1
|
Kanduri M, Subhash S, Putino R, Mahale S, Kanduri C. IER3: exploring its dual function as an oncogene and tumor suppressor. Cancer Gene Ther 2025; 32:450-463. [PMID: 40090972 PMCID: PMC11976266 DOI: 10.1038/s41417-025-00891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/10/2025] [Accepted: 03/07/2025] [Indexed: 03/19/2025]
Abstract
The IER3 gene has a complex role in cancer biology, acting either as a tumor suppressor or an oncogene, depending on the cancer type. This duality underscores the complexity and importance of molecular pathways in modulating cancer behavior. Despite its significance in cancer development, there is a dearth of studies elucidating the exact mechanisms underlying IER3's involvement in modulating cancer behavior. Here, utilizing cervical carcinoma and neuroblastoma (NB) cell lines as model systems we characterized the pathways that mediate the functional switch between the oncogenic and tumor suppressor roles of IER3. In HeLa cells, IER3 expression promotes an oncogenic program that includes immediate early response pathway genes such as EGR2, FOS, and JUN. However, in NB cells, IER3 suppresses the EGR2-dependent oncogenic program. This differential regulation of EGR2 by IER3 involves epigenetic modulation of the EGR2 promoter. IER3 dependent tumor suppressor pathway in NB cells relies on ADAM19 gene. Thus, our findings uncover the molecular pathways that dictate the context-dependent roles of IER3 in cancer, providing insights into its dual functionality in different cancer types.
Collapse
Affiliation(s)
- Meena Kanduri
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Santhilal Subhash
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jammu, India
| | - Rossana Putino
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sagar Mahale
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Wu S, Zhu H, Wu Y, Wang C, Duan X, Xu T. Molecular mechanisms of long noncoding RNAs associated with cervical cancer radiosensitivity. Front Genet 2023; 13:1093549. [PMID: 36685972 PMCID: PMC9846343 DOI: 10.3389/fgene.2022.1093549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Despite advances in cervical cancer screening and human papilloma virus (HPV) vaccines, cervical cancer remains a global health burden. The standard treatment of cervical cancer includes surgery, radiation therapy, and chemotherapy. Radiotherapy (RT) is the primary treatment for advanced-stage disease. However, due to radioresistance, most patients in the advanced stage have an adverse outcome. Recent studies have shown that long noncoding RNAs (lncRNAs) participate in the regulation of cancer radiosensitivity by regulating DNA damage repair, apoptosis, cancer stem cells (CSCs), and epithelial-mesenchymal transition (EMT). In this review, we summarize the molecular mechanisms of long noncoding RNAs in cervical cancer and radiosensitivity, hoping to provide a theoretical basis and a new molecular target for the cervical cancer RT in the clinic.
Collapse
Affiliation(s)
| | | | | | | | | | - Tianmin Xu
- Department of Obstetrics and Gynecology, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Koumangoye R. The role of Cl - and K + efflux in NLRP3 inflammasome and innate immune response activation. Am J Physiol Cell Physiol 2022; 322:C645-C652. [PMID: 35171697 DOI: 10.1152/ajpcell.00421.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inflammation is part of innate immunity and is a natural response of the body to bacteria, virus, any other pathogen infections, or to damaged tissues. However, too much inflammation or chronic inflammation contributes to a wide variety of diseases such as inflammatory bowel disease, cancer, type 2 diabetes, heart disease, or autoimmune disease such as rheumatoid arthritis. Recent studies underscored the critical role of K+ and Cl- efflux in the activation of the inflammasome. The NLRP3 inflammasome is a multiprotein complex that mediates the production of the proinflammatory cytokines IL-1β and IL-18 and initiates the inflammatory cell death or pyroptosis. The NLRP3 inflammasome can be activated by multiple stimuli such as extracellular ATP, microbial toxins, ROS, mitochondria DNA or particulate matter. Although the precise mechanisms of NLRP3 activation and regulation by these diverse agonists remain unclear, multiple reports indicate that all NLRP3 agonists ultimately lead to a drop in intracellular concentration of potassium (K+ efflux) and chloride (Cl- efflux). The WNK-SPAK/OSR1-[N]KCC pathway plays a critical role maintaining K+ and Cl- ions concentration in the cell. Recent advances indicate that the WNK-SPAK-[N]KCC pathway play a role in the activation of the innate immune response. This review highlights recent discoveries detailing how ion transport regulates innate immune cell response to inflammatory stimuli.
Collapse
Affiliation(s)
- Rainelli Koumangoye
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
4
|
Luo Y, Jin H, Kim JH, Bae J. Guanylate-binding proteins induce apoptosis of leukemia cells by regulating MCL-1 and BAK. Oncogenesis 2021; 10:54. [PMID: 34294680 PMCID: PMC8298518 DOI: 10.1038/s41389-021-00341-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 11/08/2022] Open
Abstract
Interferon-inducible guanylate-binding proteins (GBPs) are well-known for mediating host-defense mechanisms against cellular pathogens. Emerging evidence suggests that GBPs are also implicated in tumorigenesis; however, their underlying molecular mechanism is still unknown. In this study, we identified that GBP1 and GBP2 interact with MCL-1, the key prosurvival member of the BCL-2 family, via its BH3 domain. GBPs induce caspase-dependent apoptosis in chronic myeloid leukemia (CML) and acute myeloid leukemia (AML) cells, where the proapoptotic BCL-2 member, BAK, is an indispensable mediator. In particular, GBP2 completely inhibited the MCL-1-mediated promotion of the survival of CML cells through competitive inhibition, resulting in BAK liberation from MCL-1. Concurrently, GBP2 dramatically upregulates BAK expression via its inhibition of the PI3K/AKT pathway. Moreover, paclitaxel upregulates GBP2 expression, and paclitaxel-induced apoptotic activity was distinctively compromised by knockout of GBP2 in CML cells. Bioinformatics analyses of leukemia databases revealed that transcripts of GBPs were generally downregulated in leukemia patients and that GBPs were favorable prognosis markers. Thus, these findings provide molecular evidence of GBPs as apoptosis-inducing proteins of leukemia cells and suggest that GBPs are attractive targets for the development of chemotherapeutics.
Collapse
Affiliation(s)
- Yongyang Luo
- School of Pharmacy, Chung-Ang University, Seoul, 06974, Korea
| | - Hanyong Jin
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea
| | - Je Hyeong Kim
- Division of Pulmonology, Department of Internal Medicine, Korea University Ansan Hospital, Ansan, 15355, Korea.
| | - Jeehyeon Bae
- School of Pharmacy, Chung-Ang University, Seoul, 06974, Korea.
| |
Collapse
|
5
|
Senichkin VV, Streletskaia AY, Zhivotovsky B, Kopeina GS. Molecular Comprehension of Mcl-1: From Gene Structure to Cancer Therapy. Trends Cell Biol 2019; 29:549-562. [DOI: 10.1016/j.tcb.2019.03.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 01/19/2023]
|
6
|
Tsafou K, Katschnig AM, Radic-Sarikas B, Mutz CN, Iljin K, Schwentner R, Kauer MO, Mühlbacher K, Aryee DN, Westergaard D, Haapa-Paananen S, Fey V, Superti-Furga G, Toretsky J, Brunak S, Kovar H. Identifying the druggable interactome of EWS-FLI1 reveals MCL-1 dependent differential sensitivities of Ewing sarcoma cells to apoptosis inducers. Oncotarget 2018; 9:31018-31031. [PMID: 30123424 PMCID: PMC6089552 DOI: 10.18632/oncotarget.25760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/22/2018] [Indexed: 12/26/2022] Open
Abstract
Ewing sarcoma (EwS) is an aggressive pediatric bone cancer in need of more effective therapies than currently available. Most research into novel targeted therapeutic approaches is focused on the fusion oncogene EWSR1-FLI1, which is the genetic hallmark of this disease. In this study, a broad range of 3,325 experimental compounds, among them FDA approved drugs and natural products, were screened for their effect on EwS cell viability depending on EWS-FLI1 expression. In a network-based approach we integrated the results from drug perturbation screens and RNA sequencing, comparing EWS-FLI1-high (normal expression) with EWS-FLI1-low (knockdown) conditions, revealing novel interactions between compounds and EWS-FLI1 associated biological processes. The top candidate list of druggable EWS-FLI1 targets included genes involved in translation, histone modification, microtubule structure, topoisomerase activity as well as apoptosis regulation. We confirmed our in silico results using viability and apoptosis assays, underlining the applicability of our integrative and systemic approach. We identified differential sensitivities of Ewing sarcoma cells to BCL-2 family inhibitors dependent on the EWS-FLI1 regulome including altered MCL-1 expression and subcellular localization. This study facilitates the selection of effective targeted approaches for future combinatorial therapies of patients suffering from Ewing sarcoma.
Collapse
Affiliation(s)
- Kalliopi Tsafou
- Disease Systems Biology, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Current address: Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anna Maria Katschnig
- Children’s Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Branka Radic-Sarikas
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Children’s Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Cornelia Noëlle Mutz
- Children’s Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Kristiina Iljin
- Medical Biotechnology, VTT Technical Research Centre of Finland, Espoo, Finland
| | - Raphaela Schwentner
- Children’s Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Maximilian O. Kauer
- Children’s Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Karin Mühlbacher
- Children’s Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Dave N.T. Aryee
- Children’s Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - David Westergaard
- Disease Systems Biology, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Vidal Fey
- Medical Biotechnology, VTT Technical Research Centre of Finland, Espoo, Finland
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jeffrey Toretsky
- Department of Oncology, Georgetown University, Medical Center, Washington, DC, USA
| | - Søren Brunak
- Disease Systems Biology, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Heinrich Kovar
- Children’s Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Jin H, Won M, Shin E, Kim HM, Lee K, Bae J. EGR2 is a gonadotropin-induced survival factor that controls the expression of IER3 in ovarian granulosa cells. Biochem Biophys Res Commun 2017; 482:877-882. [PMID: 27890615 DOI: 10.1016/j.bbrc.2016.11.127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 11/23/2016] [Indexed: 01/14/2023]
Abstract
Pituitary gonadotropins are key hormones that orchestrate the growth and development of ovarian follicles. However, limited information is available on intra-ovarian factors that mediate the actions of gonadotropins. In this study, we identified that the early growth response 2 gene (EGR2) is a gonadotropin-inducible gene in granulosa cells of rats and humans. Analysis of consensus EGR-binding elements (EBEs) showed that the immediate early response 3 gene (IER3) is a novel transcriptional target gene of EGR2 as confirmed by the luciferase assay, electrophoretic mobility-shift assay (EMSA), chromatin immunoprecipitation (ChIP), and western blot analysis. Overexpression of EGR2 promoted survival of KGN human granulosa-derived cells in which IER3 acts as a mediator; knockdown of EGR2 induced death in KGN cells. Additionally, EGR2 was found to regulate the expression of myeloid cell leukemia 1 (MCL-1), which belongs to the BCL-2 family of proteins regulating cell survival. Thus, this study identified a novel signaling axis, comprised of gonadotropins-EGR2-IER3, which is important for the survival of granulosa cells during folliculogenesis.
Collapse
Affiliation(s)
- Hanyong Jin
- School of Pharmacy, Chung-Ang University, Seoul 06974, South Korea
| | - Miae Won
- Department of Pharmacy, CHA University, Seongnam 13488, South Korea
| | - Eunkyoung Shin
- School of Pharmacy, Chung-Ang University, Seoul 06974, South Korea
| | - Hong-Man Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Jeehyeon Bae
- School of Pharmacy, Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|
8
|
Jin H, Lee K, Kim YH, Oh HK, Maeng YI, Kim TH, Suh DS, Bae J. Scaffold protein FHL2 facilitates MDM2-mediated degradation of IER3 to regulate proliferation of cervical cancer cells. Oncogene 2016; 35:5106-5118. [PMID: 26973248 PMCID: PMC5399145 DOI: 10.1038/onc.2016.54] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 12/29/2015] [Accepted: 02/08/2016] [Indexed: 12/15/2022]
Abstract
The expression of immediate early response 3 (IER3), a protein with a short half-life, is rapidly induced by various cellular stimuli. We recently reported that IER3 induces the apoptosis of cervical cancer cells and that its expression is downregulated in patients with cervical cancer. However, the molecular mechanism involved in the rapid degradation of IER3 remains unknown. Here, we demonstrate that MDM2 is an E3 ligase that interacts with IER3 and promotes its ubiquitination, followed by proteasomal degradation. Polyubiquitination of the conserved lysine 60 of IER3 is essential for its degradation. In addition, four and a half LIM domains protein 2 (FHL2) binds to both IER3 and MDM2, allowing for efficient MDM2-mediated IER3 degradation by facilitating an association between MDM2 and IER3. Moreover, IER3 induces cell cycle arrest in cervical cancer cells and its activity is further enhanced in cells in which FHL2 or MDM2 was silenced, thereby preventing IER3 degradation. The E6 and E7 oncoproteins of human papilloma virus 18 regulated IER3 expression. FHL2 expression was significantly higher in the squamous epithelium of cervical carcinoma tissues than in non-cancerous cervical tissues, whereas cervical carcinoma expression of IER3 was downregulated in this region. Thus, we determined the molecular mechanism responsible for IER3 degradation, involving a ternary complex of IER3, MDM2 and FHL2, which may contribute to cervical tumor growth. Furthermore, we demonstrated that FHL2 serves as a scaffold for E3 ligase and its substrate during the ubiquitination reaction, a function that has not been previously reported for this protein.
Collapse
Affiliation(s)
- H Jin
- School of Pharmacy, Chung-Ang University, Seoul, Korea
| | - K Lee
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Y-H Kim
- Department of Microbiology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - H K Oh
- Department of Pathology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Y-I Maeng
- Department of Pathology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - T-H Kim
- Department of Biochemistry, Chosun University School of Medicine, Gwangju, Korea
| | - D-S Suh
- Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - J Bae
- School of Pharmacy, Chung-Ang University, Seoul, Korea
| |
Collapse
|
9
|
Jin H, Suh DS, Kim TH, Yeom JH, Lee K, Bae J. IER3 is a crucial mediator of TAp73β-induced apoptosis in cervical cancer and confers etoposide sensitivity. Sci Rep 2015; 5:8367. [PMID: 25666857 PMCID: PMC4322356 DOI: 10.1038/srep08367] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 01/09/2015] [Indexed: 12/14/2022] Open
Abstract
Infection with high-risk human papillomaviruses (HPVs) causes cervical cancer. E6 oncoprotein, an HPV gene product, inactivates the major gatekeeper p53. In contrast, its isoform, TAp73β, has become increasingly important, as it is resistant to E6. However, the intracellular signaling mechanisms that account for TAp73β tumor suppressor activity in cervix are poorly understood. Here, we identified that IER3 is a novel target gene of TAp73β. In particular, TAp73β exclusively transactivated IER3 in cervical cancer cells, whereas p53 and TAp63 failed to do. IER3 efficiently induced apoptosis, and its knockdown promoted survival of HeLa cells. In addition, TAp73β-induced cell death, but not p53-induced cell death, was inhibited upon IER3 silencing. Moreover, etoposide, a DNA-damaging chemotherapeutics, upregulated TAp73β and IER3 in a c-Abl tyrosine kinase-dependent manner, and the etoposide chemosensitivity of HeLa cells was largely determined by TAp73β-induced IER3. Of interest, cervical carcinomas from patients express no observable levels of two proteins. Thus, our findings suggest that IER3 is a putative tumor suppressor in the cervix, and the c-Ab1/p73β/IER3 axis is a novel and crucial signaling pathway that confers etoposide chemosensitivity. Therefore, TAp73β and IER3 induction would be a valuable checkpoint for successful therapeutic intervention of cervical carcinoma patients.
Collapse
Affiliation(s)
- Hanyong Jin
- Department of Pharmacy, CHA University, Seongnam, 463-836, Korea
| | - Dae-Shik Suh
- Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine
| | - Tae-Hyoung Kim
- Department of Biochemistry, Chosun University School of Medicine, Gwangju 501-759, Korea
| | - Ji-Hyun Yeom
- Department of Life Science, Chung-Ang University, Seoul, 156-756, Korea
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, 156-756, Korea
| | - Jeehyeon Bae
- School of Pharmacy, Chung-Ang University, Seoul, 156-756, Korea
| |
Collapse
|
10
|
Garcia MN, Grasso D, Lopez-Millan MB, Hamidi T, Loncle C, Tomasini R, Lomberk G, Porteu F, Urrutia R, Iovanna JL. IER3 supports KRASG12D-dependent pancreatic cancer development by sustaining ERK1/2 phosphorylation. J Clin Invest 2014; 124:4709-22. [PMID: 25250570 DOI: 10.1172/jci76037] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 08/19/2014] [Indexed: 12/23/2022] Open
Abstract
Activating mutations in the KRAS oncogene are prevalent in pancreatic ductal adenocarcinoma (PDAC). We previously demonstrated that pancreatic intraepithelial neoplasia (PanIN) formation, which precedes malignant transformation, associates with the expression of immediate early response 3 (Ier3) as part of a prooncogenic transcriptional pathway. Here, we evaluated the role of IER3 in PanIN formation and PDAC development. In human pancreatic cancer cells, IER3 expression efficiently sustained ERK1/2 phosphorylation by inhibiting phosphatase PP2A activity. Moreover, IER3 enhanced KrasG12D-dependent oncogenesis in the pancreas, as both PanIN and PDAC development were delayed in IER3-deficient KrasG12D mice. IER3 expression was discrete in healthy acinar cells, becoming highly prominent in peritumoral acini, and particularly high in acinar ductal metaplasia (ADM) and PanIN lesions, where IER3 colocalized with phosphorylated ERK1/2. However, IER3 was absent in undifferentiated PDAC, which suggests that the IER3-dependent pathway is an early event in pancreatic tumorigenesis. IER3 expression was induced by both mild and severe pancreatitis, which promoted PanIN formation and progression to PDAC in KrasG12D mice. In IER3-deficient mice, pancreatitis abolished KrasG12D-induced proliferation, which suggests that pancreatitis enhances the oncogenic effect of KRAS through induction of IER3 expression. Together, our data indicate that IER3 supports KRASG12D-associated oncogenesis in the pancreas by sustaining ERK1/2 phosphorylation via phosphatase PP2A inhibition.
Collapse
|
11
|
Aiello FB, Graciotti L, Procopio AD, Keller JR, Durum SK. Stemness of T cells and the hematopoietic stem cells: fate, memory, niche, cytokines. Cytokine Growth Factor Rev 2013; 24:485-501. [PMID: 24231048 PMCID: PMC6390295 DOI: 10.1016/j.cytogfr.2013.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stem cells are able to generate both cells that differentiate and cells that remain undifferentiated but potentially have the same developmental program. The prolonged duration of the protective immune memory for infectious diseases such as polio, small pox, and measles, suggested that memory T cells may have stem cell properties. Understanding the molecular basis for the life-long persistence of memory T cells may be useful to project targeted therapies for immune deficiencies and infectious diseases and to formulate vaccines. In the last decade evidence from different laboratories shows that memory T cells may share self-renewal pathways with bone marrow hematopoietic stem cells. In stem cells the intrinsic self-renewal activity, which depends on gene expression, is known to be modulated by extrinsic signals from the environment that may be tissue specific. These extrinsic signals for stemness of memory T cells include cytokines such as IL-7 and IL-15 and there are other cytokine signals for maintaining the cytokine signature (TH1, TH2, etc.) of memory T cells. Intrinsic and extrinsic pathways that might be common to bone marrow hematopoietic stem cells and memory T lymphocytes are discussed and related to self-renewal functions.
Collapse
Affiliation(s)
- Francesca B Aiello
- Laboratory of Molecular Immunoregulation, Frederick, MD 21702, USA; Department of Medicine and Aging Sciences, University of Chieti-Pescara, 66013 Chieti, Italy.
| | | | | | | | | |
Collapse
|
12
|
Wu MX, Ustyugova IV, Han L, Akilov OE. Immediate early response gene X-1, a potential prognostic biomarker in cancers. Expert Opin Ther Targets 2013; 17:593-606. [PMID: 23379921 DOI: 10.1517/14728222.2013.768234] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The immediate early response gene X-1 (IEX-1) plays a pivotal role in the regulation of cell apoptosis, proliferation, differentiation and metabolism. Deregulation of IEX-1 expression has been confirmed in multiple cancers in humans, in association with either poor or better prognosis depending on the type and progression stages of the cancer. AREAS COVERED This review summarizes clinical studies of altered IEX-1 expression in ovarian, pancreatic, blood, breast and colorectal cancers, lymphoma and myeloma. The authors also outline the current understandings of the complex functions of IEX-1 gained from studies with animal models and tumor cell lines so as to help us comprehend the significance of the clinical findings. EXPERT OPINION IEX-1 holds great promise to be a valuable biomarker, either alone or in combination with other genes, for monitoring progression of some cancers. IEX-1 expression is highly sensitive to environmental cues and distinct between normal and cancer cells. However, use of IEX-1 as a biomarker remains a significant challenge because too little is understood about the mechanism underlying the diverse activities of IEX-1 and a standardized clinical assay for IEX-1 detection and validation of clinical results across different studies are still critically lacking.
Collapse
Affiliation(s)
- Mei X Wu
- Massachusetts General Hospital and Harvard Medical School, Wellman Center for Photomedicine, Department of Dermatology , Edwards 222, 50 Blossom Street, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
13
|
Beverly LJ. Regulation of anti-apoptotic BCL2-proteins by non-canonical interactions: the next step forward or two steps back? J Cell Biochem 2012; 113:3-12. [PMID: 21898539 DOI: 10.1002/jcb.23335] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
All aspects of cellular biology affect the process of regulated cell death, or apoptosis, and disruption of this process is a causative event in many diseases. Therefore, a comprehensive understanding of all pathways that regulate apoptosis would increase our knowledge of basic cellular functions, as well as the etiologies of many diseases. In turn, we may be able to use this knowledge to better treat patients with diseases, including cancer. Although the basic signaling pathway that regulates apoptosis has been known for over 10 years, we still have much to learn about the upstream signaling components that can directly regulate the core apoptosis machinery. The focus of this review will be to direct attention to non-canonical regulators of the BCL2-family of proteins, especially our void of understanding of such interactions, and the controversy that surrounds some such interactions.
Collapse
Affiliation(s)
- Levi J Beverly
- Division of Hematology and Oncology, Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
14
|
Arlt A, Schäfer H. Role of the immediate early response 3 (IER3) gene in cellular stress response, inflammation and tumorigenesis. Eur J Cell Biol 2010; 90:545-52. [PMID: 21112119 DOI: 10.1016/j.ejcb.2010.10.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/01/2010] [Accepted: 10/04/2010] [Indexed: 10/18/2022] Open
Abstract
The expression of the early response gene immediate early response 3 (IER3), formerly known as IEX-1, is induced by a great variety of stimuli, such as growth factors, cytokines, ionizing radiation, viral infection and other types of cellular stress. Being of a rather unique protein structure not sharing any similarity to other vertebrate proteins, IER3 plays a complex and to some extent contradictory role in cell cycle control and apoptosis. As outlined in this review, these effects of IER3 relate to an interference with certain signalling pathways, in particular NF-κB, MAPK/ERK and PI3K/Akt. In addition to numerous functional data relying on cell culture based studies, transgenic and knock-out mouse models revealed an involvement of IER3 expression in immune functions and in the physiology of the cardiovascular system. Deficiency of IER3 expression in mice results in an aberrant immune regulation and enhanced inflammation, in an alteration of blood pressure control and hypertension or in an impaired genomic stability. A number of patient related studies revealed an involvement of IER3 in tumorigenesis in a cell-type dependent but not yet understood manner. Future studies should establish the potential of IER3 as a new predictive marker and as a molecular target in human diseases such as cancer, inflammatory diseases or hypertension.
Collapse
Affiliation(s)
- Alexander Arlt
- Department of Internal Medicine I, Laboratory of Molecular Gastroenterology & Hepatology, UKSH-Campus Kiel, Arnold-Heller-Straße 3, Bldg. 6, 24105 Kiel, Germany
| | | |
Collapse
|
15
|
Pawlikowska P, Leray I, de Laval B, Guihard S, Kumar R, Rosselli F, Porteu F. ATM-dependent expression of IEX-1 controls nuclear accumulation of Mcl-1 and the DNA damage response. Cell Death Differ 2010; 17:1739-50. [PMID: 20467439 DOI: 10.1038/cdd.2010.56] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The early-response gene product IEX-1 (also known as IER3) was recently found to interact with the anti-apoptotic Bcl-2 family member, myeloid cell leukemia-1 (Mcl-1). In this study we show that this interaction specifically and timely controls the accumulation of Mcl-1 in the nucleus in response to DNA damage. The IEX-1 protein is rapidly induced by γ-irradiation, genotoxic agents or replication inhibitors, in a way dependent on ataxia telangiectasia mutated (ATM) activity and is necessary for Mcl-1 nuclear translocation. Conversely, IEX-1 protein proteasomal degradation triggers the return of Mcl-1 to the cytosol. IEX-1 and Mcl-1 are integral components of the DNA damage response. Loss of IEX-1 or Mcl-1 leads to genomic instability and increased sensitivity to genotoxic and replicative stresses. The two proteins cooperate to maintain Chk1 activation and G2 checkpoint arrest. Mcl-1 nuclear translocation may foster checkpoint and improve the tumor resistance to DNA damage-based cancer therapies. Deciphering the pathways involved in IEX-1 degradation should lead to the discovery of new therapeutic targets to increase sensitivity of tumor cells to chemotherapy.
Collapse
|