therapeutical potential for the treatment of metabolic diseases. The modulation potential of the rexinoid (as agonist or antagonist ligand) is dictated by the precise conformation of the ligand-receptor complexes and the nature and extent of their interaction with co-regulators, which determine the specific physiological responses through transcription modulation of cognate gene networks. Notwithstanding the advances in this field, it is not yet possible to predict the correlation between ligand structure and physiological response. We will focus on this review on the modulation of PPARγ/RXR and LXR/RXR heterodimer activities by rexinoids. The genetic and pharmacological data from animal models of insulin resistance, diabetes and obesity demonstrate that RXR agonists and antagonists have promise as anti-obesity agents. However, the treatment with rexinoids raises triglycerides levels, suppresses the thyroid hormone axis, and induces hepatomegaly, which has complicated the development of these compounds as therapeutic agents for the treatment of type 2 diabetes and insulin resistance. The discovery of PPARγ/RXR and LXR/RXR heterodimer-selective rexinoids, which act differently than PPARγ or LXR agonists, might overcome some of these limitations.
Collapse
|
34
|
Kotani H, Tanabe H, Mizukami H, Makishima M, Inoue M. Identification of a naturally occurring rexinoid, honokiol, that activates the retinoid X receptor. JOURNAL OF NATURAL PRODUCTS 2010; 73:1332-1336. [PMID: 20695472 DOI: 10.1021/np100120c] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Screening of a total of 86 crude drugs for retinoid X receptor (RXR) ligands demonstrated that the methanol extract of the bark of Magnolia obovata markedly activated the transcriptional activity of RXRalpha in luciferase reporter assays. Thereafter, honokiol (1) was isolated as a constituent able to activate RXR selectively as a natural rexinoid, but not RARalpha. The activity of 1 was more potent than those of phytanic acid and docosahexaenoic acid, both of which are known to be natural RXR agonists. Honokiol (1) is capable of activating a RXR/LXR heterodimer, resulting in the induction of ATP-binding cassette transporter A1 mRNA and protein expression in RAW264.7 cells, as well as an increase in [(3)H]cholesterol efflux from peritoneal macrophages. These effects of 1 were enhanced synergistically in the presence of an LXR agonist, 22(R)-hydroxycholesterol. The results obtained demonstrate that 1, a newly identified natural rexinoid, regulates the functions of RXR/LXR heterodimer and abrogates foam cell formation by the induction of ABCA1 via activation of the RXR/LXR heterodimer.
Collapse
Affiliation(s)
- Hitoshi Kotani
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | | | | | | | | |
Collapse
|
35
|
Antczak C, Takagi T, Ramirez CN, Radu C, Djaballah H. Live-cell imaging of caspase activation for high-content screening. ACTA ACUST UNITED AC 2009; 14:956-69. [PMID: 19726787 DOI: 10.1177/1087057109343207] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Caspases are central to the execution of programmed cell death, and their activation constitutes the biochemical hallmark of apoptosis. In this article, the authors report the successful adaptation of a high-content assay method using the DEVDNucView488 fluorogenic substrate, and for the first time, they show caspase activation in live cells induced by either drugs or siRNA. The fluorogenic substrate was found to be nontoxic over an exposure period of several days, during which the authors demonstrate automated imaging and quantification of caspase activation of the same cell population as a function of time. Overexpression of the antiapoptotic protein Bcl-XL, alone or in combination with the inhibitor Z-VAD-FMK, attenuated caspase activation in HeLa cells exposed to doxorubicin, etoposide, or cell death siRNA. This method was further validated against 2 well-characterized NSCLC cell lines reported to be sensitive (H3255) or refractory (H2030) to erlotinib, where the authors show a differential time-dependent activation was observed for H3255 and no significant changes in H2030, consistent with their respective chemosensitivity profile. In summary, the results demonstrate the feasibility of using this newly adapted and validated high-content assay to screen chemical or RNAi libraries for the identification of previously uncovered enhancers and suppressors of the apoptotic machinery in live cells.
Collapse
Affiliation(s)
- Christophe Antczak
- High Throughput Screening Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|