1
|
Antiviral effects of small interfering RNA simultaneously inducing RNA interference and type 1 interferon in coxsackievirus myocarditis. Antimicrob Agents Chemother 2012; 56:3516-23. [PMID: 22508300 DOI: 10.1128/aac.06050-12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Antiviral therapeutics are currently unavailable for treatment of coxsackievirus B3, which can cause life-threatening myocarditis. A modified small interfering RNA (siRNA) containing 5'-triphosphate, 3p-siRNA, was shown to induce RNA interference and interferon activation. We aimed to develop a potent antiviral treatment using CVB3-specific 3p-siRNA and to understand its underlying mechanisms. Virus-specific 3p-siRNA was superior to both conventional virus-specific siRNA with an empty hydroxyl group at the 5' end (OH-siRNA) and nonspecific 3p-siRNA in decreasing viral replication and subsequent cytotoxicity. A single administration of 3p-siRNA dramatically attenuated virus-associated pathological symptoms in mice with no signs of toxicity, and their body weights eventually reached the normal range. Myocardial inflammation and fibrosis were rare, and virus production was greatly reduced. A nonspecific 3p-siRNA showed relatively less protective effect under identical conditions, and a virus-specific OH-siRNA showed no protective effects. We confirmed that virus-specific 3p-siRNA simultaneously activated target-specific gene silencing and type I interferon signaling. We provide a clear proof of concept that coxsackievirus B3-specific 3p-siRNA has 2 distinct modes of action, which significantly enhance antiviral activities with minimal organ damage. This is the first direct demonstration of improved antiviral effects with an immunostimulatory virus-specific siRNA in coxsackievirus myocarditis, and this method could be applied to many virus-related diseases.
Collapse
|
2
|
Chang CI, Lee TY, Yoo JW, Shin D, Kim M, Kim S, Lee DK. Branched, Tripartite-Interfering RNAs Silence Multiple Target Genes with Long Guide Strands. Nucleic Acid Ther 2012; 22:30-9. [DOI: 10.1089/nat.2011.0315] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Chan Il Chang
- Global Research Laboratory for RNAi Medicine, Department of Chemistry, Sungkyunkwan University, Suwon, Korea
- Skip Ackerman Center for Molecular Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Tae Yeon Lee
- Global Research Laboratory for RNAi Medicine, Department of Chemistry, Sungkyunkwan University, Suwon, Korea
| | - Jae Wook Yoo
- Global Research Laboratory for RNAi Medicine, Department of Chemistry, Sungkyunkwan University, Suwon, Korea
| | | | - Meehyein Kim
- Korean Research Institute of Chemical Technology, Daejeon, Korea
| | - Soyoun Kim
- Department of Biomedical Engineering, Dongguk University, Seoul, Korea
| | - Dong-ki Lee
- Global Research Laboratory for RNAi Medicine, Department of Chemistry, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
3
|
Thakur N, Qureshi A, Kumar M. VIRsiRNAdb: a curated database of experimentally validated viral siRNA/shRNA. Nucleic Acids Res 2012; 40:D230-6. [PMID: 22139916 PMCID: PMC3245049 DOI: 10.1093/nar/gkr1147] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/04/2011] [Accepted: 11/09/2011] [Indexed: 12/22/2022] Open
Abstract
RNAi technology has been emerging as a potential modality to inhibit viruses during past decade. In literature a few siRNA databases have been reported that focus on targeting human and mammalian genes but experimentally validated viral siRNA databases are lacking. We have developed VIRsiRNAdb, a manually curated database having comprehensive details of 1358 siRNA/shRNA targeting viral genome regions. Further, wherever available, information regarding alternative efficacies of above 300 siRNAs derived from different assays has also been incorporated. Important fields included in the database are siRNA sequence, virus subtype, target genome region, cell type, target object, experimental assay, efficacy, off-target and siRNA matching with reference viral sequences. Database also provides the users with facilities of advance search, browsing, data submission, linking to external databases and useful siRNA analysis tools especially siTarAlign which align the siRNA with reference viral genomes or user defined sequences. VIRsiRNAdb contains extensive details of siRNA/shRNA targeting 42 important human viruses including influenza virus, hepatitis B virus, HPV and SARS Corona virus. VIRsiRNAdb would prove useful for researchers in picking up the best viral siRNA for antiviral therapeutics development and also for developing better viral siRNA design tools. The database is freely available at http://crdd.osdd.net/servers/virsirnadb.
Collapse
Affiliation(s)
| | | | - Manoj Kumar
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh-160036, India
| |
Collapse
|
4
|
Luan Y, Dai HL, Yang D, Zhu L, Gao TL, Shao HJ, Peng X, Jin ZF. Small interfering RNA against the 2C genomic region of coxsackievirus B3 exerts potential antiviral effects in permissive HeLa cells. Virus Res 2012; 163:183-9. [DOI: 10.1016/j.virusres.2011.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 09/02/2011] [Accepted: 09/12/2011] [Indexed: 10/17/2022]
|
5
|
Hwang JY, Jun EJ, Seo I, Won M, Ahn J, Kim YK, Lee H. Characterization of infections of human leukocytes by non-polio enteroviruses. Intervirology 2011; 55:333-41. [PMID: 22057046 DOI: 10.1159/000329987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 05/16/2011] [Indexed: 11/19/2022] Open
Abstract
To elucidate the detailed susceptibilities of leukocytes to clinically important non-polio enteroviruses (EVs), primary monocytes and various human leukocyte cell lines were infected with coxsackievirus A24 (CVA24), coxsackievirus B3 (CVB3), and enterovirus 70 (EV70). The permissiveness was then assessed by determining virus replication and resultant cytopathic effects. Different EVs varied markedly in their ability to infect leukocyte cell lines. CVB3 replicated effectively in leukocytes of B-cell, T-cell, and monocyte origin, CVA24 in leukocytes of B-cell and monocyte origin, and EV70 in leukocytes of monocyte origin. Primary monocytes, as well as monocyte-derived U-937 cells, were permissive to all three EVs. We observed a positive correlation between cytotoxicity and active virus replication, except in CVB3-infected monocytes. U-937 cells efficiently generated CVB3 progeny virus without severe cellular damage, including cell death. Moreover, infectivity on leukocytes was not absolutely associated with the availability of viral receptors. These findings suggest that the susceptibility of human leukocytes to non-polio EVs may be responsible for virus transport during the viremic phase, particularly to secondary target organs, and that active replication of CVB3 in all human leukocyte lineages leads to greater dissemination, in agreement with the ability of CVB to cause systemic diseases.
Collapse
|
6
|
Skevaki CL, Galani IE, Pararas MV, Giannopoulou KP, Tsakris A. Treatment of viral conjunctivitis with antiviral drugs. Drugs 2011; 71:331-47. [PMID: 21319870 DOI: 10.2165/11585330-000000000-00000] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Viral conjunctivitis is one of the most common disorders observed in ophthalmic emergency departments, yet no established treatment exists. Lately, antiviral medications have been introduced into clinical practice; however, a systematic review focusing on their use and effectiveness in the treatment of viral conjunctivitis has not been previously reported. We systemically reviewed the literature to identify studies where antiviral drugs were used to treat viral conjunctivitis. Currently, aciclovir, trifluridine and valaciclovir are commonly used as antiviral agents to treat herpesvirus infections. Cidofovir has been used successfully to treat some cases of adenoviral conjunctivitis, although toxicity has also been reported. The use of other medications, such as idoxuridine, has been minimized in clinical practice due to their high toxicity. Interestingly, most of the antiviral drugs developed are used to treat herpesvirus infections, while less progress has been made in the field of adenoviral infections. For other viral causes of conjunctivitis, no effective remedy is currently available, and treatment focuses on the relief of symptoms. Caution should be exercised when coadministering other pharmacological agents, such as corticosteroids, because of emerging adverse effects.
Collapse
Affiliation(s)
- Chrysanthi L Skevaki
- Department of Microbiology, School of Medicine, University of Athens, Athens, Greece.
| | | | | | | | | |
Collapse
|
7
|
An ex vivo model of coxsackievirus infection using multilayered human conjunctival epithelial cells. Graefes Arch Clin Exp Ophthalmol 2011; 249:1327-32. [DOI: 10.1007/s00417-011-1655-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/18/2011] [Accepted: 02/02/2011] [Indexed: 10/18/2022] Open
|
8
|
Transgenic expression of the 3D polymerase inhibits Theiler's virus infection and demyelination. J Virol 2009; 83:12279-89. [PMID: 19759133 DOI: 10.1128/jvi.00664-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The RNA-dependent RNA polymerase 3D(pol) is required for the elongation of positive- and negative-stranded picornavirus RNA. During the course of investigating the effect of the transgenic expression of viral genes on the host immune response, we evaluated the viral load present in the host after infection. To our surprise, we found that 3D transgenic expression in genetically susceptible FVB mice led to substantially lower viral loads after infection with Theiler's murine encephalomyelitis virus (TMEV). As a result, spinal cord damage caused by chronic viral infection in the central nervous system was reduced in FVB mice that expressed 3D. This led to the preservation of large-diameter axons and motor function in these mice. The 3D transgene also lowered early viral loads when expressed in FVB-D(b) mice resistant to persistent TMEV infection. The protective effect of 3D transgenic expression was not altered in FVB-Rag(-/-).3D mice that are deficient in T and B cells, thus ruling out a mechanism by which the overexpression of 3D enhanced the adaptive immune clearance of the virus. Understanding how endogenously overexpressed 3D polymerase inhibits viral replication may lead to new strategies for targeting therapies to all picornaviruses.
Collapse
|
9
|
Lee HS, Ahn J, Jun EJ, Yang S, Joo CH, Kim YK, Lee H. A novel program to design siRNAs simultaneously effective to highly variable virus genomes. Biochem Biophys Res Commun 2009; 384:431-5. [PMID: 19422797 DOI: 10.1016/j.bbrc.2009.04.143] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 04/28/2009] [Indexed: 11/28/2022]
Abstract
A major concern of antiviral therapy using small interfering RNAs (siRNAs) targeting RNA viral genome is high sequence diversity and mutation rate due to genetic instability. To overcome this problem, it is indispensable to design siRNAs targeting highly conserved regions. We thus designed CAPSID (Convenient Application Program for siRNA Design), a novel bioinformatics program to identify siRNAs targeting highly conserved regions within RNA viral genomes. From a set of input RNAs of diverse sequences, CAPSID rapidly searches conserved patterns and suggests highly potent siRNA candidates in a hierarchical manner. To validate the usefulness of this novel program, we investigated the antiviral potency of universal siRNA for various Human enterovirus B (HEB) serotypes. Assessment of antiviral efficacy using Hela cells, clearly demonstrates that HEB-specific siRNAs exhibit protective effects against all HEBs examined. These findings strongly indicate that CAPSID can be applied to select universal antiviral siRNAs against highly divergent viral genomes.
Collapse
Affiliation(s)
- Hui Sun Lee
- Department of Physiology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|