1
|
Acosta FM, Pacelli S, Rathbone CR. Diabetes diminishes muscle precursor cell-mediated microvascular angiogenesis. PLoS One 2023; 18:e0289477. [PMID: 37540699 PMCID: PMC10403078 DOI: 10.1371/journal.pone.0289477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/19/2023] [Indexed: 08/06/2023] Open
Abstract
The skeletal muscles of Type II diabetic (T2D) patients can be characterized by a reduced vessel density, corresponding to deficiencies in microvascular angiogenesis. Interestingly, T2D also inhibits the function of many myogenic cells resident within skeletal muscle, including satellite cells, which are well-known for the role they play in maintaining homeostasis. The current study was undertaken to gain a better understanding of the mechanisms whereby satellite cell progeny, muscle precursor cells (MPCs), influence microvascular angiogenesis. Network growth and the expression of genes associated with angiogenesis were reduced when microvessels were treated with conditioned media generated by proliferating MPCs isolated from diabetic, as compared to control rat skeletal muscle, a phenomenon that was also observed when myoblasts from control or diabetic human skeletal muscle were used. When only exosomes derived from diabetic or control MPCs were used to treat microvessels, no differences in microvascular growth were observed. An evaluation of the angiogenesis factors in control and diabetic MPCs revealed differences in Leptin, vascular endothelial growth factor (VEGF), IL1-β, interleukin 10, and IP-10, and an evaluation of the MPC secretome revealed differences in interleukin 6, MCP-1, VEGF, and interleukin 4 exist. Angiogenesis was also reduced in tissue-engineered skeletal muscles (TE-SkM) containing microvessels when they were generated from MPCs isolated from diabetic as compared to control skeletal muscle. Lastly, the secretome of injured control, but not diabetic, TE-SkM was able to increase VEGF and increase microvascular angiogenesis. This comprehensive analysis of the interaction between MPCs and microvessels in the context of diabetes points to an area for alleviating the deleterious effects of diabetes on skeletal muscle.
Collapse
Affiliation(s)
- Francisca M. Acosta
- Department of Biomedical and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX, United States of America
- UTSA-UTHSCSA Joint Graduate Program in Biomedical Engineering, San Antonio, TX, United States of America
| | - Settimio Pacelli
- Department of Biomedical and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX, United States of America
| | - Christopher R. Rathbone
- Department of Biomedical and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX, United States of America
- UTSA-UTHSCSA Joint Graduate Program in Biomedical Engineering, San Antonio, TX, United States of America
- Institute of Regenerative Medicine, University of Texas at San Antonio, San Antonio, TX, United States of America
| |
Collapse
|
2
|
Mengeste AM, Rustan AC, Lund J. Skeletal muscle energy metabolism in obesity. Obesity (Silver Spring) 2021; 29:1582-1595. [PMID: 34464025 DOI: 10.1002/oby.23227] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 01/22/2023]
Abstract
Comparing energy metabolism in human skeletal muscle and primary skeletal muscle cells in obesity, while focusing on glucose and fatty acid metabolism, shows many common changes. Insulin-mediated glucose uptake in skeletal muscle and primary myotubes is decreased by obesity, whereas differences in basal glucose metabolism are inconsistent among studies. With respect to fatty acid metabolism, there is an increased uptake and storage of fatty acids and a reduced complete lipolysis, suggesting alterations in lipid turnover. In addition, fatty acid oxidation is decreased, probably at the level of complete oxidation, as β -oxidation may be enhanced in obesity, which indicates mitochondrial dysfunction. Metabolic changes in skeletal muscle with obesity promote metabolic inflexibility, ectopic lipid accumulation, and formation of toxic lipid intermediates. Skeletal muscle also acts as an endocrine organ, secreting myokines that participate in interorgan cross talk. This review highlights interventions and some possible targets for treatment through action on skeletal muscle energy metabolism. Effects of exercise in vivo on obesity have been compared with simulation of endurance exercise in vitro on myotubes (electrical pulse stimulation). Possible pharmaceutical targets, including signaling pathways and drug candidates that could modify lipid storage and turnover or increase mitochondrial function or cellular energy expenditure through adaptive thermogenic mechanisms, are discussed.
Collapse
Affiliation(s)
- Abel M Mengeste
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Arild C Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Jenny Lund
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Aas V, Thoresen GH, Rustan AC, Lund J. Substrate oxidation in primary human skeletal muscle cells is influenced by donor age. Cell Tissue Res 2020; 382:599-608. [PMID: 32897419 PMCID: PMC7683494 DOI: 10.1007/s00441-020-03275-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 08/07/2020] [Indexed: 12/21/2022]
Abstract
Primary human myotubes represent an alternative system to intact skeletal muscle for the study of human diseases related to changes in muscle energy metabolism. This work aimed to study if fatty acid and glucose metabolism in human myotubes in vitro were related to muscle of origin, donor gender, age, or body mass index (BMI). Myotubes from a total of 82 donors were established from three different skeletal muscles, i.e., musculus vastus lateralis, musculus obliquus internus abdominis, and musculi interspinales, and cellular energy metabolism was evaluated. Multiple linear regression analyses showed that donor age had a significant effect on glucose and oleic acid oxidation after correcting for gender, BMI, and muscle of origin. Donor BMI was the only significant contributor to cellular oleic acid uptake, whereas cellular glucose uptake did not rely on any of the variables examined. Despite the effect of age on substrate oxidation, cellular mRNA expression of pyruvate dehydrogenase kinase 4 (PDK4) and peroxisome proliferator–activated receptor gamma coactivator 1 alpha (PPARGC1A) did not correlate with donor age. In conclusion, donor age significantly impacts substrate oxidation in cultured human myotubes, whereas donor BMI affects cellular oleic acid uptake.
Collapse
Affiliation(s)
- Vigdis Aas
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - G Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway.,Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Arild C Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| | - Jenny Lund
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway.
| |
Collapse
|
4
|
Gaster M. The diabetic phenotype is preserved in myotubes established from type 2 diabetic subjects: a critical appraisal. APMIS 2018; 127:3-26. [DOI: 10.1111/apm.12908] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/05/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Michael Gaster
- Laboratory for Molecular Physiology Department of Pathology and Department of Endocrinology Odense University Hospital Odense Denmark
| |
Collapse
|
5
|
Covington JD, Myland CK, Rustan AC, Ravussin E, Smith SR, Bajpeyi S. Effect of serial cell passaging in the retention of fiber type and mitochondrial content in primary human myotubes. Obesity (Silver Spring) 2015; 23:2414-20. [PMID: 26538189 PMCID: PMC4701579 DOI: 10.1002/oby.21192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 04/30/2015] [Accepted: 05/18/2015] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The purpose of the study was to determine the effects of passaging on retention of donor phenotypic characteristics in primary human myotubes. METHODS Primary muscle cultures and serial passaged myotubes from physically active, sedentary lean, and individuals with type 2 diabetes were established. Maximal ATP synthesis capacity (ATPmax) and resting ATP flux (ATPase) in vivo were measured by (31) P magnetic resonance spectroscopy, type-I fibers and intramyocelluar lipid (IMCL) in vastus lateralis tissue were determined using immunohistochemistry techniques, and oxidative phosphorylation complexes (OXPHOS) were measured by Western immunoblotting. Similar in vitro measures for lipid and type-I fibers were made in myotubes, along with mitochondrial content measured by MitoTracker. RESULTS Passage 4 and 5 measures for myotubes correlated positively with in vivo measurements for percent type-I fibers (P4: R(2) = 0.39, p = 0.02; P5: R(2) = 0.48, p = 0.01), ATPmax (P4: R(2) = 0.30, p = 0.03; P5: R(2) = 0.22, p = 0.05), and OXPHOS (P4: R(2) = 0.44, p = 0.04; P5: R(2) = 0.59, p = 0.006). No correlations were observed for IMCL. However, passage 4 measures for myotubes correlated with passage 5 measures for percent type-I fibers (R(2) = 0.49, p = 0.01), IMCL (R(2) = 0.80, p < 0.001), and mitochondrial content (R(2) = 0.26, p = 0.03). CONCLUSIONS Myotubes through the first two passages following immunopurification (referred to as passage 4 and 5) reflect the mitochondrial and type-I fiber content in vivo phenotype of the donor.
Collapse
Affiliation(s)
- Jeffrey D. Covington
- Pennington Biomedical Research Center, Laboratory of Skeletal Muscle Physiology, 6400 Perkins Road, Baton Rouge, LA 70808
- Louisiana State University Health Sciences Center, School of Medicine, 433 Bolivar St, New Orleans, LA 70112
| | - Cassandra K. Myland
- Pennington Biomedical Research Center, Laboratory of Skeletal Muscle Physiology, 6400 Perkins Road, Baton Rouge, LA 70808
| | - Arild C. Rustan
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Eric Ravussin
- Pennington Biomedical Research Center, Laboratory of Skeletal Muscle Physiology, 6400 Perkins Road, Baton Rouge, LA 70808
| | - Steven R. Smith
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Sanford-Burnham Medical Research Institute, 2566 Lee Rd, Winter Park, FL 32789
| | - Sudip Bajpeyi
- Pennington Biomedical Research Center, Laboratory of Skeletal Muscle Physiology, 6400 Perkins Road, Baton Rouge, LA 70808
- Universtiy of Texas at El Paso, Department of Kinesiology, 500 University Ave, El Paso, TX, 79968
| |
Collapse
|
6
|
Miyazaki T, Honda A, Ikegami T, Iwamoto J, Monma T, Hirayama T, Saito Y, Yamashita K, Matsuzaki Y. Simultaneous quantification of salivary 3-hydroxybutyrate, 3-hydroxyisobutyrate, 3-hydroxy-3-methylbutyrate, and 2-hydroxybutyrate as possible markers of amino acid and fatty acid catabolic pathways by LC-ESI-MS/MS. SPRINGERPLUS 2015; 4:494. [PMID: 26389019 PMCID: PMC4571036 DOI: 10.1186/s40064-015-1304-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/02/2015] [Indexed: 01/09/2023]
Abstract
We have developed a highly sensitive and specific method for quantification of salivary 3-hydroxybutyrate (3HB), 3-hydroxyisobutyrate (3HIB), 3-hydroxy-3-methylbutyrate (3HMB) and 2-hydroxybutyrate (2HB), which could be new non-invasive biomarkers for catabolic pathways of fatty acids/ketogenic amino acids, valine, leucine, and methionine/threonine/α-ketobutyrate, respectively. The four hydroxybutyrates (3HB, 3HIB, 3HMB, and 2HB) were extracted from 5 µl of saliva, converted to 2-pyridylmethyl (2PM) ester derivatives, and measured by liquid chromatography–tandem mass spectrometry in positive electrospray ionization mode. [13C4]3HB was used as an internal standard. The detection limits for the 2PM esters were <1 pg (7.9–9.6 fmol) on-column (signal-to-noise ratio = 3). Reproducibilities and recoveries of the hydroxybutyrates were validated according to one-way layout and polynomial equation, respectively. The variances between sample preparations and between measurements were calculated to be 0.45–5.28 and 0.54–3.45 %, respectively. Experiments performed using 5 µl of saliva spiked with 3.8–154.4 pmol of the four hydroxybutyrates gave recoveries of 98.5 to 108.8 %, with a mean recovery of 104.1 %. In vitro experiments in hepatocytes or skeletal muscle cells showed that addition of palmitic acid, valine, leucine or α-ketobutyrate to culture medium markedly increased the targeted hydroxybutyrate concentrations. The salivary concentration of each targeted hydroxybutyrate was positively correlated with that in serum, and the salivary levels were elevated in patients with liver cirrhosis, which is characterized by upregulated catabolism of lipids and amino acids. The proposed method is useful for quantification of salivary 3HB, 3HIB, 3HMB, and 2HB for monitoring of catabolic activities of amino acids and fatty acids.
Collapse
Affiliation(s)
- Teruo Miyazaki
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ami, Japan
| | - Akira Honda
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ami, Japan ; Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1, Chuo, Ami, Inashiki, Ibaraki 300-0395 Japan
| | - Tadashi Ikegami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1, Chuo, Ami, Inashiki, Ibaraki 300-0395 Japan
| | - Junichi Iwamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1, Chuo, Ami, Inashiki, Ibaraki 300-0395 Japan
| | - Tadakuni Monma
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1, Chuo, Ami, Inashiki, Ibaraki 300-0395 Japan
| | - Takeshi Hirayama
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1, Chuo, Ami, Inashiki, Ibaraki 300-0395 Japan
| | - Yoshifumi Saito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1, Chuo, Ami, Inashiki, Ibaraki 300-0395 Japan
| | - Kouwa Yamashita
- Laboratory of Analytical Chemistry, Department of Kampo Pharmacy, Yokohama University of Pharmacy, Yokohama, Kanagawa Japan
| | - Yasushi Matsuzaki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1, Chuo, Ami, Inashiki, Ibaraki 300-0395 Japan
| |
Collapse
|
7
|
Sparks LM, Bosma M, Brouwers B, van de Weijer T, Bilet L, Schaart G, Moonen-Kornips E, Eichmann TO, Lass A, Hesselink MK, Schrauwen P. Reduced incorporation of fatty acids into triacylglycerol in myotubes from obese individuals with type 2 diabetes. Diabetes 2014; 63:1583-1593. [PMID: 24487026 PMCID: PMC4023412 DOI: 10.2337/db13-1123] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Altered skeletal muscle lipid metabolism is a hallmark feature of type 2 diabetes (T2D). We investigated muscle lipid turnover in T2D versus BMI-matched control subjects (controls) and examined whether putative in vivo differences would be preserved in the myotubes. Male obese T2D individuals (n = 6) and BMI-matched controls (n = 6) underwent a hyperinsulinemic-euglycemic clamp, VO2max test, dual-energy X-ray absorptiometry scan, underwater weighing, and muscle biopsy of the vastus lateralis. (14)C-palmitate and (14)C-oleate oxidation rates and incorporation into lipids were measured in muscle tissue as well as in primary myotubes. Palmitate oxidation (controls: 0.99 ± 0.17 nmol/mg protein; T2D: 0.53 ± 0.07 nmol/mg protein; P = 0.03) and incorporation of fatty acids (FAs) into triacylglycerol (TAG) (controls: 0.45 ± 0.13 nmol/mg protein; T2D: 0.11 ± 0.02 nmol/mg protein; P = 0.047) were significantly reduced in muscle homogenates of T2D. These reductions were not retained for palmitate oxidation in primary myotubes (P = 0.38); however, incorporation of FAs into TAG was lower in T2D (P = 0.03 for oleate and P = 0.11 for palmitate), with a strong correlation of TAG incorporation between muscle tissue and primary myotubes (r = 0.848, P = 0.008). The data indicate that the ability to incorporate FAs into TAG is an intrinsic feature of human muscle cells that is reduced in individuals with T2D.
Collapse
Affiliation(s)
- Lauren M. Sparks
- Department of Human Biology, NUTRIM—School for Nutrition, Toxicology and Metabolism, Departments of Human Biology, Maastricht University Medical Center, Maastricht, the Netherlands
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL
| | - Madeleen Bosma
- Department of Human Biology, NUTRIM—School for Nutrition, Toxicology and Metabolism, Departments of Human Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Bram Brouwers
- Department of Human Biology, NUTRIM—School for Nutrition, Toxicology and Metabolism, Departments of Human Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Tineke van de Weijer
- Department of Human Biology, NUTRIM—School for Nutrition, Toxicology and Metabolism, Departments of Human Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Lena Bilet
- Department of Human Biology, NUTRIM—School for Nutrition, Toxicology and Metabolism, Departments of Human Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Gert Schaart
- Department of Human Movement Sciences, NUTRIM—School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Esther Moonen-Kornips
- Department of Human Biology, NUTRIM—School for Nutrition, Toxicology and Metabolism, Departments of Human Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Matthijs K.C. Hesselink
- Department of Human Movement Sciences, NUTRIM—School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Patrick Schrauwen
- Department of Human Biology, NUTRIM—School for Nutrition, Toxicology and Metabolism, Departments of Human Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
8
|
Abdallah BM, Beck-Nielsen H, Gaster M. FA1 Induces Pro-Inflammatory and Anti-Adipogenic Pathways/Markers in Human Myotubes Established from Lean, Obese, and Type 2 Diabetic Subjects but Not Insulin Resistance. Front Endocrinol (Lausanne) 2013; 4:45. [PMID: 23577002 PMCID: PMC3617402 DOI: 10.3389/fendo.2013.00045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 03/22/2013] [Indexed: 01/04/2023] Open
Abstract
AIMS Delta like 1/fetal antigen 1 (Dlk1/FA1) is a protein secreted by hormone producing cells in adult human and mice that is known to inhibit adipogenesis. Recent studies demonstrated the role of Dlk1/FA1 in inducing insulin resistance in mice. To investigate the involvement of circulating Dlk1/FA1 in insulin resistance and type 2 diabetes in human subjects, we studied the effects of chronic FA1 on the intermediary metabolism in myotubes established from lean, obese, and type 2 diabetic (T2D) subjects. METHODS Myotube cultures were established from lean and obese control subjects, and obese T2D subjects and treated with soluble FA1 for 4 days supplemented with/without palmitate (PA). Lipid- and glucose metabolism were studied with labeled precursors while quantitative expression of genes was analyzed using real-time PCR. RESULTS Diabetic myotubes express significantly reduced insulin stimulated glucose metabolism compared to lean myotubes and a significantly decreased basal PA oxidation. Chronic FA1 exposure did not affect the intermediary metabolism in myotubes. Insulin sensitivity of glucose and lipid metabolism was not affected by chronic FA1 exposure in myotubes established from lean, obese, and T2D subjects. Instead, chronic FA1 exposure induced pro-inflammatory cytokines expression (IL-6 and CCL2) in association with reducing adipogenic markers (ADD1, AP2, CD36, and PPARg2) in myotubes. Consistent with this observation, addition of FA1 to cultured myotubes was show to significantly inhibit their differentiation into adipocyte. CONCLUSION Our results exclude direct effects of FA1 on glucose and lipid metabolism in cultured myotubes established from lean, obese, and T2D subjects. Therefore, the pathogenesis of FA1-induced IR might mainly be mediated via the FA1-induced stimulation of pro-inflammatory cytokines, which on turn inhibit adipogenesis in human myotubes.
Collapse
Affiliation(s)
- Basem M. Abdallah
- Molecular Endocrinology Laboratory (KMEB), Odense University Hospital, University of Southern DenmarkOdense, Denmark
- *Correspondence: Basem M. Abdallah, Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, Winslows Vej, 25, 1st floor, DK-5000 Odense, Denmark. e-mail:
| | - Henning Beck-Nielsen
- Department of Endocrinology, Odense University Hospital, University of Southern DenmarkOdense, Denmark
| | - Michael Gaster
- Department of Endocrinology, Odense University Hospital, University of Southern DenmarkOdense, Denmark
- Laboratory of Molecular Physiology, Department of Pathology, Odense University Hospital, University of Southern DenmarkOdense, Denmark
| |
Collapse
|
9
|
Bakke SS, Moro C, Nikolić N, Hessvik NP, Badin PM, Lauvhaug L, Fredriksson K, Hesselink MK, Boekschoten MV, Kersten S, Gaster M, Thoresen GH, Rustan AC. Palmitic acid follows a different metabolic pathway than oleic acid in human skeletal muscle cells; lower lipolysis rate despite an increased level of adipose triglyceride lipase. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1323-33. [DOI: 10.1016/j.bbalip.2012.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Revised: 05/31/2012] [Accepted: 07/03/2012] [Indexed: 01/22/2023]
|
10
|
Gaster M, Nehlin JO, Minet AD. Impaired TCA cycle flux in mitochondria in skeletal muscle from type 2 diabetic subjects: marker or maker of the diabetic phenotype? Arch Physiol Biochem 2012; 118:156-89. [PMID: 22385297 DOI: 10.3109/13813455.2012.656653] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The diabetic phenotype is complex, requiring elucidation of key initiating defects. Recent research has shown that diabetic myotubes express a primary reduced tricarboxylic acid (TCA) cycle flux. A reduced TCA cycle flux has also been shown both in insulin resistant offspring of T2D patients and exercising T2D patients in vivo. This review will discuss the latest advances in the understanding of the molecular mechanisms regulating the TCA cycle with focus on possible underlying mechanism which could explain the impaired TCA flux in insulin resistant human skeletal muscle in type 2 diabetes. A reduced TCA is both a marker and a maker of the diabetic phenotype.
Collapse
Affiliation(s)
- Michael Gaster
- Laboratory of Molecular Physiology, Department of Pathology, Odense University Hospital, Denmark.
| | | | | |
Collapse
|
11
|
Reduced TCA Flux in Diabetic Myotubes: Determined by Single Defects? Biochem Res Int 2012; 2012:716056. [PMID: 22506116 PMCID: PMC3312545 DOI: 10.1155/2012/716056] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/03/2012] [Accepted: 01/12/2012] [Indexed: 11/18/2022] Open
Abstract
The diabetic phenotype is complex, requiring elucidation of key initiating defects. Diabetic myotubes express a primary reduced tricarboxylic acid (TCA) cycle flux but at present it is unclear in which part of the TCA cycle the defect is localised. In order to localise the defect we studied ATP production in isolated mitochondria from substrates entering the TCA cycle at various points. ATP production was measured by luminescence with or without concomitant ATP utilisation by hexokinase in mitochondria isolated from myotubes established from eight lean and eight type 2 diabetic subjects. The ATP production of investigated substrate combinations was significantly reduced in mitochondria isolated from type 2 diabetic subjects compared to lean. However, when ATP synthesis rates at different substrate combinations were normalized to the corresponding individual pyruvate-malate rate, there was no significant difference between groups. These results show that the primary reduced TCA cycle flux in diabetic myotubes is not explained by defects in specific part of the TCA cycle but rather results from a general downregulation of the TCA cycle.
Collapse
|
12
|
Re-evaluating lipotoxic triggers in skeletal muscle: Relating intramyocellular lipid metabolism to insulin sensitivity. Prog Lipid Res 2012; 51:36-49. [DOI: 10.1016/j.plipres.2011.11.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Abstract
OBJECTIVE The skeletal muscle of obese humans is characterized by an inability to appropriately respond to alterations in substrate availability. The purpose of this study was to determine if this metabolic inflexibility with obesity is retained in mitochondria of human skeletal muscle cells raised in culture (HSkMC) and to identify potential mechanisms involved. DESIGN Mitochondrial respiration was measured in permeabilized myotubes cultured from lean and obese individuals before and after a 24-h lipid incubation. RESULTS Mitochondrial respiration (state 3) in the presence of lipid substrate (palmitoyl carnitine) increased by almost twofold after lipid incubation in HSkMC from lean, but not obese subjects, indicative of metabolic inflexibility with obesity. The 24-h lipid incubation increased mitochondrial DNA (mtDNA) copy number in HSkMC from lean subjects by +16% (P<0.05); conversely, mtDNA copy number decreased in myotubes cultured from obese individuals (-13%, P=0.06). When respiration data were normalized to mtDNA copy number and other indices of mitochondrial content (COX-IV protein content and CS activity), the significant treatment effects of lipid incubation persisted in the lean subjects, suggesting concomitant alterations in mitochondrial function; no similar adjustment was evident in HSkMC from obese individuals. CONCLUSION These data indicate that the skeletal muscle of obese individuals inherently lacks metabolic flexibility in response to lipid exposure, which consists of an inability to increase mitochondrial respiration in the presence of lipid substrate and perhaps by an inability to induce mitochondrial proliferation.
Collapse
|
14
|
Thingholm TE, Bak S, Beck-Nielsen H, Jensen ON, Gaster M. Characterization of human myotubes from type 2 diabetic and nondiabetic subjects using complementary quantitative mass spectrometric methods. Mol Cell Proteomics 2011; 10:M110.006650. [PMID: 21697546 DOI: 10.1074/mcp.m110.006650] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle is a key tissue site of insulin resistance in type 2 diabetes. Human myotubes are primary skeletal muscle cells displaying both morphological and biochemical characteristics of mature skeletal muscle and the diabetic phenotype is conserved in myotubes derived from subjects with type 2 diabetes. Several abnormalities have been identified in skeletal muscle from type 2 diabetic subjects, however, the exact molecular mechanisms leading to the diabetic phenotype has still not been found. Here we present a large-scale study in which we combine a quantitative proteomic discovery strategy using isobaric peptide tags for relative and absolute quantification (iTRAQ) and a label-free study with a targeted quantitative proteomic approach using selected reaction monitoring to identify, quantify, and validate changes in protein abundance among human myotubes obtained from nondiabetic lean, nondiabetic obese, and type 2 diabetic subjects, respectively. Using an optimized protein precipitation protocol, a total of 2832 unique proteins were identified and quantified using the iTRAQ strategy. Despite a clear diabetic phenotype in diabetic myotubes, the majority of the proteins identified in this study did not exhibit significant abundance changes across the patient groups. Proteins from all major pathways known to be important in type 2 diabetic subjects were well-characterized in this study. This included pathways like the trichloroacetic acid (TCA) cycle, lipid oxidation, oxidative phosphorylation, the glycolytic pathway, and glycogen metabolism from which all but two enzymes were found in the present study. None of these enzymes were found to be regulated at the level of protein expression or degradation supporting the hypothesis that these pathways are regulated at the level of post-translational modification. Twelve proteins were, however, differentially expressed among the three different groups. Thirty-six proteins were chosen for further analysis and validation using selected reaction monitoring based on the regulation identified in the iTRAQ discovery study. The abundance of adenosine deaminase was considerably down-regulated in diabetic myotubes and as the protein binds propyl dipeptidase (DPP-IV), we speculate whether the reduced binding of adenosine deaminase to DPP-IV may contribute to the diabetic phenotype in vivo by leading to a higher level of free DPP-IV to bind and inactivate the anti-diabetic hormones, glucagon-like peptide-1 and glucose-dependent insulintropic polypeptide.
Collapse
Affiliation(s)
- Tine E Thingholm
- Department of Endocrinology, Odense University Hospital, 5000 Odense, Denmark.
| | | | | | | | | |
Collapse
|
15
|
Nehlin JO, Just M, Rustan AC, Gaster M. Human myotubes from myoblast cultures undergoing senescence exhibit defects in glucose and lipid metabolism. Biogerontology 2011; 12:349-65. [PMID: 21512720 DOI: 10.1007/s10522-011-9336-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 04/06/2011] [Indexed: 12/23/2022]
Abstract
Adult stem cells are known to have a finite replication potential. Muscle biopsy-derived human satellite cells (SCs) were grown at different passages and differentiated to human myotubes in culture to analyze the functional state of various carbohydrate and lipid metabolic pathways. As the proliferative potential of myoblasts decreased dramatically with passage number, a number of cellular functions were altered: the capacity of myoblasts to fuse and differentiate into myotubes was reduced, and metabolic processes in myotubes such as glucose uptake, glycogen synthesis, glucose oxidation and fatty acid β-oxidation became gradually impaired. Upon insulin stimulation, glucose uptake and glycogen synthesis increased but as the cellular proliferative capacity became gradually exhausted, the response dropped concomitantly. Palmitic acid incorporation into lipids in myotubes decreased with passage number and could be explained by reduced incorporation into diacyl- and triacylglycerols. The levels of long-chain acyl-CoA esters decreased with increased passage number. Late-passage, non-proliferating, myoblast cultures showed strong senescence-associated β-galactosidase activity indicating that the observed metabolic defects accompany the induction of a senescent state. The main function of SCs is regeneration and skeletal muscle-build up. Thus, the metabolic defects observed during aging of SC-derived myotubes could have a role in sarcopenia, the gradual age-related loss of muscle mass and strength.
Collapse
Affiliation(s)
- Jan O Nehlin
- Center for Stem Cell Treatment, Department of Clinical Immunology, Odense University Hospital & University of Southern Denmark, Odense, Denmark.
| | | | | | | |
Collapse
|
16
|
The dynamic equilibrium between ATP synthesis and ATP consumption is lower in isolated mitochondria from myotubes established from type 2 diabetic subjects compared to lean control. Biochem Biophys Res Commun 2011; 409:591-5. [PMID: 21513703 DOI: 10.1016/j.bbrc.2011.04.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 10/18/2022]
Abstract
Although, most studies of human skeletal muscle in vivo have reported the co-existence of impaired insulin sensitivity and reduced expression of oxidative phosphorylation genes, there is so far no clear evidence for whether the intrinsic ATP synthesis is primarily decreased or not in the mitochondria of diabetic skeletal muscle from subjects with type 2 diabetes. ATP synthesis was measured on mitochondria isolated from cultured myotubes established from lean (11/9), obese (9/11) and subjects with type 2 diabetes (9/11) (female/male, n=20 in each group), precultured under normophysiological conditions in order to verify intrinsic impairments. To resemble dynamic equilibrium present in whole cells between ATP synthesis and utilization, ATP was measured in the presence of an ATP consuming enzyme, hexokinase, under steady state. Mitochondria were isolated using an affinity based method which selects the mitochondria based on an antibody recognizing the mitochondrial outer membrane and not by size through gradient centrifugation. The dynamic equilibrium between ATP synthesis and ATP consumption is 35% lower in isolated mitochondria from myotubes established from type 2 diabetic subjects compared to lean control. The ATP synthesis rate without ATP consumption was not different between groups and there were no significant gender differences. The mitochondrial dysfunction in type 2 diabetes in vivo is partly based on a primarily impaired ATP synthesis.
Collapse
|
17
|
Eriksen M, Pørneki AD, Skov V, Burns JS, Beck-Nielsen H, Glintborg D, Gaster M. Insulin resistance is not conserved in myotubes established from women with PCOS. PLoS One 2010; 5:e14469. [PMID: 21209881 PMCID: PMC3012693 DOI: 10.1371/journal.pone.0014469] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 12/07/2010] [Indexed: 12/25/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among premenopausal women, who often develop insulin resistance. We tested the hypothesis that insulin resistance in skeletal muscle of patients with polycystic ovary syndrome (PCOS) is an intrinsic defect, by investigating the metabolic characteristics and gene expression of in vitro differentiated myotubes established from well characterized PCOS subjects. Methods Using radiotracer techniques, RT-PCR and enzyme kinetic analysis we examined myotubes established from PCOS subjects with or without pioglitazone treatment, versus healthy control subjects who had been extensively metabolically characterized in vivo. Results Myotubes established from PCOS and matched control subjects comprehensively expressed all insulin-sensitive biomarkers; glucose uptake and oxidation, glycogen synthesis and lipid uptake. There were no significant differences between groups either at baseline or during acute insulin stimulation, although in vivo skeletal muscle was insulin resistant. In particular, we found no evidence for defects in insulin-stimulated glycogen synthase activity between groups. Myotubes established from PCOS patients with or without pioglitazone treatment also showed no significant differences between groups, neither at baseline nor during acute insulin stimulation, although in vivo pioglitazone treatment significantly improved insulin sensitivity. Consistently, the myotube cultures failed to show differences in mRNA levels of genes previously demonstrated to differ in PCOS patients with or without pioglitazone treatment (PLEK, SLC22A16, and TTBK). Conclusion These results suggest that the mechanisms governing insulin resistance in skeletal muscle of PCOS patients in vivo are not primary, but rather adaptive. Trial Registration ClinicalTrials.gov NCT00145340
Collapse
Affiliation(s)
- Mette Eriksen
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
- University of Southern Denmark, Odense, Denmark
| | - Ann Dorte Pørneki
- Clinic for Molecular Endocrinology, Department of Endocrinology, Odense University Hospital and Medical Biotechnology Center, University of Southern Denmark, Odense, Denmark
| | - Vibe Skov
- Department of Clinical Biochemistry and Pharmacology and Department of Clinical Genetics, Human MicroArray Center, Odense University Hospital, Odense, Denmark
| | - Jorge S. Burns
- Clinic for Molecular Endocrinology, Department of Endocrinology, Odense University Hospital and Medical Biotechnology Center, University of Southern Denmark, Odense, Denmark
| | | | - Dorte Glintborg
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Michael Gaster
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
- University of Southern Denmark, Odense, Denmark
- Clinic for Molecular Endocrinology, Department of Endocrinology, Odense University Hospital and Medical Biotechnology Center, University of Southern Denmark, Odense, Denmark
- * E-mail:
| |
Collapse
|
18
|
Mitochondrial mass is inversely correlated to complete lipid oxidation in human myotubes. Biochem Biophys Res Commun 2010; 404:1023-8. [PMID: 21187069 DOI: 10.1016/j.bbrc.2010.12.102] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 12/20/2010] [Indexed: 11/22/2022]
Abstract
Exercise increases while physical inactivity decrease mitochondrial content and oxidative capacity of skeletal muscles in vivo. It is unknown whether mitochondrial mass and substrate oxidation are related in non-contracting skeletal muscle. Mitochondrial mass, ATP, ADP, AMP, glucose and lipid oxidation (complete and incomplete) were determined in non-contracting myotubes established from 10 lean, 10 obese and 10 subjects with type 2 diabetes precultured under normophysiological conditions. ATP, ADP, AMP, mitochondrial mass and energy charge were not different between groups. In diabetic myotubes, basal glucose oxidation and incomplete lipid oxidation were significantly increased while complete lipid oxidation was lower. Mitochondrial mass was not correlated to glucose oxidation or incomplete lipid oxidation in human myotubes but inversely correlated to complete lipid oxidation. Thus within a stable energetic background, an increased mitochondrial mass in human myotubes was not positive correlated to an increased substrate oxidation as expected from skeletal muscles in vivo but surprisingly with a reduced complete lipid oxidation.
Collapse
|
19
|
Thornton SN. Angiotensin inhibition and longevity: a question of hydration. Pflugers Arch 2010; 461:317-24. [PMID: 21165644 DOI: 10.1007/s00424-010-0911-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 11/25/2010] [Accepted: 11/29/2010] [Indexed: 01/07/2023]
Abstract
With the advancement of medical and investigative science, it is somewhat surprising that although it is possible to stabilise medical patients with hypertension and the associated kidney dysfunction, obesity, diabetes and even cancer, there is still no clear method of significantly reducing these chronic disease pathologies, and thus, extending life expectancy. There is one hormone common to these pathologies, the antagonism of which goes some way to clinical improvements, and this is angiotensin, which is released during hypovolaemia. Angiotensin antagonists are used to treat many of these pathologies, and it has been shown in the obesity literature that angiotensin antagonists decrease weight, but also increase the drinking of water. Increased cellular hydration, and hence, improved mitochondrial metabolism could be one of the mechanisms for the reduction in weight seen in these studies, as well as for reducing the other pathologies, all showing metabolic dysfunction. It appears that the application of straightforward physiological regulation might be an appropriate medical approach to the prevention of hypertension, kidney disease, obesity, diabetes and cancer, and thus, to an increased life expectancy.
Collapse
|
20
|
Antoun E, Momken I, Bergouignan A, Villars C, Platat C, Schoeller DA, Blanc S, Simon C. The [1-13C]acetate recovery factor to correct tracer-derived dietary fat oxidation is lower in overweight insulin-resistant subjects. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.eclnm.2010.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
21
|
Corpeleijn E, Hessvik NP, Bakke SS, Levin K, Blaak EE, Thoresen GH, Gaster M, Rustan AC. Oxidation of intramyocellular lipids is dependent on mitochondrial function and the availability of extracellular fatty acids. Am J Physiol Endocrinol Metab 2010; 299:E14-22. [PMID: 20442319 DOI: 10.1152/ajpendo.00187.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Obesity and insulin resistance are related to both enlarged intramyocellular triacylglycerol stores and accumulation of lipid intermediates. We investigated how lipid overflow can change the oxidation of intramyocellular lipids (ICL(OX)) and intramyocellular lipid storage (ICL). These experiments were extended by comparing these processes in primary cultured myotubes established from healthy lean and obese type 2 diabetic (T2D) individuals, two extremes in a range of metabolic phenotypes. ICLs were prelabeled for 2 days with 100 microM [(14)C]oleic acid (OA). ICL(OX) was studied using a (14)CO(2) trapping system and measured under various conditions of extracellular OA (5 or 100 microM) and glucose (0.1 or 5.0 mM) and the absence or presence of mitochondrial uncoupling [carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP)]. First, increased extracellular OA availability (5 vs. 100 microM) reduced ICL(OX) by 37%. No differences in total lipolysis were observed between low and high OA availability. Uncoupling with FCCP restored ICL(OX) to basal levels during high OA availability. Mitochondrial mass was positively related to ICL(OX), but only in myotubes from lean individuals. In all, a lower mitochondrial mass and lower ICL(OX) were related to a higher cell-associated OA accumulation. Second, myotubes established from obese T2D individuals showed reduced ICL(OX). ICL(OX) remained lower during uncoupling (P < 0.001), even with comparable mitochondrial mass, suggesting decreased mitochondrial function. Furthermore, the variation in ICL(OX) in vitro was significantly related to the in vivo fasting respiratory quotient of all subjects (P < 0.02). In conclusion, the rate of ICL(OX) is dependent on the availability of extracellular fatty acids and mitochondrial function rather than mitochondrial mass.
Collapse
Affiliation(s)
- Eva Corpeleijn
- Department of Human Biology, Maastricht University, Nutrition and Toxicology Research Institute Maastricht, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Substrate overload: Glucose oxidation in human myotubes conquers palmitate oxidation through anaplerosis. Biochem Biophys Res Commun 2010; 391:1369-73. [DOI: 10.1016/j.bbrc.2009.12.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 12/11/2009] [Indexed: 11/23/2022]
|
23
|
Gaster M. Reduced TCA flux in diabetic myotubes: A governing influence on the diabetic phenotype? Biochem Biophys Res Commun 2009; 387:651-5. [PMID: 19615969 DOI: 10.1016/j.bbrc.2009.07.064] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 07/13/2009] [Indexed: 02/03/2023]
Abstract
The diabetic phenotype is complex, requiring elucidation of key initiating defects. It is unknown whether the reduced tricarboxylic acid cycle (TCA) flux in skeletal muscle of obese and obese type 2 diabetic (T2D) subjects is of primary origin. Acetate oxidation (measurement of TCA-flux) was significantly reduced in primary myotube cultures established from T2D versus lean subjects. Acetate oxidation was acutely stimulated by insulin and respiratory uncoupling. Inhibition of TCA flux in lean myotubes by malonate was followed by a measured decline in; acetate oxidation, complete palmitate oxidation, lipid uptake, glycogen synthesis, ATP content and increased glucose uptake, while glucose oxidation was unaffected. Acute TCA inhibition did not induce insulin resistance. Thus the reduced TCA cycle flux in T2D skeletal muscle may be of primary origin. The diabetic phenotype of increased basal glucose uptake and glucose oxidation, the reduced complete lipid oxidation and increased respiratory quotient, are likely to be adaptive responses to the reduced TCA cycle flux.
Collapse
Affiliation(s)
- Michael Gaster
- KMEB, Dept. of Endocrinology, Odense University Hospital, Denmark.
| |
Collapse
|