1
|
Abstract
FMS-like tyrosine kinase-3 fragments from exon 14 to the end without any mutations or deletions have been reported to fuse to ETV6 (TEL) in a few cases of myeloid/lymphoid neoplasms with eosinophilia carrying a translocation t(12;13)(p13;q12). This fusion protein confers constitutive activation on the FLT3 fragment and induces factor-independent growth in transfected Ba/F3 cells, indicating that it is an oncoprotein. However, the mechanism controlling the stability of this oncoprotein is unknown. In this study, we focus on finding factors controlling the stability of ETV6/FLT3. We have shown that the stability of ETV6/FLT3 is regulated by the Hsp90 chaperone. ETV6/FLT3 fusion protein forms a complex with Hsp90 by coimmunoprecipitation analyses using an Hsp90 antibody. The association between ETV6/FLT3 fusion protein and Hsp90 was impaired after treating ETV6/FLT3 transient transfection cos7 cells with 17-allylamino-17-demethoxygeldanamycin (17-AAG). 17-AAG induced a time- and dose-dependent downregulation of ectopically expressed ETV6/FLT3 protein in cos7 and HeLa-transfected cells. By using cycloheximide to block new protein translation, we found that 17-AAG accelerated the decay of ETV6/FLT3. Our findings could contribute to more understanding of the ETV6/FLT3 regulation through Hsp90 chaperone and open the way to finding effective treatment strategies for this rare disease.
Collapse
Affiliation(s)
- Bui Thi Kim Ly
- *Department of Food Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Hoang Thanh Chi
- †Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- ‡Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
2
|
Mondello P, Cuzzocrea S, Mian M. Pim kinases in hematological malignancies: where are we now and where are we going? J Hematol Oncol 2014; 7:95. [PMID: 25491234 PMCID: PMC4266197 DOI: 10.1186/s13045-014-0095-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/04/2014] [Indexed: 12/21/2022] Open
Abstract
The proviral insertion in murine (PIM) lymphoma proteins are a serine/threonine kinase family composed of three isoformes: Pim-1, Pim-2 and Pim-3. They play a critical role in the control of cell proliferation, survival, homing and migration. Recently, overexpression of Pim kinases has been reported in human tumors, mainly in hematologic malignancies. In vitro and in vivo studies have confirmed their oncogenic potential. Indeed, PIM kinases have shown to be involved in tumorgenesis, to enhance tumor growth and to induce chemo-resistance, which is why they have become an attractive therapeutic target for cancer therapy. Novel molecules inhibiting Pim kinases have been evaluated in preclinical studies, demonstrating to be effective and with a favorable toxicity profile. Given the promising results, some of these compounds are currently under investigation in clinical trials. Herein, we provide an overview of the biological activity of PIM-kinases, their role in hematologic malignancies and future therapeutic opportunities.
Collapse
Affiliation(s)
- Patrizia Mondello
- Department of Human Pathology, University of Messina, Via Consolare Valeria, 98125, Messina, Italy. .,Department of Biological and Environmental Sciences, University of Messina, Messina, Italy.
| | - Salvatore Cuzzocrea
- Department of Biological and Environmental Sciences, University of Messina, Messina, Italy.
| | - Michael Mian
- Department of Hematology, Hospital S. Maurizio, Bolzano/Bozen, Italy. .,Department of Internal Medicine V, Hematology & Oncology, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
3
|
Falchi L, Mehrotra M, Newberry KJ, Lyle LM, Lu G, Patel KP, Luthra R, Popat U, Verstovsek S. ETV6-FLT3 fusion gene-positive, eosinophilia-associated myeloproliferative neoplasm successfully treated with sorafenib and allogeneic stem cell transplant. Leukemia 2014; 28:2090-2. [PMID: 24854988 PMCID: PMC4824944 DOI: 10.1038/leu.2014.168] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Lorenzo Falchi
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meenakshi Mehrotra
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kate J. Newberry
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lindsey M. Lyle
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gary Lu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keyur P. Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raja Luthra
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Uday Popat
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston TX
| | - Srdan Verstovsek
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
4
|
Chonabayashi K, Hishizawa M, Kawamata S, Nagai Y, Ohno T, Ishikawa T, Uchiyama T, Takaori-Kondo A. Direct binding of Grb2 has an important role in the development of myeloproliferative disease induced by ETV6/FLT3. Leukemia 2013; 27:1433-6. [PMID: 23168613 DOI: 10.1038/leu.2012.333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Kim KT, Carroll AP, Mashkani B, Cairns MJ, Small D, Scott RJ. MicroRNA-16 is down-regulated in mutated FLT3 expressing murine myeloid FDC-P1 cells and interacts with Pim-1. PLoS One 2012; 7:e44546. [PMID: 22970245 PMCID: PMC3435263 DOI: 10.1371/journal.pone.0044546] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 08/07/2012] [Indexed: 12/14/2022] Open
Abstract
Activating mutations in the receptor tyrosine kinase FLT3 are one of the most frequent somatic mutations in acute myeloid leukemia (AML). Internal tandem duplications of the juxtamembrane region of FLT3 (FLT3/ITD) constitutively activate survival and proliferation pathways, and are associated with a poor prognosis in AML. We suspected that alteration of small non-coding microRNA (miRNA) expression in these leukemia cells is involved in the transformation process and used miRNA microarrays to determine the miRNA signature from total RNA harvested from FLT3/ITD expressing FDC-P1 cells (FD-FLT3/ITD). This revealed that a limited set of miRNAs appeared to be affected by expression of FLT3/ITD compared to the control group consisting of FDC-P1 parental cells transfected with an empty vector (FD-EV). Among differentially expressed miRNAs, we selected miR-16, miR-21 and miR-223 to validate the microarray data by quantitative real-time RT-PCR showing a high degree of correlation. We further analyzed miR-16 expression with FLT3 inhibitors in FLT3/ITD expressing cells. MiR-16 was found to be one of most significantly down-regulated miRNAs in FLT3/ITD expressing cells and was up-regulated upon FLT3 inhibition. The data suggests that miR-16 is acting as a tumour suppressor gene in FLT3/ITD-mediated leukemic transformation. Whilst miR-16 has been reported to target multiple mRNAs, computer models from public bioinformatic resources predicted a potential regulatory mechanism between miR-16 and Pim-1 mRNA. In support of this interaction, miR-16 was shown to suppress Pim-1 reporter gene expression. Further, our data demonstrated that over-expression of miR-16 mimics suppressed Pim-1 expression in FD-FLT3/ITD cells suggesting that increased miR-16 expression contributes to depletion of Pim-1 after FLT3 inhibition and that miR-16 repression may be associated with up-regulated Pim-1 in FLT3/ITD expressing cells.
Collapse
Affiliation(s)
- Kyu-Tae Kim
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
Fms-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase with important roles in hematopoietic progenitor cell survival and proliferation. It is mutated in approximately one-third of AML patients, mostly by internal tandem duplications (ITDs). Adaptor protein Lnk is a negative regulator of hematopoietic cytokine signaling. In the present study, we show that Lnk interacts physically with both wild-type FLT3 (FLT3-WT) and FLT3-ITD through the SH2 domains. We have identified the tyrosine residues 572, 591, and 919 of FLT3 as phosphorylation sites involved in direct binding to Lnk. Lnk itself was tyrosine phosphorylated by both FLT3 ligand (FL)-activated FLT3-WT and constitutively activated FLT3-ITD. Both shRNA-mediated depletion and forced overexpression of Lnk demonstrated that activation signals emanating from both forms of FLT3 are under negative regulation by Lnk. Moreover, Lnk inhibited 32D cell proliferation driven by different FLT3 variants. Analysis of primary BM cells from Lnk-knockout mice showed that Lnk suppresses the expansion of FL-stimulated hematopoietic progenitors, including lymphoid-primed multipotent progenitors. The results of the present study show that through direct binding to FLT3, Lnk suppresses FLT3-WT/ITD-dependent signaling pathways involved in the proliferation of hematopoietic cells. Therefore, modulation of Lnk expression levels may provide a unique therapeutic approach for FLT3-ITD-associated hematopoietic disease.
Collapse
|
7
|
Receptor kinase profiles identify a rationale for multitarget kinase inhibition in immature T-ALL. Leukemia 2012; 27:305-14. [PMID: 22751451 DOI: 10.1038/leu.2012.177] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Constitutively activated FLT3 signaling is common in acute myeloid leukemia, and is currently under evaluation for targeted therapy, whereas little data is available in T-cell acute lymphoblastic leukemia (T-ALL). We analyzed 357 T-ALL cases for FLT3 mutations and transcript expression. FLT3 mutations (3% overall) and overexpression (FLT3 high expresser (FLT3(High))) were restricted to immature/TCRγδ T-ALLs. In vitro FLT3 inhibition induced apoptosis in only 30% of FLT3(High) T-ALLs and did not correlate with mutational status. In order to investigate the mechanisms of primary resistance to FLT3 inhibition, a broad quantitative screen for receptor kinome transcript deregulation was performed by Taqman Low Density Array. FLT3 deregulation was associated with overexpression of a network of receptor kinases (RKs), potentially responsible for redundancies and sporadic response to specific FLT3 inhibition. In keeping with this resistance to FLT3 inhibition could be reversed by dual inhibition of FLT3 and KIT with a synergistic effect. We conclude that immature T-ALL may benefit from multitargeted RK inhibition and that exploration of the receptor kinome defines a rational strategy for testing multitarget kinase inhibition in malignant diseases.
Collapse
|
8
|
Medves S, Demoulin JB. Tyrosine kinase gene fusions in cancer: translating mechanisms into targeted therapies. J Cell Mol Med 2012; 16:237-48. [PMID: 21854543 PMCID: PMC3823288 DOI: 10.1111/j.1582-4934.2011.01415.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tyrosine kinase fusion genes represent an important class of oncogenes associated with leukaemia and solid tumours. They are produced by translocations and other chromosomal rearrangements of a subset of tyrosine kinase genes, including ABL, PDGFRA, PDGFRB, FGFR1, SYK, RET, JAK2 and ALK. Based on recent findings, this review discusses the common mechanisms of activation of these fusion genes. Enforced oligomerization and inactivation of inhibitory domains are the two key processes that switch on the kinase domain. Activated tyrosine kinase fusions then signal via an array of transduction cascades, which are largely shared. In addition, the fusion partner provides a scaffold for the recruitment of proteins that contribute to signalling, protein stability, cellular localization and oligomerization. The expression level of the fusion protein is another critical parameter. Its transcription is controlled by the partner gene promoter, while translation may be regulated by miRNA. Several mechanisms also prevent the degradation of the oncoprotein by proteasomes and lysosomes, leading to its accumulation in cells. The selective inhibition of the tyrosine kinase activity by adenosine-5'-triphosphate competitors, such as imatinib, is a major therapeutic success. Imatinib induces remission in leukaemia patients that are positive for BCR-ABL or PDGFR fusions. Recently, crizotinib produced promising results in a subtype of lung cancers with ALK fusion. However, resistance was reported in both cases, partially due to mutations. To tackle this problem, additional levels of therapeutic interventions are suggested by the complex mechanisms of fusion tyrosine kinase activation. New approaches include allosteric inhibition and interfering with oligomerization or chaperones.
Collapse
Affiliation(s)
- Sandrine Medves
- De Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | |
Collapse
|
9
|
Tu ML, Wang HQ, Sun XD, Chen LJ, Peng XC, Yuan YH, Li RM, Ruan XZ, Li DS, Xu YJ, Ke ZJ. Pim-1 is up-regulated by shear stress and is involved in shear stress-induced proliferation of rat mesenchymal stem cells. Life Sci 2010; 88:233-8. [PMID: 21147132 DOI: 10.1016/j.lfs.2010.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 11/11/2010] [Accepted: 11/15/2010] [Indexed: 02/08/2023]
Abstract
AIMS Investigation of the response of mesenchymal stem cells (MSCs) to vascular mechanical forces is very important in the field of cardiovascular intervention. Ser/Thr-protein kinase Pim-1 is a novel transducer of cell survival and the cell cycle that promotes signals in the hematopoietic cell system. Current studies aim to foster an understanding of Pim-1 expression and regulation in MSCs in response to different durations and strengths of laminar shear stress (SS) and to investigate the role of Pim-1 in SS-induced cell proliferation. MAIN METHODS A parallel-plate flow chamber was used to control the strength and duration of SS. Proliferation was measured with the BrdU cell proliferation assay. The expressions of Pim-1 mRNA and protein were evaluated by reverse transcription-polymerase chain reaction and western blotting, respectively. RNA interference was used to knock down the Pim-1 gene. KEY FINDINGS The results showed that SS up-regulation of Pim-1 mRNA and protein was time-dependent. Pim-1 induction was SS strength-dependent, and the expression level reached a maximum at 30 dynes/cm(2). Inhibitors of p38MAPK and ERK attenuated the SS-induced expression of Pim-1. In addition, SS significantly increased BrdU-uptake, which was effectively blocked by the silencing of Pim-1. SIGNIFICANCE These results demonstrated that Pim-1 is expressed in MSCs and plays an important role in the SS-induced proliferation of MSCs.
Collapse
Affiliation(s)
- Ming-Li Tu
- Department of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|