1
|
Hoang HTT, Nguyen TT, Pham VT, Chu TT, Le MTT, Doan LN, Nguyen HTT, Le XTK, Doan HTT, Chu HH, Pham NB. A novel plant-derived recombinant COBRA infectious bronchitis virus spike protein can elicit a strong immune response in chickens. Vet Res Commun 2025; 49:196. [PMID: 40358746 DOI: 10.1007/s11259-025-10755-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/24/2025] [Indexed: 05/15/2025]
Abstract
Infectious bronchitis virus (IBV) causes an acute respiratory disease in chickens of all ages, and is an economic burden on the global poultry industry. In severe cases, this virus can spread from the respiratory tract to urinary and reproductive organs, leading to kidney damage, poor egg quality, and high mortality rate of chickens. Among IBV glycoproteins, spike (S) is the major determinant of viral attachment to host receptors and induction of neutralizing antibodies. Rapid mutations were found within the S gene of numerous IBV strains presenting in multiple geographical locations. Since the early detection of IBV in the 1930s, no single control strategy has so far shown high efficacy in protecting chickens. The aim of this investigation was therefore to develop a novel S-subunit vaccine to prevent this disease. Using a design approach of Computationally Optimized Broadly Reactive Antigen (COBRA) and the Nicotiana benthamiana transient expression system, we have successfully generated a recombinant S protein comprising the most consensus amino acids of IBV strains circulating in Vietnam and surrounding areas. Importantly, our results showed that the plant-derived protein was able to induce a strong immune response in chickens with significantly high expression levels of IFN-γ, GZM-A, CD4, CD8 mRNAs in the peripheral blood. Remarkable titers of IgY specific antibodies were stably observed over a 5-week period post immunization by COBRA-S, which was in agreement with the reduction of clinical signs after virus challenge. This study contributes a potential direction to vaccine development coping with new IBV outbreaks in the future.
Collapse
Affiliation(s)
- Hang Thi Thu Hoang
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, 100000, Vietnam.
- Graduate University of Science and Technology (GUST), VAST, Hanoi, 100000, Vietnam.
| | - Tra Thi Nguyen
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, 100000, Vietnam
| | - Van Thi Pham
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, 100000, Vietnam
| | - Tam Thanh Chu
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, 100000, Vietnam
| | - My Thi Tra Le
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, 100000, Vietnam
| | - Linh Nhat Doan
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, 100000, Vietnam
| | - Hien Thi Thu Nguyen
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, 100000, Vietnam
| | - Xuyen Thi Kim Le
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, 100000, Vietnam
| | - Huong Thi Thanh Doan
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, 100000, Vietnam
- Graduate University of Science and Technology (GUST), VAST, Hanoi, 100000, Vietnam
| | - Ha Hoang Chu
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, 100000, Vietnam
- Graduate University of Science and Technology (GUST), VAST, Hanoi, 100000, Vietnam
| | - Ngoc Bich Pham
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, 100000, Vietnam.
- Graduate University of Science and Technology (GUST), VAST, Hanoi, 100000, Vietnam.
| |
Collapse
|
2
|
Liu H, Liu T, Wang X, Zhu X, He J, Wang H, Fan A, Zhang D. Design and development of a novel multi-epitope DNA vaccine candidate against infectious bronchitis virus: an immunoinformatic approach. Arch Microbiol 2025; 207:84. [PMID: 40067376 DOI: 10.1007/s00203-025-04283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/10/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025]
Abstract
Avian infectious bronchitis (IB) is one of the major respiratory diseases in poultry. At present, attenuated vaccines are the main commercial vaccines, but they have many defects. We aimed to construct a novel multi-epitope DNA vaccine based on avian infectious bronchitis virus (IBV) S1 and N proteins for the prevention of IBV infection. We screened the dominant B and T cell epitopes of target proteins utilizing epitope prediction tools. A new high-immunogenicity epitope peptide segment named QSN was designed and screened by linking peptide. The physicochemical properties of QSN were analyzed by bioinformatics. The recombinant plasmid pEGFP-QSN was obtained by inserting the synthesized QSN gene into the eukaryotic expression vector pEGFP-N1. On the 7th day of age, chicks were immunized by intramuscular injection of the plasmid, and serum specific antibody IgG, cytokines IFN-γ and IL-2, and T lymphocyte subsets were detected after booster immunization. Bioinformatics analysis showed that QSN had high hydrophilicity without transmembrane region and stable structure after binding to receptor. The recombinant eukaryotic vector was successfully constructed. Two weeks after booster immunization, compared with NS group and pEGFP-N1 group, serum IgG level, concentrations of cytokines IFN-γ and IL-2, and proportion of CD4+ T lymphocytes in pEGFP-QSN group were significantly increased (P < 0.01 or P < 0.05). Collectively, the multi-epitope DNA could stimulate humoral and cellular immune responses in chickens and is expected to be a potential vaccine candidate against IBV infection.
Collapse
MESH Headings
- Animals
- Vaccines, DNA/immunology
- Vaccines, DNA/genetics
- Vaccines, DNA/administration & dosage
- Infectious bronchitis virus/immunology
- Infectious bronchitis virus/genetics
- Chickens
- Viral Vaccines/immunology
- Viral Vaccines/genetics
- Viral Vaccines/administration & dosage
- Poultry Diseases/prevention & control
- Poultry Diseases/virology
- Poultry Diseases/immunology
- Coronavirus Infections/prevention & control
- Coronavirus Infections/veterinary
- Coronavirus Infections/immunology
- Coronavirus Infections/virology
- Antibodies, Viral/blood
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/genetics
- Computational Biology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Epitopes, B-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/genetics
Collapse
Affiliation(s)
- Haoyu Liu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, No. 22, Jinjing Road, Xiqing District, Tianjin, 300392, People's Republic of China
| | - Tingting Liu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, No. 22, Jinjing Road, Xiqing District, Tianjin, 300392, People's Republic of China
| | - Xinyuan Wang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, No. 22, Jinjing Road, Xiqing District, Tianjin, 300392, People's Republic of China
| | - Xiaochen Zhu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, No. 22, Jinjing Road, Xiqing District, Tianjin, 300392, People's Republic of China
| | - Jinling He
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, No. 22, Jinjing Road, Xiqing District, Tianjin, 300392, People's Republic of China
| | - Hui Wang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, No. 22, Jinjing Road, Xiqing District, Tianjin, 300392, People's Republic of China
| | - Aili Fan
- Hengnuoyou (Tianjin) Biotechnology Co., Ltd, Tianjin, 301600, China
| | - Dongchao Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, No. 22, Jinjing Road, Xiqing District, Tianjin, 300392, People's Republic of China.
| |
Collapse
|
3
|
A DNA Prime and MVA Boost Strategy Provides a Robust Immunity against Infectious Bronchitis Virus in Chickens. Vaccines (Basel) 2023; 11:vaccines11020302. [PMID: 36851180 PMCID: PMC9962218 DOI: 10.3390/vaccines11020302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/28/2022] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Infectious bronchitis (IB) is an acute respiratory disease of chickens caused by the avian coronavirus Infectious Bronchitis Virus (IBV). Modified Live Virus (MLV) vaccines used commercially can revert to virulence in the field, recombine with circulating serotypes, and cause tissue damage in vaccinated birds. Previously, we showed that a mucosal adjuvant system, QuilA-loaded Chitosan (QAC) nanoparticles encapsulating plasmid vaccine encoding for IBV nucleocapsid (N), is protective against IBV. Herein, we report a heterologous vaccination strategy against IBV, where QAC-encapsulated plasmid immunization is followed by Modified Vaccinia Ankara (MVA) immunization, both expressing the same IBV-N antigen. This strategy led to the initiation of robust T-cell responses. Birds immunized with the heterologous vaccine strategy had reduced clinical severity and >two-fold reduction in viral burden in lachrymal fluid and tracheal swabs post-challenge compared to priming and boosting with the MVA-vectored vaccine alone. The outcomes of this study indicate that the heterologous vaccine platform is more immunogenic and protective than a homologous MVA prime/boost vaccination strategy.
Collapse
|
4
|
Immunogenicity of a xenogeneic multi-epitope HER2+ breast cancer DNA vaccine targeting the dendritic cell restricted antigen-uptake receptor DEC205. Vaccine 2022; 40:2409-2419. [DOI: 10.1016/j.vaccine.2022.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/10/2022] [Accepted: 03/05/2022] [Indexed: 11/18/2022]
|
5
|
Blakey J, Crossley B, Da Silva A, Rejmanek D, Jerry C, Gallardo RA, Stoute S. Infectious Bronchitis Virus Associated with Nephropathy Lesions in Diagnostic Cases from Commercial Broiler Chickens in California. Avian Dis 2021; 64:482-489. [PMID: 33347556 DOI: 10.1637/0005-2086-64.4.482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 11/05/2022]
Abstract
In March 2019, the California Animal Health and Food Safety Laboratory (CAHFS), Turlock branch, received two submissions of broiler chickens from commercial flocks reporting increased mortality. Submissions consisted of either white or brown broilers. Submitted chickens appeared depressed with ruffled feathers. At necropsy, moderate to severely enlarged and pale kidneys were observed, with gross lesions indicative of dehydration. Microscopically, renal tubules were degenerated and distended with necrotic debris and tubular casts. The kidney parenchyma contained mononuclear inflammatory cell infiltrates and interstitial edema. Infectious bronchitis virus (IBV) was isolated and identified by reverse transcription quantitative PCR from kidney tissue pools and tracheal swab pools from both cases. Partial sequencing of the S1 hypervariable region was most similar to a local California variant, CA1737. The outbreak lasted roughly 1 wk in both flocks, with 2% total mortality in the brown broilers and 20% total mortality in the white broilers. Final proof of the IBV strains causing nephropathy will require fulfillment of Koch postulates. IBV associated with nephropathy has been sporadically reported in California chicken flocks and represents a significant pathogen due to its potential for inducing high flock mortality. The incidence of IBV associated with a nephropathy diagnosis in chicken necropsy submissions to the CAHFS system-wide from 1998 to 2019 is also reviewed.
Collapse
Affiliation(s)
- Julia Blakey
- California Animal Health and Food Safety Laboratory System, University of California, Davis, Turlock Branch, 1550 N. Soderquist Road, Turlock, CA 95381
| | - Beate Crossley
- California Animal Health and Food Safety Laboratory System, University of California, Davis, Davis Branch, 620 W. Health Sciences Drive, Davis, CA 95616
| | - Ana Da Silva
- California Animal Health and Food Safety Laboratory System, University of California, Davis, Turlock Branch, 1550 N. Soderquist Road, Turlock, CA 95381
| | - Daniel Rejmanek
- California Animal Health and Food Safety Laboratory System, University of California, Davis, Davis Branch, 620 W. Health Sciences Drive, Davis, CA 95616
| | - Carmen Jerry
- California Animal Health and Food Safety Laboratory System, University of California, Davis, Turlock Branch, 1550 N. Soderquist Road, Turlock, CA 95381
| | - Rodrigo A Gallardo
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive VM3B, Davis, CA 95616
| | - Simone Stoute
- California Animal Health and Food Safety Laboratory System, University of California, Davis, Turlock Branch, 1550 N. Soderquist Road, Turlock, CA 95381
| |
Collapse
|
6
|
Mohammadi E, Shafiee F, Shahzamani K, Ranjbar MM, Alibakhshi A, Ahangarzadeh S, Beikmohammadi L, Shariati L, Hooshmandi S, Ataei B, Javanmard SH. Novel and emerging mutations of SARS-CoV-2: Biomedical implications. Biomed Pharmacother 2021; 139:111599. [PMID: 33915502 PMCID: PMC8062574 DOI: 10.1016/j.biopha.2021.111599] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/18/2021] [Accepted: 03/27/2021] [Indexed: 12/31/2022] Open
Abstract
Coronavirus disease-19 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 virus strains has geographical diversity associated with diverse severity, mortality rate, and response to treatment that were characterized using phylogenetic network analysis of SARS-CoV-2 genomes. Although, there is no explicit and integrative explanation for these variations, the genetic arrangement, and stability of SARS-CoV-2 are basic contributing factors to its virulence and pathogenesis. Hence, understanding these features can be used to predict the future transmission dynamics of SARS-CoV-2 infection, drug development, and vaccine. In this review, we discuss the most recent findings on the mutations in the SARS-CoV-2, which provide valuable information on the genetic diversity of SARS-CoV-2, especially for DNA-based diagnosis, antivirals, and vaccine development for COVID-19.
Collapse
Affiliation(s)
- Elmira Mohammadi
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran; Core Research Facilities, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Shafiee
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kiana Shahzamani
- Isfahan Gastroenterology and Hepatology Research Center (lGHRC), Isfahan University of medical sciences, Isfahan, Iran
| | - Mohammad Mehdi Ranjbar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | - Abbas Alibakhshi
- Molecular Medicine Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahrzad Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Leila Beikmohammadi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Laleh Shariati
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands; Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, 14155-6559 Tehran, Iran
| | - Soodeh Hooshmandi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Behrooz Ataei
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
7
|
Zhou J, Li J, Li Y, Liu H, Qi Y, Wang A. Identification of a mimotope of an infectious bronchitis virus S1 protein. J Vet Sci 2021; 22:e49. [PMID: 34170090 PMCID: PMC8318793 DOI: 10.4142/jvs.2021.22.e49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/14/2020] [Accepted: 10/07/2020] [Indexed: 11/20/2022] Open
Abstract
The S1 protein of the infectious bronchitis virus (IBV) is a major structural protein that induces the production of the virus-neutralization antibodies. The monoclonal antibody against the IBV M41 S1 protein was used as a target for biopanning. After three rounds of biopanning, randomly selected phages bound to the monoclonal antibody. Sequence analysis showed that the dominant sequence was SFYDFEMQGFFI. Indirect competitive enzyme-linked immunosorbent assay showed that SFYDFEMQGFFI is a mimotope of the S1 protein that was predicted by PepSurf. The mimotope may provide information for further structural and functional analyses of the S1 protein.
Collapse
Affiliation(s)
- Jingming Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jianan Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yanghui Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hongliang Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yanhua Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
8
|
Towards Improved Use of Vaccination in the Control of Infectious Bronchitis and Newcastle Disease in Poultry: Understanding the Immunological Mechanisms. Vaccines (Basel) 2021; 9:vaccines9010020. [PMID: 33406695 PMCID: PMC7823560 DOI: 10.3390/vaccines9010020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
Infectious bronchitis (IB) and Newcastle disease (ND) are two important diseases of poultry and have remained a threat to the development of the poultry industry in many parts of the world. The immunology of avian has been well studied and numerous vaccines have been developed against the two viruses. Most of these vaccines are either inactivated vaccines or live attenuated vaccines. Inactivated vaccines induce weak cellular immune responses and require priming with live or other types of vaccines. Advanced technology has been used to produce several types of vaccines that can initiate prime immune responses. However, as a result of rapid genetic variations, the control of these two viral infections through vaccination has remained a challenge. Using various strategies such as combination of live attenuated and inactivated vaccines, development of IB/ND vaccines, use of DNA vaccines and transgenic plant vaccines, the problem is being surmounted. It is hoped that with increasing understanding of the immunological mechanisms in birds that are used in fighting these viruses, a more successful control of the diseases will be achieved. This will go a long way in contributing to global food security and the economic development of many developing countries, given the role of poultry in the attainment of these goals.
Collapse
|
9
|
Ma J, Wang L, Fan Z, Liu S, Wang X, Wang R, Chen J, Xiao X, Yang S, Duan X, Song B, Ma J, Tong C, Yu L, Yu Y, Cui Y. Immunogenicity of multi-epitope vaccines composed of epitopes from Streptococcus dysgalactiae GapC. Res Vet Sci 2020; 136:422-429. [PMID: 33812285 DOI: 10.1016/j.rvsc.2020.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 10/10/2020] [Accepted: 12/27/2020] [Indexed: 11/16/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase C (GapC) of Streptococcus dysgalactiae (S. dysgalactiae) is a highly conserved surface protein that can induce a protective immune response against S. dysgalactiae infection. To investigate the immune response and protective efficacy induced by epitope-vaccines against S. dysgalactiae infection, we constructed epitope-vaccines GTB1, GB1B2, and GTB1B2 using a T cell epitope (GapC63-77, abbreviated as GT) and two B cell epitopes (GapC30-36, abbreviated as GB1, and GapC97-103, abbreviated as GB2), which were identified in GapC1-150 of S. dysgalactiae in tandem by a GSGSGS linker. BALB/c mice were immunized via an intramuscular injection with the epitope vaccines. The levels of the cytokines, IFN-γ, IL-4, and IL-17, secreted by splenic lymphocytes and the antibody levels in the sera of the immunized mice were detected by ELISA. The immunized mice were subsequently challenged with S. dysgalactiae, and the bacterial colonization in the immunized-mouse organs was examined using the plate counting method. The results showed that the level of the cytokines induced by GTB1B2 was lower than that induced by GapC1-150, but higher than that induced by other epitope vaccines. The level of IgG induced by GTB1B2 was lower than that induced by GapC1-150, but higher than the levels induced by other epitope vaccines. The bacterial colonization numbers in the organs of the mice immunized with GTB1B2 were higher those of the mice immunized with GapC1-150, but significantly lower than those from the mice immunized with other epitope-vaccines. Our results demonstrated that the T cell and B cell epitopes in the epitope-vaccines worked synergistically against bacterial challenge. The multi-epitope vaccine, GTB1B2, could induce stronger cellular and humoral immune responses, and provide a better protective effect against S. dysgalactiae infection.
Collapse
Affiliation(s)
- Jun Ma
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Li Wang
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Zhaowei Fan
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Shuo Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xin Wang
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Ran Wang
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jing Chen
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xue Xiao
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Siyu Yang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xuyang Duan
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Baifen Song
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jinzhu Ma
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Chunyu Tong
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Liquan Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yongzhong Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yudong Cui
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China,; College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China..
| |
Collapse
|
10
|
Bande F, Arshad SS, Bejo MH, Omar AR, Moeini H, Khadkodaei S, Wei TS, Keong YS, Abba Y, Anka IA. Development and immunogenic potentials of chitosan-saponin encapsulated DNA vaccine against avian infectious bronchitis coronavirus. Microb Pathog 2020; 149:104560. [PMID: 33068733 PMCID: PMC7556284 DOI: 10.1016/j.micpath.2020.104560] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022]
Abstract
Infectious Bronchitis (IB) is an economically important avian disease that considerably threatens the global poultry industry. This is partly, as a result of its negative consequences on egg production, weight gain as well as mortality rate.The disease is caused by a constantly evolving avian infectious bronchitis virus whose isolates are classified into several serotypes and genotypes that demonstrate little or no cross protection. In order to curb the menace of the disease therefore, broad based vaccines are urgently needed. The aim of this study was to develop a recombinant DNA vaccine candidate for improved protection of avian infectious bronchitis in poultry. Using bioinformatics and molecular cloning procedures, sets of monovalent and bivalent DNA vaccine constructs were developed based on the S1 glycoprotein from classical and variants IBV strains namely, M41 and CR88 respectively. The candidate vaccine was then encapsulated with a chitosan and saponin formulated nanoparticle for enhanced immunogenicity and protective capacity. RT-PCR assay and IFAT were used to confirm the transcriptional and translational expression of the encoded proteins respectively, while ELISA and Flow-cytometry were used to evaluate the immunogenicity of the candidate vaccine following immunization of various SPF chicken groups (A-F). Furthermore, histopathological changes and virus shedding were determined by quantitative realtime PCR assay and lesion scoring procedure respectively following challenge of various subgroups with respective wild-type IBV viruses. Results obtained from this study showed that, groups vaccinated with a bivalent DNA vaccine construct (pBudCR88-S1/M41-S1) had a significant increase in anti-IBV antibodies, CD3+ and CD8+ T-cells responses as compared to non-vaccinated groups. Likewise, the bivalent vaccine candidate significantly decreased the oropharyngeal and cloacal virus shedding (p < 0.05) compared to non-vaccinated control. Chickens immunized with the bivalent vaccine also exhibited milder clinical signs as well as low tracheal and kidney lesion scores following virus challenge when compared to control groups. Collectively, the present study demonstrated that bivalent DNA vaccine co-expressing dual S1 glycoprotein induced strong immune responses capable of protecting chickens against infection with both M41 and CR88 IBV strains. Moreso, it was evident that encapsulation of the vaccine with chitosan-saponin nanoparticle further enhanced immune responses and abrogates the need for multiple booster administration of vaccine. Therefore, the bivalent DNA vaccine could serve as efficient and effective alternative strategy for the control of IB in poultry. DNA vaccine offers a promising advantage for the control of infectious bronchitis in poultry. A bivalent DNA vaccine based on S1-glycoprotein of M41 and CR88 IBV strains were developed and evaluated. Vaccination with IBV S-1 gene-based DNA vaccine lead to improved antibody and T cell responses. Encapsulation of the vaccine with chitosan and Saponin enhances the immune response and abrogated the need for multiple booster administration. The vaccine offered protection to vaccinated chickens as revealed by the reduction in oropharyngeal and cloacal virus shedding as well as reduced tracheal and kidney lesion scores.
Collapse
Affiliation(s)
- Faruku Bande
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Bayero University Kano, PMB 3011, Kano, Nigeria; Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Siti Suri Arshad
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Mohd Hair Bejo
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Vaccine and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Abdul Rahman Omar
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Vaccine and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Hassan Moeini
- Institute of Virology, Technical University of Munich, 81675 Munich, Germany
| | - Saeid Khadkodaei
- Laboratory of Vaccine and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Tan Sheau Wei
- Laboratory of Vaccine and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yeap Swee Keong
- Laboratory of Vaccine and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yusuf Abba
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | | |
Collapse
|
11
|
A Novel Mucosal Adjuvant System for Immunization against Avian Coronavirus Causing Infectious Bronchitis. J Virol 2020; 94:JVI.01016-20. [PMID: 32669327 DOI: 10.1128/jvi.01016-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/06/2020] [Indexed: 01/07/2023] Open
Abstract
Infectious bronchitis (IB) caused by infectious bronchitis virus (IBV) is currently a major threat to chicken health, with multiple outbreaks being reported in the United States over the past decade. Modified live virus (MLV) vaccines used in the field can persist and provide the genetic material needed for recombination and emergence of novel IBV serotypes. Inactivated and subunit vaccines overcome some of the limitations of MLV with no risk of virulence reversion and emergence of new virulent serotypes. However, these vaccines are weakly immunogenic and poorly protective. There is an urgent need to develop more effective vaccines that can elicit a robust, long-lasting immune response. In this study, we evaluate a novel adjuvant system developed from Quil-A and chitosan (QAC) for the intranasal delivery of nucleic acid immunogens to improve protective efficacy. The QAC adjuvant system forms nanocarriers (<100 nm) that efficiently encapsulate nucleic acid cargo, exhibit sustained release of payload, and can stably transfect cells. Encapsulation of plasmid DNA vaccine expressing IBV nucleocapsid (N) protein by the QAC adjuvant system (pQAC-N) enhanced immunogenicity, as evidenced by robust induction of adaptive humoral and cellular immune responses postvaccination and postchallenge. Birds immunized with pQAC-N showed reduced clinical severity and viral shedding postchallenge on par with protection observed with current commercial vaccines without the associated safety concerns. Presented results indicate that the QAC adjuvant system can offer a safer alternative to the use of live vaccines against avian and other emerging coronaviruses.IMPORTANCE According to 2017 U.S. agriculture statistics, the combined value of production and sales from broilers, eggs, turkeys, and chicks was $42.8 billion. Of this number, broiler sales comprised 67% of the industry value, with the production of >50 billion pounds of chicken meat. The economic success of the poultry industry in the United States hinges on the extensive use of vaccines to control infectious bronchitis virus (IBV) and other poultry pathogens. The majority of vaccines currently licensed for poultry health include both modified live vaccine and inactivated pathogens. Despite their proven efficacy, modified live vaccine constructs take time to produce and could revert to virulence, which limits their safety. The significance of our research stems from the development of a safer and potent alternative mucosal vaccine to replace live vaccines against IBV and other emerging coronaviruses.
Collapse
|
12
|
Tizard IR. Vaccination against coronaviruses in domestic animals. Vaccine 2020; 38:5123-5130. [PMID: 32563608 PMCID: PMC7284272 DOI: 10.1016/j.vaccine.2020.06.026] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
The current pandemic of COVID-19 has set off an urgent search for an effective vaccine. This search may well benefit from the experiences of the animal health profession in the development and use of coronavirus vaccines in domestic animal species. These animal vaccines will in no way protect humans against COVID-19 but knowledge of the difficulties encountered in vaccinating animals may help avoid or minimize similar problems arising in humans. Diverse coronaviruses can infect the domestic species from dogs and cats, to cattle and pigs to poultry. Many of these infections are controlled by routine vaccination. Thus, canine coronavirus vaccines are protective in puppies but the disease itself is mild and self-limiting. Feline coronavirus infections may be mild or may result in a lethal immune-mediated disease – feline infectious peritonitis. As a result, vaccination of domestic cats must seek to generate- protective immunity without causing immune-mediated disease. Vaccines against bovine coronavirus are widely employed in cattle where they protect against enteric and respiratory disease in young calves. Two major livestock species suffer from economically significant and severe coronavirus diseases. Thus, pigs may be infected with six different coronaviruses, one of which, porcine epidemic diarrhea, has proven difficult to control despite the development of several innovative vaccines. Porcine epidemic diarrhea virus undergoes frequent genetic changes. Likewise, infectious bronchitis coronavirus causes an economically devastating disease of chickens. It too undergoes frequent genetic shifts and as a result, can only be controlled by extensive and repeated vaccination. Other issues that have been encountered in developing these animal vaccines include a relatively short duration of protective immunity, and a lack of effectiveness of inactivated vaccines. On the other hand, they have been relatively cheap to make and lend themselves to mass vaccination procedures.
Collapse
Affiliation(s)
- Ian R Tizard
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
13
|
Andoh K, Ashikaga K, Suenaga K, Endo S, Yamazaki K. Identification of Novel Linear Epitopes Located in the Infectious Bronchitis Virus Spike S2 Region. Avian Dis 2019; 62:210-217. [PMID: 29944406 DOI: 10.1637/11796-011518-reg.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We identified novel linear epitopes on the infectious bronchitis virus (IBV) spike S2 region. The conformational structure of the IBV spike protein was predicted from a homologous protein, human coronavirus NL63 spike. Although the obtained structure was incomplete, most of the IBV spike protein structure was predicted; the N-terminus of the S1 region could not be predicted due to its variability. In the model, the region located in the proximity of the fusion peptide appeared to be well conserved, and we evaluated the antigenicity of these domains, which are involved in the membrane fusion machinery. Western blotting revealed that IBV TM86 spike residues 686-723 were antigenic. Epitope mapping analysis using synthesized peptides revealed that IBV TM86 spike 669-685 (SNFSTGAFNISLLLTPP), 686-697 (SNPRGRSFIEDL), and 692-703 (SFIEDLLFTSVE) residues were major linear epitopes; two identified epitopes (686-697 and 692-703) were covered by the fusion peptide, and the other epitope (669-685) was adjacent to the fusion peptide. Although the identified epitopes are identically located as the neutralizing epitope in severe acute respiratory syndrome coronavirus, the recombinant protein that includes those epitopes could not elicit neutralizing antibodies against IBV. This is the first report describing IBV spike S2 epitopes located in the proximity of the fusion peptide, and it is suggested that the spike fusion machinery of IBV may differ from that of severe acute respiratory syndrome coronavirus, or, alternatively, IBV may have another mechanism to penetrate the cell membrane.
Collapse
Affiliation(s)
- Kiyohiko Andoh
- A Animal Pharmaceuticals Division, Chemo-Sero-Therapeutic Research Institute, 1-6-1 Okubo, Kita-ku, Kumamoto, Kumamoto 860-8568, Japan
| | - Kanako Ashikaga
- A Animal Pharmaceuticals Division, Chemo-Sero-Therapeutic Research Institute, 1-6-1 Okubo, Kita-ku, Kumamoto, Kumamoto 860-8568, Japan
| | - Kiyotaka Suenaga
- A Animal Pharmaceuticals Division, Chemo-Sero-Therapeutic Research Institute, 1-6-1 Okubo, Kita-ku, Kumamoto, Kumamoto 860-8568, Japan
| | - Shun Endo
- A Animal Pharmaceuticals Division, Chemo-Sero-Therapeutic Research Institute, 1-6-1 Okubo, Kita-ku, Kumamoto, Kumamoto 860-8568, Japan
| | - Kenichi Yamazaki
- A Animal Pharmaceuticals Division, Chemo-Sero-Therapeutic Research Institute, 1-6-1 Okubo, Kita-ku, Kumamoto, Kumamoto 860-8568, Japan
| |
Collapse
|
14
|
Gaikwad SS, Lee HJ, Kim JY, Choi KS. Expression and serological application of recombinant epitope-repeat protein carrying an immunodominant epitope of Newcastle disease virus nucleoprotein. Clin Exp Vaccine Res 2019; 8:27-34. [PMID: 30775348 PMCID: PMC6369128 DOI: 10.7774/cevr.2019.8.1.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/01/2019] [Accepted: 01/07/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose The aim of the present study was to develop a serodiagnostic test for differentiation infected from vaccinated animal (DIVA) strategy accompanying the marker vaccine lacking an immunodominant epitope (IDE) of nucleoprotein of Newcastle disease virus (NDV). Materials and Methods Recombinant epitope-repeat protein (rERP) gene encoding eight repeats of the IDE sequence (ETQFLDLMRAVANSMR) by tetra-glycine linker was synthesized. Recombinant baculovirus carrying the rERP gene was generated to express the rERP in insect cells. Specificity and sensitivity of an indirect enzyme-linked immunosorbent assay (ELISA) employing the rERP was evaluated. Results The rERP with molecular weight of 20 kDa was successfully expressed by the recombinant baculovirus in an insect-baculovirus system. The rERP was antigenically functional as demonstrated by Western blotting. An indirect ELISA employing the rERP was developed and its specificity and sensitivity was determined. The ELISA test allowed discrimination of NDV infected sera from epitope deletion virus vaccinated sera. Conclusion The preliminary results represent rERP ELISA as a promising DIVA diagnostic tool.
Collapse
Affiliation(s)
- Satish S Gaikwad
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Parbhani, India
| | - Hyun-Jeong Lee
- Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon, Korea
| | - Ji-Ye Kim
- Veterinary Drugs and Biologics Division, Animal and Plant Quarantine Agency, Gimcheon, Korea
| | - Kang-Seuk Choi
- Planning and Coordination Division, Animal and Plant Quarantine Agency, Gimcheon, Korea
| |
Collapse
|
15
|
Li J, Helal ZH, Karch CP, Mishra N, Girshick T, Garmendia A, Burkhard P, Khan MI. A self-adjuvanted nanoparticle based vaccine against infectious bronchitis virus. PLoS One 2018; 13:e0203771. [PMID: 30216376 PMCID: PMC6138407 DOI: 10.1371/journal.pone.0203771] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/27/2018] [Indexed: 12/21/2022] Open
Abstract
Infectious bronchitis virus (IBV) affects poultry respiratory, renal and reproductive systems. Currently the efficacy of available live attenuated or killed vaccines against IBV has been challenged. We designed a novel IBV vaccine alternative using a highly innovative platform called Self-Assembling Protein Nanoparticle (SAPN). In this vaccine, B cell epitopes derived from the second heptad repeat (HR2) region of IBV spike proteins were repetitively presented in its native trimeric conformation. In addition, flagellin was co-displayed in the SAPN to achieve a self-adjuvanted effect. Three groups of chickens were immunized at four weeks of age with the vaccine prototype, IBV-Flagellin-SAPN, a negative-control construct Flagellin-SAPN or a buffer control. The immunized chickens were challenged with 5x104.7 EID50 IBV M41 strain. High antibody responses were detected in chickens immunized with IBV-Flagellin-SAPN. In ex vivo proliferation tests, peripheral mononuclear cells (PBMCs) derived from IBV-Flagellin-SAPN immunized chickens had a significantly higher stimulation index than that of PBMCs from chickens receiving Flagellin-SAPN. Chickens immunized with IBV-Flagellin-SAPN had a significant reduction of tracheal virus shedding and lesser tracheal lesion scores than did negative control chickens. The data demonstrated that the IBV-Flagellin-SAPN holds promise as a vaccine for IBV.
Collapse
Affiliation(s)
- Jianping Li
- Department of Pathobiology and Veterinary Science University of Connecticut, Storrs, CT, United States of America
| | - Zeinab H. Helal
- Department of Pathobiology and Veterinary Science University of Connecticut, Storrs, CT, United States of America
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Christopher P. Karch
- The Institute of Material Sciences, University of Connecticut, Storrs, CT, United States of America
| | - Neha Mishra
- Department of Pathobiology and Veterinary Science University of Connecticut, Storrs, CT, United States of America
| | - Theodore Girshick
- Charles River Laboratories, Avian vaccine services, North Franklin, CT, United States of America
| | - Antonio Garmendia
- Department of Pathobiology and Veterinary Science University of Connecticut, Storrs, CT, United States of America
| | - Peter Burkhard
- The Institute of Material Sciences, University of Connecticut, Storrs, CT, United States of America
- Department of Molecular Cell Biology, University of Connecticut, Storrs, CT, United States of America
- Alpha-O-Peptides AG, Riehen, Switzerland
| | - Mazhar I. Khan
- Department of Pathobiology and Veterinary Science University of Connecticut, Storrs, CT, United States of America
- * E-mail:
| |
Collapse
|
16
|
Fan H, Guo JY, Ma SL, Zhang N, An CL. Synthetic p55 tandem DNA vaccine against Pneumocystis carinii in rats. Microbiol Immunol 2017; 60:397-406. [PMID: 27185490 DOI: 10.1111/1348-0421.12386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/26/2016] [Accepted: 05/09/2016] [Indexed: 11/30/2022]
Abstract
Pneumocystis spp. are opportunistic fungal pathogens that are closely associated with severe pneumonia and pulmonary complications in patients with impaired immunity. In this study, the antigenic epitopes of the gene encoding the 55 kDa antigen fragment of Pneumocystis (p55), which may play an important role in Pneumocystis pneumonia, were analyzed. A gene containing tandem variants of the p55 antigen was synthesized and named the tandem antigen gene (TAG). TAG's potential as a DNA vaccine was assessed in immunosuppressed rats. Immunization with p55-TAG DNA vaccine significantly reduced both the pathogen burden and lung-weight to body-weight ratios. Additionally, p55-TAG vaccination in immunosuppressed rats elicited both cell-mediated and humoral immunity.
Collapse
Affiliation(s)
- Hua Fan
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China
| | - Jiu-Ying Guo
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China
| | - Su-Li Ma
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China
| | - Nan Zhang
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China
| | - Chun-Li An
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China
| |
Collapse
|
17
|
Escalona E, Sáez D, Oñate A. Immunogenicity of a Multi-Epitope DNA Vaccine Encoding Epitopes from Cu-Zn Superoxide Dismutase and Open Reading Frames of Brucella abortus in Mice. Front Immunol 2017; 8:125. [PMID: 28232837 PMCID: PMC5298974 DOI: 10.3389/fimmu.2017.00125] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/25/2017] [Indexed: 01/08/2023] Open
Abstract
Brucellosis is a bacterial zoonotic disease affecting several mammalian species that is transmitted to humans by direct or indirect contact with infected animals or their products. In cattle, brucellosis is almost invariably caused by Brucella abortus. Live, attenuated Brucella vaccines are commonly used to prevent illness in cattle, but can cause abortions in pregnant animals. It is, therefore, desirable to design an effective and safer vaccine against Brucella. We have used specific Brucella antigens that induce immunity and protection against B. abortus. A novel recombinant multi-epitope DNA vaccine specific for brucellosis was developed. To design the vaccine construct, we employed bioinformatics tools to predict epitopes present in Cu-Zn superoxide dismutase and in the open reading frames of the genomic island-3 (BAB1_0260, BAB1_0270, BAB1_0273, and BAB1_0278) of Brucella. We successfully designed a multi-epitope DNA plasmid vaccine chimera that encodes and expresses 21 epitopes. This DNA vaccine induced a specific humoral and cellular immune response in BALB/c mice. It induced a typical T-helper 1 response, eliciting production of immunoglobulin G2a and IFN-γ particularly associated with the Th1 cell subset of CD4+ T cells. The production of IL-4, an indicator of Th2 activation, was not detected in splenocytes. Therefore, it is reasonable to suggest that the vaccine induced a predominantly Th1 response. The vaccine induced a statistically significant level of protection in BALB/c mice when challenged with B. abortus 2308. This is the first use of an in silico strategy to a design a multi-epitope DNA vaccine against B. abortus.
Collapse
Affiliation(s)
- Emilia Escalona
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Darwin Sáez
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Angel Oñate
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
18
|
Tan L, Zhang Y, Liu F, Yuan Y, Zhan Y, Sun Y, Qiu X, Meng C, Song C, Ding C. Infectious bronchitis virus poly-epitope-based vaccine protects chickens from acute infection. Vaccine 2016; 34:5209-5216. [PMID: 27665355 DOI: 10.1016/j.vaccine.2016.09.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 10/21/2022]
Abstract
Infectious bronchitis virus (IBV) causes major losses in the poultry industry. The safe and effective vaccine to control IBV spread is imperative. In the present study, we developed IBV S1 glycoprotein poly-epitope-based DNA vaccine pV-S1B+S1T consisting of SH1208 and Holte strain BF2-restricted T cell epitopes and Australian T strain dominant B cell neutralization epitopes. Specific pathogen-free chickens were vaccinated with pV-S1B+S1T and control plasmids twice to elicit strong humoral and cellular immune response, as indicated by viral neutralization titers and results of CD8+ T cell proliferation assays. A lethal dose of IBV SH1208 strain used for protection and challenge experiments at two weeks post-booster immunization following challenge protection and virus shedding reverse transcription quantitative PCR assay, indicated that pV-S1B+S1T protected against IBV and significantly reduced viral excretion. These results demonstrated that the IBV poly-epitope-based vaccine effectively prevents infection and represents a potential IBV vaccine.
Collapse
Affiliation(s)
- Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Yuqiang Zhang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Fang Liu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Yanmei Yuan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Yuan Zhan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Yingjie Sun
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Xusheng Qiu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Chunchun Meng
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Cuiping Song
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| |
Collapse
|
19
|
Prediction and In Silico Identification of Novel B-Cells and T-Cells Epitopes in the S1-Spike Glycoprotein of M41 and CR88 (793/B) Infectious Bronchitis Virus Serotypes for Application in Peptide Vaccines. Adv Bioinformatics 2016; 2016:5484972. [PMID: 27667997 PMCID: PMC5030393 DOI: 10.1155/2016/5484972] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/30/2016] [Accepted: 08/01/2016] [Indexed: 12/31/2022] Open
Abstract
Bioinformatic analysis was used to predict antigenic B-cell and T-cell epitopes within the S1 glycoprotein of M41 and CR88 IBV strains. A conserved linear B-cell epitope peptide, YTSNETTDVTS175–185, was identified in M41 IBV strains while three such epitopes types namely, VSNASPNSGGVD279–290, HPKCNFRPENI328–338, and NETNNAGSVSDCTAGT54–69, were predicted in CR88 IBV strains. Analysis of MHCI binding peptides in M41 IBV strains revealed the presence of 15 antigenic peptides out of which 12 were highly conserved in 96–100% of the total M41 strains analysed. Interestingly three of these peptides, GGPITYKVM208, WFNSLSVSI356, and YLADAGLAI472, relatively had high antigenicity index (>1.0). On the other hand, 11 MHCI binding epitope peptides were identified in CR88 IBV strains. Of these, five peptides were found to be highly conserved with a range between 90% and 97%. However, WFNSLSVSL358, SYNISAASV88, and YNISAASVA89 peptides comparably showed high antigenicity scores (>1.0). Combination of antigenic B-cells and T-cells peptides that are conserved across many strains as approach to evoke humoral and CTL immune response will potentially lead to a broad-based vaccine that could reduce the challenges in using live attenuated vaccine technology in the control of IBV infection in poultry.
Collapse
|
20
|
Interactive mechanism between avian infectious bronchitis S1 protein T cell peptide and avian MHC I molecule. Virus Res 2016; 215:76-83. [DOI: 10.1016/j.virusres.2016.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/27/2016] [Accepted: 02/07/2016] [Indexed: 11/18/2022]
|
21
|
Meunier M, Chemaly M, Dory D. DNA vaccination of poultry: The current status in 2015. Vaccine 2015; 34:202-211. [PMID: 26620840 PMCID: PMC7115526 DOI: 10.1016/j.vaccine.2015.11.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/05/2015] [Accepted: 11/12/2015] [Indexed: 01/13/2023]
Abstract
Poultry DNA vaccination studies are regularly being published since 1993. These studies are mainly, but not only, concerned with vaccination against viruses. The different strategies of improving DNA vaccine efficacies are presented. The fate of the vaccine plasmid, immune properties and other applications are described. Despite the compiling preclinical reports, a poultry DNA vaccine is yet unavailable in the market.
DNA vaccination is a promising alternative strategy for developing new human and animal vaccines. The massive efforts made these past 25 years to increase the immunizing potential of this kind of vaccine are still ongoing. A relatively small number of studies concerning poultry have been published. Even though there is a need for new poultry vaccines, five parameters must nevertheless be taken into account for their development: the vaccine has to be very effective, safe, inexpensive, suitable for mass vaccination and able to induce immune responses in the presence of maternal antibodies (when appropriate). DNA vaccination should meet these requirements. This review describes studies in this field performed exclusively on birds (chickens, ducks and turkeys). No evaluations of avian DNA vaccine efficacy performed on mice as preliminary tests have been taken into consideration. The review first describes the state of the art for DNA vaccination in poultry: pathogens targeted, plasmids used and different routes of vaccine administration. Second, it presents strategies designed to improve DNA vaccine efficacy: influence of the route of administration, plasmid dose and age of birds on their first inoculation; increasing plasmid uptake by host cells; addition of immunomodulators; optimization of plasmid backbones and codon usage; association of vaccine antigens and finally, heterologous prime-boost regimens. The final part will indicate additional properties of DNA vaccines in poultry: fate of the plasmids upon inoculation, immunological considerations and the use of DNA vaccines for purposes other than preventing infectious diseases.
Collapse
Affiliation(s)
- Marine Meunier
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan/Plouzané Laboratory, Viral Genetics and Biosafety Unit, Ploufragan, France; French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan/Plouzané Laboratory, Unit of Hygiene and Quality of Poultry and Pork Products, Ploufragan, France
| | - Marianne Chemaly
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan/Plouzané Laboratory, Unit of Hygiene and Quality of Poultry and Pork Products, Ploufragan, France
| | - Daniel Dory
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan/Plouzané Laboratory, Viral Genetics and Biosafety Unit, Ploufragan, France.
| |
Collapse
|
22
|
Tan L, Liao Y, Fan J, Zhang Y, Mao X, Sun Y, Song C, Qiu X, Meng C, Ding C. Prediction and identification of novel IBV S1 protein derived CTL epitopes in chicken. Vaccine 2015; 34:380-6. [PMID: 26620841 DOI: 10.1016/j.vaccine.2015.11.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/30/2015] [Accepted: 11/12/2015] [Indexed: 01/22/2023]
Abstract
Infectious bronchitis virus (IBV) is a major pathogen common in the poultry industry. Broad cytotoxic T lymphocyte (CTL) response against IBV is one of the crucial factors that help to control viral replication. Spike glycoproteins on the surface of the IBV virion harbor major T cell epitopes. In this study, based on the peptide-binding motifs of chicken MHC I molecules for the BF2*4, BF2*12, BF2*15, and BF2*19 haplotypes, potential CTL epitopes were predicted using S1 proteins from different IBV strains. Twenty-one peptides were predicted to be potential CTL epitopes; they were manually synthesized and the CTL responses to them tested in vitro. Spleen lymphocytes were collected from specific-pathogen free (SPF) chicken that had been immunized with the S1 protein expression plasmid, pV-S1, and were stimulated by the synthesized peptides. IFN-γ secretion and CD8(+) T cell proliferation in chickens were tested by ELISpot array and flow cytometry, respectively. Four epitopes (P8SRIQTATDP, P9SRNATGSQP, P18GAYAVVNV, and P19SRIQTATQP) were identified to stimulate CD8(+) T cell proliferation and IFN-γ secretion, indicating their efficacy as CTL epitopes in chicken. Poly-CTL-epitope DNA vaccine (pV-S1T) was constructed by inserting nucleotide sequences encoding the P8, P9, P18, and P19 CTL epitopes into the pVAX1 vector. Chickens were vaccinated with either pV-S1, pV-S1T, or pVAX1 and the protection efficacy was analyzed, revealing that ninety percent of chickens immunized with pV-S1T were protected after challenge with 10(6) ELD50 of IBV, demonstrating that these novel CTL epitopes were effective against IBV challenge. This study provides a new method to screen virus CTL epitopes in chicken and to develop poly-CTL-epitope DNA vaccines.
Collapse
Affiliation(s)
- Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Jin Fan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Yuqiang Zhang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Xiang Mao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Yingjie Sun
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Cuiping Song
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Xusheng Qiu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Chunchun Meng
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| |
Collapse
|
23
|
Song X, Xu L, Yan R, Huang X, Li X. Construction of Eimeria tenella multi-epitope DNA vaccines and their protective efficacies against experimental infection. Vet Immunol Immunopathol 2015; 166:79-87. [DOI: 10.1016/j.vetimm.2015.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 04/13/2015] [Accepted: 05/26/2015] [Indexed: 01/12/2023]
|
24
|
Khalili S, Rahbar MR, Dezfulian MH, Jahangiri A. In silico analyses of Wilms׳ tumor protein to designing a novel multi-epitope DNA vaccine against cancer. J Theor Biol 2015; 379:66-78. [DOI: 10.1016/j.jtbi.2015.04.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 02/25/2015] [Accepted: 04/20/2015] [Indexed: 02/06/2023]
|
25
|
Xu Q, Ma X, Wang F, Li H, Zhao X. Evaluation of a multi-epitope subunit vaccine against avian leukosis virus subgroup J in chickens. Virus Res 2015. [PMID: 26196055 DOI: 10.1016/j.virusres.2015.06.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The intricate sequence and antigenic variability of avian leukosis virus subgroup J (ALV-J) have led to unprecedented difficulties in the development of vaccines. Much experimental evidence demonstrates that ALV-J mutants have caused immune evasion and pose a challenge for traditional efforts to develop effective vaccines. To investigate the potential of a multi-epitope vaccination strategy to prevent chickens against ALV-J infections, a recombinant chimeric multi-epitope protein X (rCMEPX) containing both immunodominant B and T epitope concentrated domains selected from the major structural protein of ALV-J using bioinformatics approach was expressed in Escherichia coli Rosetta (DE3). Its immunogenicity and protective efficacy was studied in chickens. The results showed that rCMEPX could elicit neutralizing antibodies and cellular responses, and antibodies induced by rCMEPX could specifically recognize host cell naturally expressed ALV-J proteins, which indicated that the rCMEPX is a good immunogen. Challenge experiments showed 80% chickens that received rCMEPX were well protected against ALV-J challenge. This is the first report of a chimeric multi-epitope protein as a potential immunogen against ALV-J.
Collapse
Affiliation(s)
- Qingqing Xu
- Department of Preventive Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China
| | - Xingjiang Ma
- Department of Preventive Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China
| | - Fangkun Wang
- Department of Preventive Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China
| | - Hongmei Li
- Department of Preventive Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China
| | - Xiaomin Zhao
- Department of Preventive Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China.
| |
Collapse
|
26
|
Aravind S, Kamble NM, Gaikwad SS, Shukla SK, Saravanan R, Dey S, Mohan CM. Protective effects of recombinant glycoprotein D based prime boost approach against duck enteritis virus in mice model. Microb Pathog 2015; 88:78-86. [PMID: 26188265 DOI: 10.1016/j.micpath.2015.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 07/11/2015] [Accepted: 07/13/2015] [Indexed: 11/24/2022]
Abstract
Duck virus enteritis, also known as duck plague, is an acute herpes viral infection of ducks caused by duck enteritis virus (DEV). The method of repeated immunization with a live attenuated vaccine has been used for the prevention and control of duck enteritis virus (DEV). However, the incidence of the disease in vaccinated flocks and latency reactivation are the major constraints in the present vaccination programme. The immunogenicity and protective efficacy afforded by intramuscular inoculation of plasmid DNA encoding DEV glycoprotein D (pCDNA-gD) followed by DEV gD expressed in Saccharomyces cerevisia (rgD) was assessed in a murine model. Compared with mice inoculated with DNA (pCDNA-gD) or protein (rgD) only, mice inoculated with the combination of gD DNA and protein had enhanced ELISA antibody titers to DEV and had accelerated clearance of virus following challenge infection. Furthermore, the highest levels of lymphocyte proliferation response, IL-4, IL-12 and IFN-γ production were induced following priming with the DNA vaccine and boosting with the rgD protein. For instance, the specially designed recombinant DEV vector vaccine would be the best choice to use in ducks. It offers an excellent solution to the low vaccination coverage rate in ducks. We expect that the application of this novel vaccine in the near future will greatly decrease the virus load in the environment and reduce outbreaks of DEV in ducks.
Collapse
Affiliation(s)
- S Aravind
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India.
| | - Nitin Machindra Kamble
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Satish S Gaikwad
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Sanjeev Kumar Shukla
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - R Saravanan
- Immunology Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Sohini Dey
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - C Madhan Mohan
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| |
Collapse
|
27
|
Bande F, Arshad SS, Hair Bejo M, Moeini H, Omar AR. Progress and challenges toward the development of vaccines against avian infectious bronchitis. J Immunol Res 2015; 2015:424860. [PMID: 25954763 PMCID: PMC4411447 DOI: 10.1155/2015/424860] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 03/20/2015] [Accepted: 03/23/2015] [Indexed: 12/03/2022] Open
Abstract
Avian infectious bronchitis (IB) is a widely distributed poultry disease that has huge economic impact on poultry industry. The continuous emergence of new IBV genotypes and lack of cross protection among different IBV genotypes have been an important challenge. Although live attenuated IB vaccines remarkably induce potent immune response, the potential risk of reversion to virulence, neutralization by the maternal antibodies, and recombination and mutation events are important concern on their usage. On the other hand, inactivated vaccines induce a weaker immune response and may require multiple dosing and/or the use of adjuvants that probably have potential safety risks and increased economic burdens. Consequently, alternative IB vaccines are widely sought. Recent advances in recombinant DNA technology have resulted in experimental IB vaccines that show promise in antibody and T-cells responses, comparable to live attenuated vaccines. Recombinant DNA vaccines have also been enhanced to target multiple serotypes and their efficacy has been improved using delivery vectors, nanoadjuvants, and in ovo vaccination approaches. Although most recombinant IB DNA vaccines are yet to be licensed, it is expected that these types of vaccines may hold sway as future vaccines for inducing a cross protection against multiple IBV serotypes.
Collapse
Affiliation(s)
- Faruku Bande
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
- Department of Veterinary Services, Ministry of Animal Health and Fisheries Development, PMB 2109, Usman Faruk Secretariat, Sokoto 840221, Sokoto State, Nigeria
| | - Siti Suri Arshad
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Mohd Hair Bejo
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
- Laboratory of Vaccine and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Hassan Moeini
- Department of Virus-Associated Tumours (F100), German Cancer Research Centre, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Abdul Rahman Omar
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
28
|
Lin X, Chen S, Xue X, Lu L, Zhu S, Li W, Chen X, Zhong X, Jiang P, Sename TS, Zheng Y, Zhang L. Chimerically fused antigen rich of overlapped epitopes from latent membrane protein 2 (LMP2) of Epstein-Barr virus as a potential vaccine and diagnostic agent. Cell Mol Immunol 2015; 13:492-501. [PMID: 25864917 DOI: 10.1038/cmi.2015.29] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) is prevalent throughout the world and is associated with several malignant diseases in humans. Latent membrane protein 2 (LMP2) of EBV plays a crucial role in the pathogenesis of EBV-associated tumors; therefore, LMP2 has been considered to be a potential immunodiagnostic and immunotherapeutic target. A multi-epitope-based antigen is a promising option for therapeutic vaccines and diagnoses of such malignancies. In this study, we systematically screened cytotoxic T lymphocyte (CTL), helper T cell (Th) and B-cell epitopes within EBV-LMP2 using bioinformatics. Based on the screen, two peptides rich in overlapping epitopes of both T cells and B cells were selected to construct a plasmid containing the sequence for a chimeric multi-epitope protein referred to as EBV-LMP2m, which is composed of LMP2aa195∼232 and LMP2aa419∼436. The EBV-LMP2m protein was expressed in E. coli BL21 (DE3) after prokaryotic codon optimization. Inoculation of the purified chimeric antigen in BALB/c mice induced not only high levels of specific IgG in the serum and secretory IgA in the vaginal mucus but also a specific CTL response. By using purified EBV-LMP2m as an antigen, the presence of specific IgG in the serum specimens of 202 nasopharyngeal carcinoma (NPC) patients was effectively detected with 52.84% sensitivity and 95.40% specificity, which represents an improvement over the traditional detection method based on VCA-IgA (60.53% sensitivity and 76.86% specificity). The above results indicate that EBV-LMP2m may be used not only as a potential target antigen for EBV-associated tumors but also a diagnostic agent for NPC patients.
Collapse
Affiliation(s)
- Xiaoyun Lin
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Shao Chen
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Xue
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Lijun Lu
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Shanli Zhu
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Wenshu Li
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Xiangmin Chen
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Xiaozhi Zhong
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Pengfei Jiang
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Torsoo Sophia Sename
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Yi Zheng
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Lifang Zhang
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
29
|
Zhao C, Sun Y, Zhao Y, Wang S, Yu T, Du F, Yang XF, Luo E. Immunogenicity of a multi-epitope DNA vaccine against hantavirus. Hum Vaccin Immunother 2014; 8:208-15. [DOI: 10.4161/hv.18389] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
30
|
Shah M, Umar S, Iqbal M, Rehman F, Qadri I, He N. RETRACTED ARTICLE: Recent developments in DNA vaccination approaches against poultry coccidiosis and its future endeavours. WORLD POULTRY SCI J 2014; 70:315-328. [DOI: 10.1017/s0043933914000336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/10/2013] [Indexed: 11/06/2022]
Affiliation(s)
- M.A.A. Shah
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Department of Path biology, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - S. Umar
- Department of Path biology, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - M.F. Iqbal
- Department of Path biology, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - F. Rehman
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - I. Qadri
- King Fahd Medical Research Center, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - N. He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
31
|
Expression of Avian Infectious Bronchitis Virus Multi-Epitope Based Peptide EpiC inLactococcus lactisfor Oral Immunization of Chickens. Biosci Biotechnol Biochem 2014; 76:1871-6. [DOI: 10.1271/bbb.120326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Lactococcus lactisAnchoring Avian Infectious Bronchitis Virus Multi-Epitope Peptide EpiC Induced Specific Immune Responses in Chickens. Biosci Biotechnol Biochem 2014; 77:1499-504. [DOI: 10.1271/bbb.130157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
33
|
Zhang J, Chen XW, Tong TZ, Ye Y, Liao M, Fan HY. BacMam virus-based surface display of the infectious bronchitis virus (IBV) S1 glycoprotein confers strong protection against virulent IBV challenge in chickens. Vaccine 2013; 32:664-70. [PMID: 24342247 DOI: 10.1016/j.vaccine.2013.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 11/27/2013] [Accepted: 12/02/2013] [Indexed: 12/01/2022]
Abstract
Avian infectious bronchitis virus (IBV) is associated with production inefficiencies in domestic fowl, and causes massive economic losses to the poultry industry worldwide. Progress has been made in designing novel and efficient candidate vaccines to control IBV infection. BacMam virus, a modified baculovirus mediating transgene expression under the control of a mammalian promoter, has emerged as a versatile and safe vector during vaccine development. In previous work, we generated the BacMam virus Ac-CMV-S1, which expressed the S1 glycoprotein of IBV-M41. We showed that Ac-CMV-S1 induced excellent cellular immunity, but did not confer adequate protection in chickens compared with the conventional inactivated vaccine. In the current study, we generated an improved BacMam virus, BV-Dual-S1. This virus displayed the S1 glycoprotein on the baculovirus envelope, and was capable of expressing it in mammalian cells. BV-Dual-S1 elicited stronger humoral and cell-mediated immune responses, and showed greater capacity for induction of cytotoxic T lymphocyte responses, compared with Ac-CMV-S1 in specific pathogen-free chickens. A significant difference was not observed for protection rates between chickens immunized with BV-Dual-S1 (83%) or inactivated vaccine (89%) following challenge with virulent IBV-M41. Our findings show that the protective efficacy of BV-Dual-S1 could be significantly enhanced by baculovirus display technology. BacMam virus-based surface display strategies could serve as effective tools in designing vaccines against IB and other infectious diseases.
Collapse
Affiliation(s)
- Jie Zhang
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Wei Chen
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Tie-Zhu Tong
- Huizhou Entry-Exit Inspection and Quarantine Bureau, Huizhou 516001, China
| | - Yu Ye
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ming Liao
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Hui-Ying Fan
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
34
|
Han Z, Zhao F, Shao Y, Liu X, Kong X, Song Y, Liu S. Fine level epitope mapping and conservation analysis of two novel linear B-cell epitopes of the avian infectious bronchitis coronavirus nucleocapsid protein. Virus Res 2012; 171:54-64. [PMID: 23123213 PMCID: PMC7114416 DOI: 10.1016/j.virusres.2012.10.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 10/22/2012] [Accepted: 10/23/2012] [Indexed: 12/17/2022]
Abstract
The nucleocapsid (N) protein of the infectious bronchitis virus (IBV) may play an essential role in the replication and translation of viral RNA. The N protein can also induce high titers of cross-reactive antibodies and cell-mediated immunity, which protects chickens from acute infection. In this study, we generated two monoclonal antibodies (mAbs), designated as 6D10 and 4F10, which were directed against the N protein of IBV using the whole viral particles as immunogens. Both of the mAbs do not cross react with Newcastle disease virus (NDV), infectious laryngotracheitis virus (ILTV) and subtype H9 avian influenza virus (AIV). After screening a phage display peptide library and peptide scanning, we identified two linear B-cell epitopes that were recognized by the mAbs 6D10 and 4F10, which corresponded to the amino acid sequences (242)FGPRTK(247) and (195)DLIARAAKI(203), respectively, in the IBV N protein. Alignments of amino acid sequences from a large number of IBV isolates indicated that the two epitopes, especially (242)FGPRTK(247), were well conserved among IBV strains. This conclusion was further confirmed by the relationships of 18 heterologous sequences to the 2 mAbs. The novel mAbs and the epitopes identified will be useful for developing diagnostic assays for IBV infections.
Collapse
Affiliation(s)
- Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
35
|
Short amyloid-β immunogens with spacer-enhanced immunogenicity without junctional epitopes for Alzheimer’s disease immunotherapy. Neuroreport 2012; 23:879-84. [DOI: 10.1097/wnr.0b013e328358a044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
36
|
Oral and nasal DNA vaccines delivered by attenuated Salmonella enterica serovar Typhimurium induce a protective immune response against infectious bronchitis in chickens. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1041-5. [PMID: 21593235 DOI: 10.1128/cvi.00034-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several studies have reported that intramuscular injection of DNA vaccines against infectious bronchitis virus (IBV) induces protective immune responses. In the present study, we developed oral and nasal DNA vaccines that carried the S1 gene and N gene of IBV delivered by attenuated Salmonella enterica serovar Typhimurium strains SL/pV-S1 and SL/pV-N, respectively. The safety and stability of recombinant Salmonella vaccine were evaluated. Following oral and nasal administration to chickens, the serum and mucosal samples were collected and antibodies against IBV were measured. Chickens were then challenged with IBV strain M41 by the nasal-ocular route 3 weeks after boosting. The results showed that oral and nasal immunization with coadministered SL/pV-S1 and SL/pV-N elicited significant IBV-specific humoral and mucosal immune responses and conferred protective efficacy against IBV challenge higher than that in chickens immunized only with SL/pV-S1. The current study shows that novel DNA vaccines delivered by attenuated S. Typhimurium may be promising candidates for the prevention of infectious bronchitis (IB).These vaccines are efficacious, easily produced economically, and able to be delivered orally and nasally rather than injected. Coadministration of SL/pV-S1 and SL/pV-N may represent an effective mucosal vaccination regimen.
Collapse
|
37
|
Zeshan B, Mushtaq MH, Wang X, Li W, Jiang P. Protective immune responses induced by in ovo immunization with recombinant adenoviruses expressing spike (S1) glycoprotein of infectious bronchitis virus fused/co-administered with granulocyte-macrophage colony stimulating factor. Vet Microbiol 2010; 148:8-17. [PMID: 20850939 DOI: 10.1016/j.vetmic.2010.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Revised: 07/29/2010] [Accepted: 08/06/2010] [Indexed: 11/25/2022]
Abstract
Infectious bronchitis virus (IBV) causes tremendous economic losses associated with production inefficiencies and mortality in poultry industry worldwide. In the present report, the recombinant adenoviruses expressing chicken granulocyte-macrophage colony stimulating factor (GM-CSF) and S1 gene of nephropathogenic IBV were constructed and characterized. Then, the immunological efficacy and protection against homologous IBV challenge were assessed in specific pathogen free (SPF) chickens. The results showed that the chickens vaccinated in ovo with rAd-S1, rAd-GM-S1 (GM-CSF fused with S1 using glycine linkers) and rAd-GM-CSF plus rAd-S1 (co-administered) developed specific anti-IBV HI antibodies. Moreover, the fusion of the GM-CSF markedly increased spleen cell proliferation and IFN-γ production while mild increased in IL-4 production, which demonstrated the enhancement of cell-mediated immune responses. Following challenge with IBV, the chickens in the group vaccinated with rAd-S1 fused or co-administered with GM-CSF had fewer nephropathic lesions and showed 100% protection as compared to that of rAd-S1 alone which showed 70% protection. It indicated that the single dose in ovo vaccination of the GM-CSF fused or co-administered with S1 of IBV could enhance significantly the humoral, cellular immune responses and provide complete protection against nephropathogenic IBV challenge. This finding may provide basic information for effective in ovo vaccines design against IBV.
Collapse
Affiliation(s)
- Basit Zeshan
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | |
Collapse
|
38
|
Abstract
The use of vaccines is the main approach to control of the economically important poultry viral respiratory diseases infectious laryngotracheitis (ILT), avian metapneumovirus (aMPV) infections and infectious bronchitis (IB). This paper appraises the current methods of vaccine control in the light of the nature of each virus and epidemiological factors associated with each disease. Infectious laryngotracheitis virus (ILTV) exists as a single type with a wide range of disease severity. It is a serious disease in certain regions of the world. Recent work has distinguished molecular differences between vaccine and field strains and vaccine virus can be a cause of disease. Vaccines have remained unaltered for many years but new ones are being developed to counter vaccine side effects and reversion and reactivation of latent virus. Avian metapneumoviruses, the cause of turkey rhinotracheitis and respiratory disease in chickens exists as 4 subtypes, A, B, C and D. A and B are widespread and vaccines work well provided that accurate doses are given. Newer vaccine developments are designed to eliminate reversion and possibly counter the appearance of newer field strains which may break through established vaccine coverage. IB presents the biggest problem of the three. Being an unstable RNA virus, part of the viral genome that codes for the S1 spike gene can undergo mutation and recombination so that important antigenic variants can appear irregularly which may evade existing vaccine protection. While conventional vaccines work well against homologous types, new strategies are needed to counter this instability. Molecular approaches involving tailoring viruses to suit field challenges are in progress. However, the simple use of two genetically different vaccines to protect against a wide range of heterologous types is now a widespread practice that is very effective. None of the three diseases described can claim to be satisfactorily controlled and it remains to be seen whether the newer generations of vaccines will be more efficacious and cost effective. The importance of constant surveillance is emphasised and the testing of novel vaccines cannot be achieved without the use of vaccine-challenge experiments in poultry.
Collapse
Affiliation(s)
- Richard C Jones
- School of Veterinary Science, University of Liverpool, Neston, South Wirral, England, UK.
| |
Collapse
|
39
|
Yu D, Han Z, Xu J, Shao Y, Li H, Kong X, Liu S. A Novel B-Cell Epitope of Avian Infectious Bronchitis Virus N Protein. Viral Immunol 2010; 23:189-99. [DOI: 10.1089/vim.2009.0094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Dan Yu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Jia Xu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yuhao Shao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Huixin Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Xiangang Kong
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| |
Collapse
|
40
|
Guo Z, Wang H, Yang T, Wang X, Lu D, Li Y, Zhang Y. Priming with a DNA vaccine and boosting with an inactivated vaccine enhance the immune response against infectious bronchitis virus. J Virol Methods 2010; 167:84-9. [PMID: 20307574 PMCID: PMC7112948 DOI: 10.1016/j.jviromet.2010.03.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 03/08/2010] [Accepted: 03/11/2010] [Indexed: 11/25/2022]
Abstract
The methods of repeated immunization with inactivated vaccines have been used widely to increase antibody protection against infectious bronchitis virus (IBV). However, compared with DNA vaccines, these methods usually induce poor cellular responses. In the present study, specific pathogen-free (SPF) chickens were immunized intramuscularly with a DNA vaccine carrying the main IBV structural genes (pVAX1-S1, pVAX1-M, and pVAX1-N, respectively) and boosted with the IBV M41 strain inactivated vaccine to assess whether such a new strategy could enhance the immune responses against IBV. The protection efficacy of the DNA vaccine carrying different structural genes for priming was evaluated further. The chickens were immunized primely on day 7 and boosted 2 weeks later. After that, distribution of the DNA vaccine in vivo, the percentage of CD4+CD3+ and CD8+CD3+ subgroups of peripheral blood T-lymphocytes, and the specific IgG and virus neutralizing antibodies were measured. Chickens were then challenged by the nasal-ocular route with the IBV M41 strain 4 weeks after booster immunization. The results demonstrated that priming with a DNA vaccine encoding nucleocapsid protein (pVAX1-N) and boosting with the inactivated IBV vaccine led to the dramatic augmentation of humoral and cellular responses, and provided up to 86.7% rate of immune protection, providing an effective approach to protect chickens from IBV.
Collapse
Affiliation(s)
- Zicheng Guo
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Groot AS, Cohen T, Ardito M, Moise L, Martin B, Berzofsky JA. Use of Bioinformatics to Predict MHC Ligands and T-Cell Epitopes. IMMUNOLOGY OF INFECTION 2010. [DOI: 10.1016/s0580-9517(10)37003-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|