1
|
Yang B, Cheng L, Li Y, Liu Z, Zhou C, Zhou T, Zhao Y, Du H, Liao Z, Xu A. Moderate static magnetic field modulated lipid metabolism abnormalities induced by continuous artificial light in Caenorhabditis elegans: Role of iron ions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117959. [PMID: 40022825 DOI: 10.1016/j.ecoenv.2025.117959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/17/2024] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
Excessive use of artificial light sources has led to a significant increase in light pollution, which has raised serious concerns due to its serious adverse effects on lipid metabolism. Although moderate static magnetic fields (SMFs) have shown potential in health intervention and treatment as non-invasive and highly permeable physical field, the influence of SMFs on lipid metabolic disturbance induced by lights remains largely unknown. In this study, we explored the lipid metabolism of Caenorhabditis elegans (C. elegans) under varying wavelengths of light ranging from 395 nm to 635 nm, both in the presence and absence of a 0.5 T SMF, and elucidated their underlying mechanisms. Exposure of C. elegans to artificial light at 200 lux resulted in a shortened lifespan while significantly increasing fat accumulation in a wavelength-dependent manner. The presence of 0.5 T SMF significantly extended the lifespan and reduced the size of fat droplets, as well as the content of triglyceride in light exposed worms. These effects were achieved by upregulating the expression of genes related to lipolysis and downregulating the expression of genes related to lipid synthesis. Moreover, the 0.5 T SMF alleviated abnormalities in lipid metabolism caused by light through the regulation of iron ions. Our findings provided clear evidence that moderate SMFs have significant protective effects on lipid metabolism abnormalities induced by artificial light via mediating iron homeostasis, which might contribute to a better understanding of the combined photomagnetic effects in living organisms.
Collapse
Affiliation(s)
- Baolin Yang
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Lei Cheng
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Yang Li
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Zicheng Liu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Chenxi Zhou
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Tong Zhou
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Yanan Zhao
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Hua Du
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Zhongcai Liao
- Heye Health Technology Co., Ltd., Huzhou 313300, PR China
| | - An Xu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China.
| |
Collapse
|
2
|
Kim HJ, Mun JS, Oh SH, Kim JH. Antioxidant and Longevity-Related Properties of the Ethyl Acetate Fraction of Cnidium officinale Makino in Caenorhabditis elegans. Prev Nutr Food Sci 2024; 29:311-320. [PMID: 39371518 PMCID: PMC11450287 DOI: 10.3746/pnf.2024.29.3.311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 10/08/2024] Open
Abstract
Reactive oxygen species (ROS) are produced from energy metabolism and may cause diseases or cell death. Antioxidation refers to the suppression of ROS production and is considered beneficial in preventing diseases. This study aimed to examine the antioxidative effects of Cnidium officinale Makino (COM) extracts and fractions using Caenorhabditis elegans as an experimental model. The COM ethanol extract was fractionated according to polarity. The results showed that the ethyl acetate fraction of COM showed powerful radical scavenging activities and increased the activities of superoxide dismutase (SOD) and catalase in C. elegans in a concentration-dependent manner. Moreover, the ethyl acetate fraction reduced the ROS production rate in C. elegans and increased the cell survival rate, suggesting oxidative and thermal stress resistance. In addition, the SOD-3::green fluorescent protein (GFP) expression level in the transformed cells of C. elegans (CF1553) increased, suggesting oxidative stress resistance. Similarly, the HSP-16.2::GFP expression level increased, suggesting thermal stress resistance. In conclusion, the ethyl acetate fraction of COM demonstrated the strongest antioxidative effects, indicating that it may help extend longevity.
Collapse
Affiliation(s)
- Hyeon-ji Kim
- Department of Food and Biotechnology, Woosuk University, Jeonbuk 55338, Korea
| | - Ji-Su Mun
- Department of Food and Biotechnology, Woosuk University, Jeonbuk 55338, Korea
| | - Suk-Heung Oh
- Department of Food and Biotechnology, Woosuk University, Jeonbuk 55338, Korea
| | - Jun-Hyeong Kim
- Department of Food and Biotechnology, Woosuk University, Jeonbuk 55338, Korea
| |
Collapse
|
3
|
Xin L, Huang M, Huang Z. Quantitative assessment and monitoring of microplastics and nanoplastics distributions and lipid metabolism in live zebrafish using hyperspectral stimulated Raman scattering microscopy. ENVIRONMENT INTERNATIONAL 2024; 187:108679. [PMID: 38657405 DOI: 10.1016/j.envint.2024.108679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Microplastics (MP) and nanoplastics (NP) pollutions pose a rising environmental threat to humans and other living species, given their escalating presence in essential resources that living subjects ingest and/or inhale. Herein, to elucidate the potential health implications of MP/NP, we report for the first time by using label-free hyperspectral stimulated Raman scattering (SRS) imaging technique developed to quantitatively monitor the bioaccumulation and metabolic toxicity of MP/NP within live zebrafish larvae during their early developmental stages. Zebrafish embryos are exposed to environmentally related concentrations (3-60 μg/ml) of polystyrene (PS) beads with two typical sizes (2 μm and 50 nm). Zebrafish are administered isotope-tagged fatty acids through microinjection and dietary intake for in vivo tracking of lipid metabolism dynamics. In vivo 3D quantitative vibrational imaging of PS beads and intrinsic biomolecules across key zebrafish organs reveals that gut and liver are the primary target organs of MP/NP, while only 50 nm PS beads readily aggregate and adhere to the brain and blood vessels. The 50 nm PS beads are also found to induce more pronounced hepatic inflammatory response compared to 2 μm counterparts, characterized by increased biogenesis of lipid droplets and upregulation of arachidonic acid detected in zebrafish liver. Furthermore, Raman-tagged SRS imaging of fatty acids uncovers that MP/NP exposure significantly reduces yolk lipid utilization and promotes dietary lipid storage in zebrafish, possibly associated with developmental delays and more pronounced food dilution effects in zebrafish larvae exposed to 2 μm PS beads. The hyperspectral SRS imaging in this work shows that MP/NP exposure perturbs the development and lipid metabolism in zebrafish larvae, furthering the understanding of MP/NP ingestions and consequent toxicity in different organs in living species.
Collapse
Affiliation(s)
- Le Xin
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Meizhen Huang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiwei Huang
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117576, Singapore.
| |
Collapse
|
4
|
Venkatesh SR, Siddiqui R, Sandhu A, Ramani M, Houston IR, Watts JL, Singh V. Homeostatic control of stearoyl desaturase expression via patched-like receptor PTR-23 ensures the survival of C. elegans during heat stress. PLoS Genet 2023; 19:e1011067. [PMID: 38109437 PMCID: PMC10727360 DOI: 10.1371/journal.pgen.1011067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023] Open
Abstract
Organismal responses to temperature fluctuations include an evolutionarily conserved cytosolic chaperone machinery as well as adaptive alterations in lipid constituents of cellular membranes. Using C. elegans as a model system, we asked whether adaptable lipid homeostasis is required for survival during physiologically relevant heat stress. By systematic analyses of lipid composition in worms during and before heat stress, we found that unsaturated fatty acids are reduced in heat-stressed animals. This is accompanied by the transcriptional downregulation of fatty acid desaturase enzymes encoded by fat-1, fat-3, fat-4, fat-5, fat-6, and fat-7 genes. Conversely, overexpression of the Δ9 desaturase FAT-7, responsible for the synthesis of PUFA precursor oleic acid, and supplementation of oleic acid causes accelerated death of worms during heat stress. Interestingly, heat stress causes permeability defects in the worm's cuticle. We show that fat-7 expression is reduced in the permeability defective collagen (PDC) mutant, dpy-10, known to have enhanced heat stress resistance (HSR). Further, we show that the HSR of dpy-10 animals is dependent on the upregulation of PTR-23, a patched-like receptor in the epidermis, and that PTR-23 downregulates the expression of fat-7. Consequently, abrogation of ptr-23 in wild type animals affects its survival during heat stress. This study provides evidence for the negative regulation of fatty acid desaturase expression in the soma of C. elegans via the non-canonical role of a patched receptor signaling component. Taken together, this constitutes a skin-gut axis for the regulation of lipid desaturation to promote the survival of worms during heat stress.
Collapse
Affiliation(s)
- Siddharth R Venkatesh
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Ritika Siddiqui
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Anjali Sandhu
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Malvika Ramani
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Isabel R Houston
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Jennifer L Watts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Varsha Singh
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
5
|
Ren L, Zhang H, Zhou J, Wu Y, Liu B, Wang S, Liu X, Hao X, Zhao L. Unique and generic crossed metabolism in response to four sub-lethal environmental stresses in the oriental fruit fly, Bactrocera dorsalis Hendel. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115434. [PMID: 37690174 DOI: 10.1016/j.ecoenv.2023.115434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 08/08/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
Bactrocera dorsalis is a well-known invasive pest that causes considerable ecological and economic losses worldwild. Although it has a wide environmental tolerance, few studies have reported its mechanism of adaptation to multiple sub-lethal environmental stresses. In this study, 38, 41, 39 and 34 metabolites changed significantly in B. dorsalis under four sub-lethal stresses (heat, cold, desiccation and hypoxia), as found by the metabolomic method. Therein, lactic acid and pyruvic acid were induced, whereas metabolites in the tricarboxylic acid (TCA) cycle such as citric acid, α-ketoglutarate acid, malic acid and fumaric acid were reduced under at least one of the stresses. Enzyme activity and quantitative polymerase chain reaction (qPCR) analyses verified the repression of pyruvic acid proceeding into the TCA cycle. In addition, the levels of several cryoprotectants and membrane fatty acids in B. dorsalis were altered. The findings indicated that B. dorsalis has evolved shared metabolic pathways to adapt to heat, hypoxia and desiccation stresses, such as reducing energy consumption by activating the anaerobic glycolytic metabolism. Cryoprotectants and membrane fatty acids were produced to improve the efficiency of stress resistance. This study revealed the unique and generic crossed physiological mechanism of insects to adapt to various environmental stresses.
Collapse
Affiliation(s)
- Lili Ren
- Science and Technology Research Center of China Customs, Beijing 100026, China; Institute of Inspection Technology and Equipment, Chinese Academy of Inspection and Quarantine, Beijing 100029, China
| | - Hongxia Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiao Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yajing Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Liu
- School of Medical Artificial Intelligence, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Shuping Wang
- Animal, Plant and Food Inspection and Quarantine Technology Center, Shanghai Customs, Shanghai 200002, China
| | - Xin Liu
- Science and Technology Research Center of China Customs, Beijing 100026, China
| | - Xin Hao
- Science and Technology Research Center of China Customs, Beijing 100026, China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
6
|
Doering KRS, Ermakova G, Taubert S. Nuclear hormone receptor NHR-49 is an essential regulator of stress resilience and healthy aging in Caenorhabditis elegans. Front Physiol 2023; 14:1241591. [PMID: 37645565 PMCID: PMC10461480 DOI: 10.3389/fphys.2023.1241591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023] Open
Abstract
The genome of Caenorhabditis elegans encodes 284 nuclear hormone receptor, which perform diverse functions in development and physiology. One of the best characterized of these is NHR-49, related in sequence and function to mammalian hepatocyte nuclear factor 4α and peroxisome proliferator-activated receptor α. Initially identified as regulator of lipid metabolism, including fatty acid catabolism and desaturation, additional important roles for NHR-49 have since emerged. It is an essential contributor to longevity in several genetic and environmental contexts, and also plays vital roles in the resistance to several stresses and innate immune response to infection with various bacterial pathogens. Here, we review how NHR-49 is integrated into pertinent signaling circuits and how it achieves its diverse functions. We also highlight areas for future investigation including identification of regulatory inputs that drive NHR-49 activity and identification of tissue-specific gene regulatory outputs. We anticipate that future work on this protein will provide information that could be useful for developing strategies to age-associated declines in health and age-related human diseases.
Collapse
Affiliation(s)
- Kelsie R. S. Doering
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC, Canada
- Edwin S. H. Leong Centre for Healthy Aging, The University of British Columbia, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Glafira Ermakova
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC, Canada
- Edwin S. H. Leong Centre for Healthy Aging, The University of British Columbia, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Stefan Taubert
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC, Canada
- Edwin S. H. Leong Centre for Healthy Aging, The University of British Columbia, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Liu Z, Cheng L, Yang B, Cao Z, Sun M, Feng Y, Xu A. Effects of moderate static magnetic fields on the lipogenesis and lipolysis in different genders of Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115005. [PMID: 37210995 DOI: 10.1016/j.ecoenv.2023.115005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023]
Abstract
With the rapid development of magnetic technology, the biological effects of moderate static magnetic fields (SMFs) have attracted increasing research interest due to their potential medical diagnosis and treatment application. The present study explored the effects of moderate SMFs on the lipid metabolism of Caenorhabditis elegans (C. elegans) in different genders including male, female, and hermaphrodite. We found that the fat content was significantly decreased by moderate SMFs in wild-type N2 worms, which was associated with their development stages. The diameters of lipid droplets in N2 worms, him-5 worms, and fog-2 worms were greatly decreased by 19.23%, 15.38%, and 23.07% at young adult stage under 0.5 T SMF, respectively. The mRNA levels of lipolysis related genes atgl-1 and nhr-76 were significantly up-regulated by SMF exposure, while the mRNA levels of the lipogenesis related genes fat-6, fat-7, and sbp-1 were down-regulated by SMF, whereas the concentration of β-oxidase was increased. There was a slight effect of SMF on the mRNA levels of β-oxidation related genes. Moreover, the insulin and serotonin pathway were regulated by SMF, instead of the TOR pathway. In wild-type worms, we found that their lifespan was prolonged by exposure to 0.5 T SMF. Our data suggested that moderate SMFs could significantly modify the lipogenesis and lipolysis process in C. elegans in a gender and development stage-dependent manner, which could provide a novel insight into understanding the function of moderate SMFs in living organisms.
Collapse
Affiliation(s)
- Zicheng Liu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui 230031, China; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Lei Cheng
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui 230031, China; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Baolin Yang
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui 230031, China; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Zhenxiao Cao
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui 230031, China; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Meng Sun
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui 230031, China; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Yu Feng
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui 230031, China; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - An Xu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui 230031, China; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China.
| |
Collapse
|
8
|
Zhang Y, Nie H, Yan X. Metabolomic analysis provides new insights into the heat-hardening response of Manila clam (Ruditapes philippinarum) to high temperature stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159430. [PMID: 36244479 DOI: 10.1016/j.scitotenv.2022.159430] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/15/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The temperature has always been a key environmental factor in Manila clam (Ruditapes philippinarum) culture. In this study, the Manila clam was treated to different temperature pre-heat (28 °C, 30 °C) and gained heat tolerance after recover of 12 h, and a survival rate (14.7 %-49.1 %) advantage after high temperature challenge (30 and 32 °C). To further investigate the physiological and metabolism changes in Manila clam that had experienced a heat stress, non-targeted metabolomics (LC-MS/MS) was used to analyze the metabolic responses of gills in three group Manila clams during the heat challenge. Metabolic profiles revealed that high temperature caused changes in fatty acid composition, energy metabolism, antioxidant metabolites, hydroxyl compounds, and amino acids in heat-hardened clams compared to non-hardened clams. We found a number of significantly enriched pathways, including cAMP signaling pathway, serotonergic synapse, and biosynthesis of unsaturated fatty acids in heat-hardened Manila clam compared with non-hardened and untreated Manila clam. After a brief high temperature treatment, the physiological maintenance ability of Manila clam was improved. Combined with metabolomics analysis, heat hardening treatment may improve the energy metabolism and antioxidant ability of Manila clam. These results provide new insights into the cellular and metabolic responses of Manila clams following high temperature stress.
Collapse
Affiliation(s)
- Yanming Zhang
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Hongtao Nie
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China.
| | - Xiwu Yan
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
9
|
Princová J, Salat-Canela C, Daněk P, Marešová A, de Cubas L, Bähler J, Ayté J, Hidalgo E, Převorovský M. Perturbed fatty-acid metabolism is linked to localized chromatin hyperacetylation, increased stress-response gene expression and resistance to oxidative stress. PLoS Genet 2023; 19:e1010582. [PMID: 36626368 PMCID: PMC9870116 DOI: 10.1371/journal.pgen.1010582] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/23/2023] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Oxidative stress is associated with cardiovascular and neurodegenerative diseases, diabetes, cancer, psychiatric disorders and aging. In order to counteract, eliminate and/or adapt to the sources of stress, cells possess elaborate stress-response mechanisms, which also operate at the level of regulating transcription. Interestingly, it is becoming apparent that the metabolic state of the cell and certain metabolites can directly control the epigenetic information and gene expression. In the fission yeast Schizosaccharomyces pombe, the conserved Sty1 stress-activated protein kinase cascade is the main pathway responding to most types of stresses, and regulates the transcription of hundreds of genes via the Atf1 transcription factor. Here we report that fission yeast cells defective in fatty acid synthesis (cbf11, mga2 and ACC/cut6 mutants; FAS inhibition) show increased expression of a subset of stress-response genes. This altered gene expression depends on Sty1-Atf1, the Pap1 transcription factor, and the Gcn5 and Mst1 histone acetyltransferases, is associated with increased acetylation of histone H3 at lysine 9 in the corresponding gene promoters, and results in increased cellular resistance to oxidative stress. We propose that changes in lipid metabolism can regulate the chromatin and transcription of specific stress-response genes, which in turn might help cells to maintain redox homeostasis.
Collapse
Affiliation(s)
- Jarmila Princová
- Laboratory of Microbial Genomics, Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Clàudia Salat-Canela
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader, Barcelona, Spain
| | - Petr Daněk
- Laboratory of Microbial Genomics, Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Anna Marešová
- Laboratory of Microbial Genomics, Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Laura de Cubas
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader, Barcelona, Spain
| | - Jürg Bähler
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London, United Kingdom
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader, Barcelona, Spain
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader, Barcelona, Spain
| | - Martin Převorovský
- Laboratory of Microbial Genomics, Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
10
|
Mangu JCK, Rai N, Mandal A, Olsson PE, Jass J. Lysinibacillus sphaericus mediates stress responses and attenuates arsenic toxicity in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155377. [PMID: 35460794 DOI: 10.1016/j.scitotenv.2022.155377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/15/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Exposure to toxic metals alters host response and that leads to disease development. Studies have revealed the effects of metals on microbial physiology, however, the role of metal resistant bacteria on host response to metals is unclear. The hypothesis that xenobiotic interactions between gut microbes and arsenic influence the host physiology and toxicity was assessed in a Caenorhabditis elegans model. The arsenic-resistant Lysinibacillus sphaericus B1CDA was fed to C. elegans to determine the host responses to arsenic in comparison to Escherichia coli OP50 food. L. sphaericus diet extended C. elegans lifespan compared to E. coli diet, with an increased expression of genes involved in lifespan, stress response and immunity (hif-1, hsp-16.2, mtl-2, abf-2, clec-60), as well as reduced fat accumulation. Arsenic-exposed worms fed L. sphaericus also had a longer lifespan than those fed E. coli and had an increased expression of genes involved in cytoprotection, stress resistance (mtl-1, mtl-2) and oxidative stress response (cyp-35A2, isp-1, ctl-2, sod-1), together with a decreased accumulation of reactive oxygen species (ROS). In comparison with E. coli, L. sphaericus B1CDA diet increased C. elegans fitness while detoxifying arsenic induced ROS and extending lifespan.
Collapse
Affiliation(s)
| | - Neha Rai
- The Life Science Centre-Biology, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Abul Mandal
- Systems Biology Research Center, School of Bioscience, University of Skövde, Skövde, Sweden
| | - Per-Erik Olsson
- The Life Science Centre-Biology, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Jana Jass
- The Life Science Centre-Biology, School of Science and Technology, Örebro University, Örebro, Sweden.
| |
Collapse
|
11
|
Paredes GF, Viehboeck T, Markert S, Mausz MA, Sato Y, Liebeke M, König L, Bulgheresi S. Differential regulation of degradation and immune pathways underlies adaptation of the ectosymbiotic nematode Laxus oneistus to oxic-anoxic interfaces. Sci Rep 2022; 12:9725. [PMID: 35697683 PMCID: PMC9192688 DOI: 10.1038/s41598-022-13235-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/13/2022] [Indexed: 11/09/2022] Open
Abstract
Eukaryotes may experience oxygen deprivation under both physiological and pathological conditions. Because oxygen shortage leads to a reduction in cellular energy production, all eukaryotes studied so far conserve energy by suppressing their metabolism. However, the molecular physiology of animals that naturally and repeatedly experience anoxia is underexplored. One such animal is the marine nematode Laxus oneistus. It thrives, invariably coated by its sulfur-oxidizing symbiont Candidatus Thiosymbion oneisti, in anoxic sulfidic or hypoxic sand. Here, transcriptomics and proteomics showed that, whether in anoxia or not, L. oneistus mostly expressed genes involved in ubiquitination, energy generation, oxidative stress response, immune response, development, and translation. Importantly, ubiquitination genes were also highly expressed when the nematode was subjected to anoxic sulfidic conditions, together with genes involved in autophagy, detoxification and ribosome biogenesis. We hypothesize that these degradation pathways were induced to recycle damaged cellular components (mitochondria) and misfolded proteins into nutrients. Remarkably, when L. oneistus was subjected to anoxic sulfidic conditions, lectin and mucin genes were also upregulated, potentially to promote the attachment of its thiotrophic symbiont. Furthermore, the nematode appeared to survive oxygen deprivation by using an alternative electron carrier (rhodoquinone) and acceptor (fumarate), to rewire the electron transfer chain. On the other hand, under hypoxia, genes involved in costly processes (e.g., amino acid biosynthesis, development, feeding, mating) were upregulated, together with the worm's Toll-like innate immunity pathway and several immune effectors (e.g., bactericidal/permeability-increasing proteins, fungicides). In conclusion, we hypothesize that, in anoxic sulfidic sand, L. oneistus upregulates degradation processes, rewires the oxidative phosphorylation and reinforces its coat of bacterial sulfur-oxidizers. In upper sand layers, instead, it appears to produce broad-range antimicrobials and to exploit oxygen for biosynthesis and development.
Collapse
Affiliation(s)
- Gabriela F Paredes
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Austria
| | - Tobias Viehboeck
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution, Vienna, Austria
- Division of Microbial Ecology, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Stephanie Markert
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | | | - Yui Sato
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Manuel Liebeke
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Lena König
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Austria
| | - Silvia Bulgheresi
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Sun WW, Yan XM, Qiao AJ, Zhang YJ, Yang L, Huang HC, Shi HF, Yan BL. Upregulated galectin-1 in Angiostrongylus cantonensis L5 reduces body fat and increases oxidative stress tolerance. Parasit Vectors 2022; 15:46. [PMID: 35123560 PMCID: PMC8817484 DOI: 10.1186/s13071-022-05171-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/20/2022] [Indexed: 11/30/2022] Open
Abstract
Background Angiostrongylus cantonensis L5, parasitizing human cerebrospinal fluid, causes eosinophilic meningitis, which is attributed to tissue inflammatory responses caused primarily by the high percentage of eosinophils. Eosinophils are also involved in killing helminths, using the peroxidative oxidation and hydrogen peroxide (H2O2) generated by dismutation of superoxide produced during respiratory burst. In contrast, helminthic worms have evolved to attenuate eosinophil-mediated tissue inflammatory responses for their survival. In previous study, we demonstrated the extracellular function of Acan-Gal-1 in inducing the apoptosis of macrophages. Here, the intracellular functions of Acan-Gal-1 were investigated, aiming to further reveal the mechanism involved in A. cantonensis L5 worms surviving inflammatory responses in the human central nervous system. Methods In this study, a model organism, Caenorhabditis elegans, was used as a surrogate to investigate the intracellular functions of Acan-Gal-1 in protecting the worm from its host’s immune attacks. First, structural characterization of Acan-Gal-1 was analyzed using bioinformatics; second, qRT-PCR was used to monitor the stage specificity of Acan-gal-1 expression in A. cantonensis. Microinjections were performed to detect the tissue specificity of lec-1 expression, the homolog of Acan-gal-1 in C. elegans. Third, microinjection was performed to develop Acan-gal-1::rfp transgenic worms. Then, oxidative stress assay and Oil Red O fat staining were used to determine the functions of Acan-Gal-1 in C. elegans. Results The results of detecting the stage specificity of Acan-gal-1 expression showed that Acan-Gal-1 was upregulated in both L5 and adult worms. Detection of the tissue specificity showed that the homolog of Acan-gal-1 in C. elegans, lec-1 was expressed ubiquitously and mainly localized in cuticle. Investigating the intracellular functions of Acan-Gal-1 in the surrogate C. elegans showed that N2 worms expressing pCe-lec-1::Acan-gal-1::rfp, with lipid deposition reduced, were significantly resistant to oxidative stress; lec-1 mutant worms, where lipid deposition increased, showed susceptible to oxidative stress, and this phenotype could be rescued by expressing pCe-lec-1::Acan-gal-1::rfp. Expressing pCe-lec-1::Acan-gal-1::rfp or lec-1 RNAi in fat-6;fat-7 double-mutant worms, where fat stores were reduced, had no significant effect on the oxidative stress tolerance. Conclusion In C. elegans worms, upregulated Acan-Gal-1 plays a defensive role against damage due to oxidative stress for worm survival by reducing fat deposition. This might indicate the mechanism by which A. cantonensis L5 worms, with upregulated Acan-Gal-1, survive the immune attack of eosinophils in the human central nervous system. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05171-4.
Collapse
|
13
|
Fueser H, Pilger C, Kong C, Huser T, Traunspurger W. Polystyrene microbeads influence lipid storage distribution in C. elegans as revealed by coherent anti-Stokes Raman scattering (CARS) microscopy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118662. [PMID: 34896225 DOI: 10.1016/j.envpol.2021.118662] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The exposure of Caenorhabditis elegans to polystyrene (PS) beads of a wide range of sizes impedes feeding, by reducing food consumption, and has been linked to inhibitory effects on the reproductive capacity of this nematode, as determined in standardized toxicity tests. Lipid storage provides energy for longevity, growth, and reproduction and may influence the organismal response to stress, including the food deprivation resulting from microplastics exposure. However, the effects of microplastics on energy storage have not been investigated in detail. In this study, C. elegans was exposed to ingestible sizes of PS beads in a standardized toxicity test (96 h) and in a multigeneration test (∼21 days), after which lipid storage was quantitatively analyzed in individual adults using coherent anti-Stokes Raman scattering (CARS) microscopy. The results showed that lipid storage distribution in C. elegans was altered when worms were exposed to microplastics in form of PS beads. For example, when exposed to 0.1-μm PS beads, the lipid droplet count was 93% higher, the droplets were up to 56% larger, and the area of the nematode body covered by lipids was up to 79% higher than in unexposed nematodes. The measured values tended to increase as PS bead sizes decreased. Cultivating the nematodes for 96 h under restricted food conditions in the absence of beads reproduced the altered lipid storage and suggested that it was triggered by food deprivation, including that induced by the dilutional effects of PS bead exposure. Our study demonstrates the utility of CARS microscopy to comprehensively image the smaller microplastics (<10 μm) ingested by nematodes and possibly other biota in investigations of the effects at the level of the individual organism.
Collapse
Affiliation(s)
- Hendrik Fueser
- Bielefeld University, Animal Ecology, Konsequenz 45, 33615, Bielefeld, Germany.
| | - Christian Pilger
- Bielefeld University, Biomolecular Photonics, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Cihang Kong
- Bielefeld University, Biomolecular Photonics, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Thomas Huser
- Bielefeld University, Biomolecular Photonics, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Walter Traunspurger
- Bielefeld University, Animal Ecology, Konsequenz 45, 33615, Bielefeld, Germany
| |
Collapse
|
14
|
Quan J, Kang Y, Li L, Zhao G, Sun J, Liu Z. Proteome analysis of rainbow trout (Oncorhynchus mykiss) liver responses to chronic heat stress using DIA/SWATH. J Proteomics 2020; 233:104079. [PMID: 33346158 DOI: 10.1016/j.jprot.2020.104079] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022]
Abstract
Aquaculture of rainbow trout (Oncorhynchus mykiss) is severely hampered by high temperatures in summer, and understanding the regulatory mechanisms controlling responses to chronic heat stress may assist the development of measures to relieve heat stress. In the present study, biochemical parameters revealed a strong stress response in rainbow trout at 24 °C, including activation of stress defence and immune systems. Liver proteome analysis under heat stress (24 °C) and control (18 °C) conditions using DIA/SWATH identified precursors (90,827), peptides (67,028), proteins (6770) and protein groups (5124), among which 460 differentially abundant proteins (DAPs; q-value < 0.05, fold change >1.5), 201 and 259 were up- and down-regulated, respectively. Many were related to heat shock proteins (HSPs), metabolism and immunity. Gene Ontology (GO) analysis showed that some DAPs induced at high temperature were involved in regulating cell homeostasis, metabolism, adaptive stress and stimulation. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified metabolic pathways, protein processing in endoplasmic reticulum, PPAR signalling, and complement and coagulation cascades. Protein-protein interaction (PPI) network analysis indicated that HSP90b1 and C3 may cooperative to affect cell membrane integrity under heat stress. Our findings assist the development of strategies to relieve heat stress in rainbow trout.
Collapse
Affiliation(s)
- Jinqiang Quan
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yujun Kang
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Lanlan Li
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Guiyan Zhao
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jun Sun
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Zhe Liu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China.
| |
Collapse
|
15
|
Yang Y, Shao H, Wu Q, Wang D. Lipid metabolic response to polystyrene particles in nematode Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113439. [PMID: 31672355 DOI: 10.1016/j.envpol.2019.113439] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/05/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Nanoplastics can be used in various fields, such as personal care products. Nevertheless, the effect of nanoplastic exposure on metabolism and its association with stress response remain largely unclear. Using Caenorhabditis elegans as an animal model, we determined the effect of nanopolystyrene exposure on lipid metabolism and its association with the response to nanopolystyrene. Exposure (from L1-larave to adult day-3) to 100 nm nanopolystyrene (≥1 μg/L) induced severe lipid accumulation and increase in expressions of mdt-15 and sbp-1 encoding two lipid metabolic sensors. Meanwhile, we found that SBP-1 acted downstream of intestinal MDT-15 during the control of response to nanopolystyrene. Intestinal transcriptional factor SBP-1 activated two downstream targets, fatty acyl CoA desaturase FAT-6 and heat-shock protein HSP-4 (a marker of endoplasmic reticulum unfolded protein response (ER UPR)) to regulate nanopolystyrene toxicity. Both MDT-15 and SBP-1 were involved in the activation of ER-UPR in nanopolystyrene exposed nematodes. Moreover, SBP-1 regulated the innate immune response by activating FAT-6 in nanopolystyrene exposed nematodes. In the intestine, function of MDT-15 and SBP-1 in regulating nanopolystyrene toxicity was under the control of upstream signaling cascade (PMK-1-SKN-1) in p38 MAPK signaling pathway. Therefore, our data raised an important molecular basis for potential protective function of lipid metabolic response in nanopolystyrene exposed nematodes.
Collapse
Affiliation(s)
- Yunhan Yang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Huimin Shao
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Qiuli Wu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|
16
|
Transcriptome analysis and weighted gene co-expression network reveals potential genes responses to heat stress in turbot Scophthalmus maximus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 33:100632. [PMID: 31715507 DOI: 10.1016/j.cbd.2019.100632] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 12/12/2022]
Abstract
Turbot (Scophthalmus maximus) is an economically important marine fish cultured in China. In this study, we performed transcriptome gene expression profiling of kidney tissue in turbot exposed to heat stress (20, 23, 25 and 28 °C); control fish were maintained at 14 °C. We investigated gene relationships based on weighted gene co-expression network analysis (WGCNA). Accordingly, enrichment analyses of GO terms and KEGG pathways showed that several pathways (e.g., fat metabolism, cell apoptosis, immune system, and insulin signaling) may be involved in the response of turbot to heat stress. Moreover, via WGCNA, we identified 19 modules: the dark grey module was mainly enriched in pathways associated with fat metabolism and the FOXO and Jak-STAT signaling pathways. The ivory module was significantly enriched in the P53 signaling pathway. Furthermore, the key hub genes CBP, AKT3, CCND2, PIK3r2, SCOS3, mdm2, cyc-B, and p48 were enriched in the FOXO, Jak-STAT and P53 signaling pathways. This is the first study reporting co-expression patterns of a gene network after heat stress in marine fish. Our results may contribute to our understanding of the underlying molecular mechanism of thermal tolerance.
Collapse
|
17
|
Maulik M, Mitra S, Basmayor AM, Lu B, Taylor BE, Bult-Ito A. Genetic Silencing of Fatty Acid Desaturases Modulates α-Synuclein Toxicity and Neuronal Loss in Parkinson-Like Models of C. elegans. Front Aging Neurosci 2019; 11:207. [PMID: 31447665 PMCID: PMC6691153 DOI: 10.3389/fnagi.2019.00207] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 07/22/2019] [Indexed: 01/14/2023] Open
Abstract
The molecular basis of Parkinson's disease (PD) is currently unknown. There is increasing evidence that fat metabolism is at the crossroad of key molecular pathways associated with the pathophysiology of PD. Fatty acid desaturases catalyze synthesis of saturated fatty acids from monounsaturated fatty acids thereby mediating several cellular mechanisms that are associated with diseases including cancer and metabolic disorders. The role of desaturases in modulating age-related neurodegenerative manifestations such as PD is poorly understood. Here, we investigated the effect of silencing Δ9 desaturase enzyme encoding fat-5 and fat-7 genes which are known to reduce fat content, on α-synuclein expression, neuronal morphology and dopamine-related behaviors in transgenic PD-like models of Caenorhabditis elegans (C. elegans). The silencing of the fat-5 and fat-7 genes rescued both degeneration of dopamine neurons and deficits in dopamine-dependent behaviors, including basal slowing and ethanol avoidance in worm models of PD. Similarly, silencing of these genes also decreased the formation of protein aggregates in a nematode model of PD expressing α-synuclein in the body wall muscles and rescued deficits in resistance to heat and osmotic stress. On the contrary, silencing of nhr-49 and tub-1 genes that are known to increase total fat content did not alter behavioral and pathological endpoints in the PD worm strains. Interestingly, the genetic manipulation of all four selected genes resulted in differential fat levels in the PD models without having significant effect on the lifespan, further indicating a complex fat homeostasis unique to neurodegenerative pathophysiology. Overall, we provide a comprehensive understanding of how Δ9 desaturase can alter PD-like pathology due to environmental exposures and proteotoxic stress, suggesting new avenues in deciphering the disease etiology and possible therapeutic targets.
Collapse
Affiliation(s)
- Malabika Maulik
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
- Biomedical Learning and Student Training (BLaST) Program, University of Alaska Fairbanks, Fairbanks, AK, United States
- Department of Oral Biology, University at Buffalo, The State University of New York at Buffalo, Buffalo, NY, United States
| | - Swarup Mitra
- Program in Neuroscience, Department of Pharmacology and Toxicology, The Research Institution on Addiction, The State University of New York at Buffalo, Buffalo, NY, United States
| | - Ajiel Mae Basmayor
- Biomedical Learning and Student Training (BLaST) Program, University of Alaska Fairbanks, Fairbanks, AK, United States
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Brianna Lu
- Biomedical Learning and Student Training (BLaST) Program, University of Alaska Fairbanks, Fairbanks, AK, United States
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Barbara E. Taylor
- Department of Biological Sciences and College of Natural Sciences and Mathematics, California State University at Long Beach, Long Beach, CA, United States
| | - Abel Bult-Ito
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, United States
| |
Collapse
|
18
|
Lin C, Lin Y, Chen Y, Xu J, Li J, Cao Y, Su Z, Chen Y. Effects of Momordica saponin extract on alleviating fat accumulation in Caenorhabditis elegans. Food Funct 2019; 10:3237-3251. [DOI: 10.1039/c9fo00254e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The study offers methods and models for elucidating fat accumulation and mechanisms, valuable for studies of other plant-based nutraceuticals.
Collapse
Affiliation(s)
- Chunxiu Lin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Science
- South China Agricultural University
- Guangzhou
- China
| | - Yizi Lin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Science
- South China Agricultural University
- Guangzhou
- China
| | - Yue Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Science
- South China Agricultural University
- Guangzhou
- China
| | - Jiena Xu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Science
- South China Agricultural University
- Guangzhou
- China
| | - Jun Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Science
- South China Agricultural University
- Guangzhou
- China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Science
- South China Agricultural University
- Guangzhou
- China
| | - Zuanxian Su
- College of Horticulture
- South China Agricultural University
- Guangzhou 510640
- China
| | - Yunjiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Science
- South China Agricultural University
- Guangzhou
- China
| |
Collapse
|
19
|
Kim YS, Han YT, Jeon H, Cha DS. Antiageing properties of Damaurone D in Caenorhabditis elegans. J Pharm Pharmacol 2018; 70:1423-1429. [DOI: 10.1111/jphp.12979] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/15/2018] [Indexed: 01/24/2023]
Abstract
Abstract
Objectives
This study was conducted to evaluate the longevity potential of damaurone D (DaD), a component of the damask rose, in the animal model Caenorhabditis elegans.
Methods
To investigate the effect of DaD on the longevity, lifespan assay was carried out. Fluorescence intensity of transgenic mutants was quantified to test the expression levels of stress proteins. A genetic study using single gene knockout mutants was designed to determine the target genes of DaD.
Key findings
DaD prolonged the mean lifespan of wild-type nematodes by 16.7% under normal conditions and also improved their stress endurance under thermal, osmotic, and oxidative stress conditions. This longevity-promoting effect could be attributed to in vivo antioxidant capacity and its up-regulating effects on the expressions of stress-response proteins such as SOD-3 and HSP-16.2. In addition, DaD treatment attenuated food intake, body length, lipofuscin accumulation and age-dependent decline of motor ability. Gene-specific mutant studies showed the involvement of genes such as daf-2, age-1, and daf-16.
Conclusions
These results suggest that DaD has beneficial effects on the longevity, and thus it can be a valuable plant origin lead compound for the development of nutraceutical preparations targeting ageing and ageing-related diseases.
Collapse
Affiliation(s)
- Yong Seong Kim
- College of Pharmacy, Woosuk University, Jeonbuk, South Korea
| | - Young Taek Han
- College of Pharmacy, Dankook University, Cheonan, South Korea
| | - Hoon Jeon
- College of Pharmacy, Woosuk University, Jeonbuk, South Korea
| | - Dong Seok Cha
- College of Pharmacy, Woosuk University, Jeonbuk, South Korea
| |
Collapse
|
20
|
Jadiya P, Mir SS, Nazir A. Osmotic stress induced toxicity exacerbates Parkinson's associated effects via dysregulation of autophagy in transgenic C. elegans model. Cell Signal 2018; 45:71-80. [PMID: 29410282 DOI: 10.1016/j.cellsig.2018.01.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 02/07/2023]
Abstract
The accumulation of aggregate-prone proteins is a major representative of many neurological disorders, including Parkinson's disease (PD) wherein the cellular clearance mechanisms, such as the ubiquitin-proteasome and autophagy pathways are impaired. PD, known to be associated with multiple genetic and environmental factors, is characterized by the aggregation of α-synuclein protein and loss of dopaminergic neurons in midbrain. This disease is also associated with other cardiovascular ailments. Herein, we report our findings from studies on the effect of hyper and hypo-osmotic induced toxicity representing hyper and hypotensive condition as an extrinsic epigenetic factor towards modulation of Parkinsonism, using a genetic model Caenorhabditis elegans (C. elegans). Our studies showed that osmotic toxicity had an adverse effect on α-synuclein aggregation, autophagic puncta, lipid content and oxidative stress. Further, we figure that reduced autophagic activity may cause the inefficient clearance of α-synuclein aggregates in osmotic stress toxicity, thereby promoting α-synuclein deposition. Pharmacological induction of autophagy by spermidine proved to be a useful mechanism for protecting cells against the toxic effects of these proteins in such stress conditions. Our studies provide evidence that autophagy is required for the removal of aggregated proteins in these conditions. Studying specific autophagy pathways, we observe that the osmotic stress induced toxicity was largely associated with atg-7 and lgg-1 dependent autophagy pathway, brought together by involvement of mTOR pathway. This represents a unifying pathway to disease in hyper- and hypo-osmotic conditions within PD model of C. elegans.
Collapse
Affiliation(s)
- Pooja Jadiya
- Laboratory of Functional Genomics and Molecular Toxicology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226 031, UP, India
| | - Snober S Mir
- Department of Bioengineering, Integral University, Lucknow 226 026, India
| | - Aamir Nazir
- Laboratory of Functional Genomics and Molecular Toxicology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226 031, UP, India.
| |
Collapse
|
21
|
Omics Approaches for Identifying Physiological Adaptations to Genome Instability in Aging. Int J Mol Sci 2017; 18:ijms18112329. [PMID: 29113067 PMCID: PMC5713298 DOI: 10.3390/ijms18112329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/25/2017] [Accepted: 10/29/2017] [Indexed: 12/25/2022] Open
Abstract
DNA damage causally contributes to aging and age-related diseases. The declining functioning of tissues and organs during aging can lead to the increased risk of succumbing to aging-associated diseases. Congenital syndromes that are caused by heritable mutations in DNA repair pathways lead to cancer susceptibility and accelerated aging, thus underlining the importance of genome maintenance for withstanding aging. High-throughput mass-spectrometry-based approaches have recently contributed to identifying signalling response networks and gaining a more comprehensive understanding of the physiological adaptations occurring upon unrepaired DNA damage. The insulin-like signalling pathway has been implicated in a DNA damage response (DDR) network that includes epidermal growth factor (EGF)-, AMP-activated protein kinases (AMPK)- and the target of rapamycin (TOR)-like signalling pathways, which are known regulators of growth, metabolism, and stress responses. The same pathways, together with the autophagy-mediated proteostatic response and the decline in energy metabolism have also been found to be similarly regulated during natural aging, suggesting striking parallels in the physiological adaptation upon persistent DNA damage due to DNA repair defects and long-term low-level DNA damage accumulation occurring during natural aging. These insights will be an important starting point to study the interplay between signalling networks involved in progeroid syndromes that are caused by DNA repair deficiencies and to gain new understanding of the consequences of DNA damage in the aging process.
Collapse
|
22
|
Hwang ES, Song SB. Nicotinamide is an inhibitor of SIRT1 in vitro, but can be a stimulator in cells. Cell Mol Life Sci 2017; 74:3347-3362. [PMID: 28417163 PMCID: PMC11107671 DOI: 10.1007/s00018-017-2527-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 03/24/2017] [Accepted: 04/12/2017] [Indexed: 01/15/2023]
Abstract
Nicotinamide (NAM), a form of vitamin B3, plays essential roles in cell physiology through facilitating NAD+ redox homeostasis and providing NAD+ as a substrate to a class of enzymes that catalyze non-redox reactions. These non-redox enzymes include the sirtuin family proteins which deacetylate target proteins while cleaving NAD+ to yield NAM. Since the finding that NAM exerts feedback inhibition to the sirtuin reactions, NAM has been widely used as an inhibitor in the studies where SIRT1, a key member of sirtuins, may have a role in certain cell physiology. However, once administered to cells, NAM is rapidly converted to NAD+ and, therefore, the cellular concentration of NAM decreases rapidly while that of NAD+ increases. The result would be an inhibition of SIRT1 for a limited duration, followed by an increase in the activity. This possibility raises a concern on the validity of the interpretation of the results in the studies that use NAM as a SIRT1 inhibitor. To understand better the effects of cellular administration of NAM, we reviewed published literature in which treatment with NAM was used to inhibit SIRT1 and found that the expected inhibitory effect of NAM was either unreliable or muted in many cases. In addition, studies demonstrated NAM administration stimulates SIRT1 activity and improves the functions of cells and organs. To determine if NAM administration can generate conditions in cells and tissues that are stimulatory to SIRT1, the changes in the cellular levels of NAM and NAD+ reported in the literature were examined and the factors that are involved in the availability of NAD+ to SIRT1 were evaluated. We conclude that NAM treatment can hypothetically be stimulatory to SIRT1.
Collapse
Affiliation(s)
- Eun Seong Hwang
- Department of Life Science, University of Seoul, Dongdaemungu, 163 Seoulsiripdaero, Seoul, 02504, Republic of Korea.
| | - Seon Beom Song
- Department of Life Science, University of Seoul, Dongdaemungu, 163 Seoulsiripdaero, Seoul, 02504, Republic of Korea
| |
Collapse
|
23
|
Lee EB, Xing MM, Kim DK. Lifespan-extending and stress resistance properties of brazilin from Caesalpinia sappan in Caenorhabditis elegans. Arch Pharm Res 2017; 40:825-835. [PMID: 28667441 DOI: 10.1007/s12272-017-0920-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 05/08/2017] [Indexed: 01/30/2023]
Abstract
This study contributes to the continual discovery of lifespan-extending compounds from plants, using the Caenorhabditis elegans model system. An ethyl acetate soluble fraction of methanol extract from the heartwood of Caesalpinia sappan showed a significant lifespan-extending activity. Subsequent activity-guided chromatography of the ethyl acetate-soluble fraction led to the isolation of brazilin. Brazilin showed potent 2,2-diphenyl-1-picrylhydrazyl radical scavenging and superoxide anion quenching activities and also revealed a lifespan-extending activity in C. elegans under normal culture conditions. Brazilin also exhibited the protective effects against thermal, oxidative and osmotic stress conditions to improve the survival rate of the nematode. Furthermore, brazilin elevated superoxide dismutase (SOD) activity and decreased intracellular reactive oxygen species accumulation in C. elegans. Further studies showed that brazilin-mediated increased stress tolerance of worms could be due to increased expressions of stress resistance proteins such as heat shock protein (HSP-16.2) and superoxide dismutase (SOD-3). Besides, there were no significant, brazilin-induced changes in aging-related factors, including progeny production, food intake, and growth, indicating brazilin influences longevity activity independent of affecting these factors. Brazilin increased the body movement of aged worms, indicating brazilin affects the healthspan and lifespan of nematode. These results suggest that brazilin contributes to the lifespan of C. elegans under both normal and stress conditions by increasing the expressions of stress resistance proteins.
Collapse
Affiliation(s)
- Eun Byeol Lee
- College of Pharmacy, Woosuk University, Jeonju, 55338, Republic of Korea
| | - Ming Ming Xing
- College of Pharmacy, Woosuk University, Jeonju, 55338, Republic of Korea.,College of Materials and Chemistry Engineering, Tongren University, Guizhou, 554300, China
| | - Dae Keun Kim
- College of Pharmacy, Woosuk University, Jeonju, 55338, Republic of Korea.
| |
Collapse
|
24
|
Shemesh N, Shai N, Meshnik L, Katalan R, Ben-Zvi A. Uncoupling the Trade-Off between Somatic Proteostasis and Reproduction in Caenorhabditis elegans Models of Polyglutamine Diseases. Front Mol Neurosci 2017; 10:101. [PMID: 28503130 PMCID: PMC5409330 DOI: 10.3389/fnmol.2017.00101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 03/24/2017] [Indexed: 12/17/2022] Open
Abstract
Caenorhabditis elegans somatic protein homeostasis (proteostasis) is actively remodeled at the onset of reproduction. This proteostatic collapse is regulated cell-nonautonomously by signals from the reproductive system that transmit the commitment to reproduction to somatic cells. Here, we asked whether the link between the reproductive system and somatic proteostasis could be uncoupled by activating downstream effectors in the gonadal longevity cascade. Specifically, we examined whether over-expression of lipl-4 (lipl-4(oe)), a target gene of the gonadal longevity pathway, or increase in arachidonic acid (AA) levels, associated with lipl-4(oe), modulated proteostasis and reproduction. We found that lipl-4(oe) rescued somatic proteostasis and postponed the onset of aggregation and toxicity in C. elegans models of polyglutamine (polyQ) diseases. However, lipl-4(oe) also disrupted fatty acid transport into developing oocytes and reduced reproductive success. In contrast, diet supplementation of AA recapitulated lipl-4(oe)-mediated proteostasis enhancement in wild type animals but did not affect the reproductive system. Thus, the gonadal longevity pathway mediates a trade-off between somatic maintenance and reproduction, in part by regulating the expression of genes, such as lipl-4, with inverse effects on somatic maintenance and reproduction. We propose that AA could uncouple such germline to soma crosstalk, with beneficial implications protein misfolding diseases.
Collapse
Affiliation(s)
- Netta Shemesh
- Department of Life Sciences, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the NegevBeer Sheva, Israel
| | - Nadav Shai
- Department of Life Sciences, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the NegevBeer Sheva, Israel
| | - Lana Meshnik
- Department of Life Sciences, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the NegevBeer Sheva, Israel
| | - Rotem Katalan
- Department of Life Sciences, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the NegevBeer Sheva, Israel
| | - Anat Ben-Zvi
- Department of Life Sciences, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the NegevBeer Sheva, Israel
| |
Collapse
|
25
|
Henry P, Owopetu O, Adisa D, Nguyen T, Anthony K, Ijoni-Animadu D, Jamadar S, Abdel-Rahman F, Saleh MA. Fatty acids composition of Caenorhabditis elegans using accurate mass GCMS-QTOF. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2016; 51:546-552. [PMID: 27166662 PMCID: PMC5052121 DOI: 10.1080/03601234.2016.1170555] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The free living nematode Caenorhabditis elegans is a proven model organism for lipid metabolism research. Total lipids of C. elegans were extracted using chloroform and methanol in 2:1 ratio (v/v). Fatty acids composition of the extracted total lipids was converted to their corresponding fatty acids methyl esters (FAMEs) and analyzed by gas chromatography/accurate mass quadrupole time of flight mass spectrometry using both electron ionization and chemical ionization techniques. Twenty-eight fatty acids consisting of 12 to 22 carbon atoms were identified, 65% of them were unsaturated. Fatty acids containing 12 to17 carbons were mostly saturated with stearic acid (18:0) as the major constituent. Several branched-chain fatty acids were identified. Methyl-14-methylhexadecanoate (iso- 17:0) was the major identified branched fatty acid. This is the first report to detect the intact molecular parent ions of the identified fatty acids in C. elegans using chemical ionization compared to electron ionization which produced fragmentations of the FAMEs.
Collapse
Affiliation(s)
- Parise Henry
- Department of Environmental and Interdisciplinary Sciences, Texas Southern University, Houston, Texas 77004, USA
| | - Olufunmilayo Owopetu
- Department of Environmental and Interdisciplinary Sciences, Texas Southern University, Houston, Texas 77004, USA
| | - Demilade Adisa
- Department of Environmental and Interdisciplinary Sciences, Texas Southern University, Houston, Texas 77004, USA
| | - Thao Nguyen
- Department of Environmental and Interdisciplinary Sciences, Texas Southern University, Houston, Texas 77004, USA
| | - Kevin Anthony
- Department of Chemistry, Texas Southern University, Houston, Texas 77004, USA
| | - David Ijoni-Animadu
- Department of Environmental and Interdisciplinary Sciences, Texas Southern University, Houston, Texas 77004, USA
| | - Sakha Jamadar
- Department of Environmental and Interdisciplinary Sciences, Texas Southern University, Houston, Texas 77004, USA
| | | | - Mahmoud A. Saleh
- Department of Chemistry, Texas Southern University, Houston, Texas 77004, USA
| |
Collapse
|
26
|
Fang B, Zhang M, Ren FZ, Zhou XD. Lifelong diet including common unsaturated fatty acids extends the lifespan and affects oxidation in
Caenorhabditis elegans
consistently with hormesis model. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201500237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bing Fang
- Academy of State Administration of GrainBeijingP. R. China
- Beijing Laboratory for Food Quality and SafetyChina Agricultural UniversityBeijingP. R. China
| | - Ming Zhang
- School of Food Science and Chemical EngineeringBeijing Technology and Business UniversityBeijingP. R. China
| | - Fa Zheng Ren
- Beijing Laboratory for Food Quality and SafetyChina Agricultural UniversityBeijingP. R. China
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingP. R. China
| | - Xiao Dan Zhou
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingP. R. China
| |
Collapse
|
27
|
Eloh K, Demurtas M, Mura MG, Deplano A, Onnis V, Sasanelli N, Maxia A, Caboni P. Potent Nematicidal Activity of Maleimide Derivatives on Meloidogyne incognita. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:4876-4881. [PMID: 27249054 DOI: 10.1021/acs.jafc.6b02250] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Different maleimide derivatives were synthesized and assayed for their in vitro activity on the soil inhabiting, plant-parasitic nematode Meloidogyne incognita, also known as root-knot nematode. The compounds maleimide, N-ethylmaleimide, N-isopropylmaleimide, and N-isobutylmaleimide showed the strongest nematicidal activity on the second stage juveniles of the root-knot nematode with EC50/72h values of 2.6 ± 1.3, 5.1 ± 3.4, 16.2 ± 5.4, and 19.0 ± 9.0 mg/L, respectively. We also determined the nematicidal activity of copper sulfate, finding an EC50 value of 48.6 ± 29.8 mg/L. When maleimide at 1 mg/L was tested in combination with copper sulfate at 50 mg/L, we observed 100% mortality of the nematodes. We performed a GC-MS metabolomics analysis after treating nematodes with maleimide at 8 mg/L for 24 h. This analysis revealed altered fatty acids and diglyceride metabolites such as oleic acid, palmitic acid, and 1-monopalmitin. Our results suggest that maleimide may be used as a new interesting building block for developing new nematicides in combination with copper salts.
Collapse
Affiliation(s)
- Kodjo Eloh
- Department of Life and Environmental Sciences, University of Cagliari , via Ospedale 72, 09124 Cagliari, Italy
| | - Monica Demurtas
- Department of Life and Environmental Sciences, University of Cagliari , via Ospedale 72, 09124 Cagliari, Italy
| | - Manuel Giacomo Mura
- Department of Life and Environmental Sciences, University of Cagliari , via Ospedale 72, 09124 Cagliari, Italy
| | - Alessandro Deplano
- Department of Life and Environmental Sciences, University of Cagliari , via Ospedale 72, 09124 Cagliari, Italy
| | - Valentina Onnis
- Department of Life and Environmental Sciences, University of Cagliari , via Ospedale 72, 09124 Cagliari, Italy
| | - Nicola Sasanelli
- Institute for Sustainable Plant Protection, CNR , via G. Amendola 122/D, 70126 Bari, Italy
| | - Andrea Maxia
- Department of Life and Environmental Sciences, University of Cagliari , via Ospedale 72, 09124 Cagliari, Italy
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, University of Cagliari , via Ospedale 72, 09124 Cagliari, Italy
| |
Collapse
|
28
|
Furuhashi T, Matsunaga M, Asahara Y, Sakamoto K. L-arginine, an active component of salmon milt nucleoprotein, promotes thermotolerance via Sirtuin in Caenorhabditis elegans. Biochem Biophys Res Commun 2016; 472:287-91. [PMID: 26934207 DOI: 10.1016/j.bbrc.2016.02.114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 02/27/2016] [Indexed: 01/06/2023]
Abstract
We previously showed that salmon milt nucleoprotein (NP) promotes thermotolerance in Caenorhabditis elegans; however, the active component and physiological mechanism of this effect has remained unclear. l-arginine (AR) is a major component of protamine and thus it has been proposed as the possible active component of NP. In this study, the viability of C. elegans treated with AR under heat stress was assessed and AR was shown to extend the survival term of the heat-stressed organisms. Additionally, AR was shown to restore the thrashing movement of the worms that is suppressed by heat stress. Treatment with AR was furthermore shown to promote thermotolerance in a DAF-16- and SIR-2.1-dependent manner, where DAF-16 and SIR-2.1 are homologs of FoxO and SirT1, respectively. Taken together, these data suggest that AR is one of the active components of NP and promotes thermotolerance via the activation of DAF-16 and SIR-2.1.
Collapse
Affiliation(s)
- Tsubasa Furuhashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan
| | - Masaji Matsunaga
- Gene Trophology Institute Co., 3-1-3 Megumino Kita, Eniwa, Hokkaido 061-1374, Japan
| | - Yuji Asahara
- Nissan Chemical Industries, Co., Ltd., 3-7-1 Kanda-Nishikicho, Chiyoda, Tokyo 101-0054, Japan
| | - Kazuichi Sakamoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
29
|
Im JS, Lee HN, Oh JW, Yoon YJ, Park JS, Park JW, Kim JH, Kim YS, Cha DS, Jeon H. Moringa oleiferaProlongs Lifespan via DAF-16/FOXO Transcriptional Factor inCaenorhabditis elegans. ACTA ACUST UNITED AC 2016. [DOI: 10.20307/nps.2016.22.3.201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jun Sang Im
- College of Pharmacy, Woosuk University, Jeonbuk 55338, Korea
| | - Ha Na Lee
- College of Pharmacy, Woosuk University, Jeonbuk 55338, Korea
| | - Jong Woo Oh
- College of Pharmacy, Woosuk University, Jeonbuk 55338, Korea
| | - Young Jin Yoon
- College of Pharmacy, Woosuk University, Jeonbuk 55338, Korea
| | - Jin Suck Park
- College of Pharmacy, Woosuk University, Jeonbuk 55338, Korea
| | - Ji Won Park
- College of Pharmacy, Woosuk University, Jeonbuk 55338, Korea
| | - Jung Hoon Kim
- College of Pharmacy, Woosuk University, Jeonbuk 55338, Korea
| | - Yong Sung Kim
- College of Pharmacy, Woosuk University, Jeonbuk 55338, Korea
| | - Dong Seok Cha
- College of Pharmacy, Woosuk University, Jeonbuk 55338, Korea
| | - Hoon Jeon
- College of Pharmacy, Woosuk University, Jeonbuk 55338, Korea
| |
Collapse
|
30
|
Eloh K, Demurtas M, Deplano A, Ngoutane Mfopa A, Murgia A, Maxia A, Onnis V, Caboni P. In vitro nematicidal activity of aryl hydrazones and comparative GC-MS metabolomics analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9970-9976. [PMID: 26528945 DOI: 10.1021/acs.jafc.5b04815] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A series of aryl hydrazones were synthesized and in vitro assayed for their activity on the root-knot nematode Meloidogyne incognita. The phenylhydrazones of thiophene-2-carboxyaldehyde 5, 3-methyl-2-thiophenecarboxyaldehyde, 6, and salicylaldehyde, 2, were the most potent with EC50/48h values of 16.6 ± 2.2, 23.2 ± 2.7, and 24.3 ± 1.4 mg/L, respectively. A GC-MS metabolomics analysis, after in vitro nematode treatment with hydrazone 6 at 100 mg/L for 12 h, revealed elevated levels of fatty acids such as lauric acid, stearic acid, 2-octenoic acid, and palmitic acid. Whereas control samples showed the highest levels of monoacylglycerols such as monostearin and 2-monostearin, surprisingly, 2 h after treatment with hydrazone 6, nematodes excreted 3 times the levels of ammonia eliminated in the same conditions by controls. Thus, phenylhydrazones may represent a good scaffold in the discovery and synthesis of new nematicidal compounds, and a metabolomics approach may be helpful in understanding their mechanisms of toxicity and mode of action.
Collapse
Affiliation(s)
- Kodjo Eloh
- Department of Life and Environmental Sciences, University of Cagliari , via Ospedale 72, 09124 Cagliari, Italy
| | - Monica Demurtas
- Department of Life and Environmental Sciences, University of Cagliari , via Ospedale 72, 09124 Cagliari, Italy
| | - Alessandro Deplano
- Department of Life and Environmental Sciences, University of Cagliari , via Ospedale 72, 09124 Cagliari, Italy
| | - Alvine Ngoutane Mfopa
- Department of Life and Environmental Sciences, University of Cagliari , via Ospedale 72, 09124 Cagliari, Italy
| | - Antonio Murgia
- Department of Life and Environmental Sciences, University of Cagliari , via Ospedale 72, 09124 Cagliari, Italy
| | - Andrea Maxia
- Department of Life and Environmental Sciences, University of Cagliari , via Ospedale 72, 09124 Cagliari, Italy
| | - Valentina Onnis
- Department of Life and Environmental Sciences, University of Cagliari , via Ospedale 72, 09124 Cagliari, Italy
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, University of Cagliari , via Ospedale 72, 09124 Cagliari, Italy
| |
Collapse
|
31
|
Catalpol Modulates Lifespan via DAF-16/FOXO and SKN-1/Nrf2 Activation in Caenorhabditis elegans. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:524878. [PMID: 25821490 PMCID: PMC4363898 DOI: 10.1155/2015/524878] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/05/2015] [Accepted: 01/09/2015] [Indexed: 11/18/2022]
Abstract
Catalpol is an effective component of rehmannia root and known to possess various pharmacological properties. The present study was aimed at investigating the potential effects of catalpol on the lifespan and stress tolerance using C. elegans model system. Herein, catalpol showed potent lifespan extension of wild-type nematode under normal culture condition. In addition, survival rate of catalpol-fed nematodes was significantly elevated compared to untreated control under heat and oxidative stress but not under hyperosmolality conditions. We also found that elevated antioxidant enzyme activities and expressions of stress resistance proteins were attributed to catalpol-mediated increased stress tolerance of nematode. We further investigated whether catalpol's longevity effect is related to aging-related factors including reproduction, food intake, and growth. Interestingly, catalpol exposure could attenuate pharyngeal pumping rate, indicating that catalpol may induce dietary restriction of nematode. Moreover, locomotory ability of aged nematode was significantly improved by catalpol treatment, while lipofuscin levels were attenuated, suggesting that catalpol may affect age-associated changes of nematode. Our mechanistic studies revealed that mek-1, daf-2, age-1, daf-16, and skn-1 are involved in catalpol-mediated longevity. These results indicate that catalpol extends lifespan and increases stress tolerance of C. elegans via DAF-16/FOXO and SKN-1/Nrf activation dependent on insulin/IGF signaling and JNK signaling.
Collapse
|
32
|
PKG and NHR-49 signalling co-ordinately regulate short-term fasting-induced lysosomal lipid accumulation in C. elegans. Biochem J 2014; 461:509-20. [PMID: 24854345 DOI: 10.1042/bj20140191] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Lysosomes act as terminal degradation organelles to hydrolyse macromolecules derived from both the extracellular space and the cytoplasm. In Caenorhabditis elegans fasting induces the lysosomal compartment to expand. However, the molecular and cellular mechanisms for this stress response remain largely unclear. In the present study, we find that short-term fasting leads to increased accumulation of polar lipids in lysosomes. The fasting response is co-ordinately regulated by EGL-4, the C. elegans PKG (protein kinase G) orthologue, and nuclear hormone receptor NHR-49. Further results demonstrate that EGL-4 acts in sensory neurons to enhance lysosomal lipid accumulation through inhibiting the DAF-3/SMAD pathway, whereas NHR-49 acts in intestine to inhibit lipids accumulation via activation of IPLA-2 (intracellular membrane-associated calcium-independent phospholipase A2) in cytoplasm and other hydrolases in lysosomes. Remarkably, the lysosomal lipid accumulation is independent of autophagy and RAB-7-mediated endocytosis. Taken together, our results reveal a new mechanism for lysosomal lipid metabolism during the stress response, which may provide new clues for investigations of lysosome function in energy homoeostasis.
Collapse
|
33
|
FoxO/Daf-16 restored thrashing movement reduced by heat stress in Caenorhabditis elegans. Comp Biochem Physiol B Biochem Mol Biol 2014; 170:26-32. [DOI: 10.1016/j.cbpb.2014.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 01/08/2023]
|
34
|
Kim DK, Jeon H, Cha DS. 4-Hydroxybenzoic acid-mediated lifespan extension in Caenorhabditis elegans. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.12.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
35
|
Kandasamy S, Khan W, Evans FD, Critchley AT, Zhang J, Fitton JH, Stringer DN, Gardiner VA, Prithiviraj B. A fucose containing polymer-rich fraction from the brown alga Ascophyllum nodosum mediates lifespan increase and thermal-tolerance in Caenorhabditis elegans, by differential effects on gene and protein expression. Food Funct 2014; 5:275-84. [PMID: 24323434 DOI: 10.1039/c3fo60050e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The extracts of the brown alga, Ascophyllum nodosum, which contains several bioactive compounds, have been shown to impart biotic and abiotic stress tolerance properties when consumed by animals. However, the physiological, biochemical and molecular mechanism underlying such effects remain elusive. We investigated the effect of A. nodosum fucose-containing polymer (FCP) on tolerance to thermally induced stress using the invertebrate animal model, Caenorhabditis elegans. FCP at a concentration of 150 μg mL(-1) significantly improved the life span and tolerance against thermally induced stress in C. elegans. The treatment increased the C. elegans survival by approximately 24%, when the animals were under severe thermally induced stress (i.e. 35 °C) and 27% under mild stress (i.e. 30 °C) conditions. The FCP induced differential expression of genes and proteins is associated with stress response pathways. Under thermal stress, FCP treatment significantly altered the expression of 65 proteins (54 up-regulated & 11 down-regulated). Putative functional analysis of FCP-induced differential proteins signified an association of altered proteins in stress-related molecular and biochemical pathways of the model worm.
Collapse
Affiliation(s)
- Saveetha Kandasamy
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, P.O. Box 550, Truro, NS B2B 5E3, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Goh GYS, Martelli KL, Parhar KS, Kwong AWL, Wong MA, Mah A, Hou NS, Taubert S. The conserved Mediator subunit MDT-15 is required for oxidative stress responses in Caenorhabditis elegans. Aging Cell 2014; 13:70-9. [PMID: 23957350 PMCID: PMC4326869 DOI: 10.1111/acel.12154] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2013] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) play important signaling roles in metazoans, but also cause significant molecular damage. Animals tightly control ROS levels using sophisticated defense mechanisms, yet the transcriptional pathways that induce ROS defense remain incompletely understood. In the nematode Caenorhabditis elegans, the transcription factor SKN-1 is considered a master regulator for detoxification and oxidative stress responses. Here, we show that MDT-15, a subunit of the conserved Mediator complex, is also required for oxidative stress responses in nematodes. Specifically, mdt-15 is required to express SKN-1 targets upon chemical and genetic increase in SKN-1 activity. mdt-15 is also required to express genes in SKN-1-dependent and SKN-1-independent fashions downstream of insulin/IGF-1 signaling and for the longevity of daf-2/insulin receptor mutants. At the molecular level, MDT-15 binds SKN-1 through a region distinct from the classical transcription-factor-binding KIX-domain. Moreover, mdt-15 is essential for the transcriptional response to and survival on the organic peroxide tert-butyl-hydroperoxide (tBOOH), a largely SKN-1-independent response. The MDT-15 interacting nuclear hormone receptor, NHR-64, is specifically required for tBOOH but not arsenite resistance, but NHR-64 is dispensable for the transcriptional response to tBOOH. Hence, NHR-64 and MDT-15’s mode of action remain elusive. Lastly, the role of MDT-15 in oxidative stress defense is functionally separable from its function in fatty acid metabolism, as exogenous polyunsaturated fatty acid complementation rescues developmental, but not stress sensitivity phenotypes of mdt-15 worms. Our findings reveal novel conserved players in the oxidative stress response and suggest a broad cytoprotective role for MDT-15.
Collapse
Affiliation(s)
- Grace Y. S. Goh
- Graduate Program in Cell and Developmental Biology; University of British Columbia; Vancouver BC Canada
- Centre for Molecular Medicine and Therapeutics; Child & Family Research Institute; Vancouver BC Canada
| | - Katherine L. Martelli
- Centre for Molecular Medicine and Therapeutics; Child & Family Research Institute; Vancouver BC Canada
| | - Kulveer S. Parhar
- Centre for Molecular Medicine and Therapeutics; Child & Family Research Institute; Vancouver BC Canada
| | - Ada W. L. Kwong
- Centre for Molecular Medicine and Therapeutics; Child & Family Research Institute; Vancouver BC Canada
| | - Marcus A. Wong
- Centre for Molecular Medicine and Therapeutics; Child & Family Research Institute; Vancouver BC Canada
| | - Allan Mah
- Centre for Molecular Medicine and Therapeutics; Child & Family Research Institute; Vancouver BC Canada
| | - Nicole S. Hou
- Graduate Program in Cell and Developmental Biology; University of British Columbia; Vancouver BC Canada
- Centre for Molecular Medicine and Therapeutics; Child & Family Research Institute; Vancouver BC Canada
| | - Stefan Taubert
- Graduate Program in Cell and Developmental Biology; University of British Columbia; Vancouver BC Canada
- Centre for Molecular Medicine and Therapeutics; Child & Family Research Institute; Vancouver BC Canada
- Department of Medical Genetics; University of British Columbia; Vancouver BC Canada
| |
Collapse
|
37
|
Protocatechuic acid extends lifespan and increases stress resistance in Caenorhabditis elegans. Arch Pharm Res 2013; 37:245-52. [DOI: 10.1007/s12272-013-0183-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 06/06/2013] [Indexed: 01/03/2023]
|
38
|
Chen M, Du X, Zhu Y, Wang Z, Hua S, Li Z, Guo W, Zhang G, Peng J, Jiang L. Seed Fatty Acid Reducer acts downstream of gibberellin signalling pathway to lower seed fatty acid storage in Arabidopsis. PLANT, CELL & ENVIRONMENT 2012; 35:2155-69. [PMID: 22632271 DOI: 10.1111/j.1365-3040.2012.02546.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Previous studies based on microarray analysis have found that DELLAs down-regulate several GDSL genes in unopened flowers and/or imbibed seeds. This suggests the role of DELLAs in seed fatty acid (FA) metabolism. In the present study, enhancement of gibberellin (GA) signalling through DELLA mutation or exogenous gibberellin acid A3 (GA(3) ) resulted in the up-regulated expression of transcription factors for embryogenesis and seed development, genes involved in the FA biosynthesis pathway, and five GDSL-type Seed Fatty Acid Reducer (SFAR) genes. SFAR overexpression reduced the total seed FA content and led to a particular pattern of seed FA composition. This 'SFAR footprint' can also be found in plants with enhanced GA(3) signalling. By contrast, the loss of SFAR function dramatically increases the seed FA content. The transgenic lines that overexpress SFAR were less sensitive to stressful environments, reflected by a higher germination rate and better seedling establishment compared with the wild type (WT) plants. The GDSL-type hydrolyzer is a family of proteins largely uncharacterized in Arabidopsis. Their biological function remains poorly understood. SFAR reduces seed FA storage and acts downstream of the GA signalling pathway. We provide the first evidence that some GDSL proteins are somehow involved in FA degradation in Arabidopsis seeds.
Collapse
Affiliation(s)
- Mingxun Chen
- Key Laboratory of Crop Germplasm Resource of Zhejiang Province, College of Agriculture and Biotechnology, Hangzhou 310012, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Castro C, Sar F, Shaw WR, Mishima M, Miska EA, Griffin JL. A metabolomic strategy defines the regulation of lipid content and global metabolism by Δ9 desaturases in Caenorhabditis elegans. BMC Genomics 2012; 13:36. [PMID: 22264337 PMCID: PMC3398271 DOI: 10.1186/1471-2164-13-36] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 01/20/2012] [Indexed: 11/10/2022] Open
Abstract
Background Caenorhabditis elegans provides a genetically tractable model organism to investigate the network of genes involved in fat metabolism and how regulation is perturbed to produce the complex phenotype of obesity. C. elegans possess the full range of desaturases, including the Δ9 desaturases expressed by fat-5, fat-6 and fat-7. They regulate the biosynthesis of monounsaturated fatty acids, used for the synthesis of lipids including phospholipids, triglycerides and cholesteryl esters. Results Liquid chromatography mass spectrometry (LC-MS), gas chromatography mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) spectroscopy were used to define the metabolome of all the possible knock-outs for the Δ9 desaturases, including for the first time intact lipids. Despite the genes having similar enzymatic roles, excellent discrimination was achievable for all single and viable double mutants highlighting the distinctive roles of fat-6 and fat-7, both expressing steroyl-CoA desaturases. The metabolomic changes extend to aqueous metabolites demonstrating the influence Δ9 desaturases have on regulating global metabolism and highlighting how comprehensive metabolomics is more discriminatory than classically used dyes for fat staining. Conclusions The propagation of metabolic changes across the network of metabolism demonstrates that modification of the Δ9 desaturases places C.elegans into a catabolic state compared with wildtype controls.
Collapse
Affiliation(s)
- Cecilia Castro
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | | | | | | | | | | |
Collapse
|
40
|
Kandasamy S, Fan D, Sangha JS, Khan W, Evans F, Critchley AT, Prithiviraj B. Tasco(®), a product of Ascophyllum nodosum, imparts thermal stress tolerance in Caenorhabditis elegans. Mar Drugs 2011; 9:2256-2282. [PMID: 22163185 PMCID: PMC3229234 DOI: 10.3390/md9112256] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/09/2011] [Accepted: 10/24/2011] [Indexed: 02/04/2023] Open
Abstract
Tasco(®), a commercial product manufactured from the brown alga Ascophyllum nodosum, has been shown to impart thermal stress tolerance in animals. We investigated the physiological, biochemical and molecular bases of this induced thermal stress tolerance using the invertebrate animal model, Caenorhabiditis elegans. Tasco(®) water extract (TWE) at 300 μg/mL significantly enhanced thermal stress tolerance as well as extended the life span of C. elegans. The mean survival rate of the model animals under thermal stress (35 °C) treated with 300 μg/mL and 600 μg/mL TWE, respectively, was 68% and 71% higher than the control animals. However, the TWE treatments did not affect the nematode body length, fertility or the cellular localization of daf-16. On the contrary, TWE under thermal stress significantly increased the pharyngeal pumping rate in treated animals compared to the control. Treatment with TWE also showed differential protein expression profiles over control following 2D gel-electrophoresis analysis. Furthermore, TWE significantly altered the expression of at least 40 proteins under thermal stress; among these proteins 34 were up-regulated while six were down-regulated. Mass spectroscopy analysis of the proteins altered by TWE treatment revealed that these proteins were related to heat stress tolerance, energy metabolism and a muscle structure related protein. Among them heat shock proteins, superoxide dismutase, glutathione peroxidase, aldehyde dehydrogenase, saposin-like proteins 20, myosin regulatory light chain 1, cytochrome c oxidase RAS-like, GTP-binding protein RHO A, OS were significantly up-regulated, while eukaryotic translation initiation factor 5A-1 OS, 60S ribosomal protein L18 OS, peroxiredoxin protein 2 were down regulated by TWE treatment. These results were further validated by gene expression and reporter gene expression analyses. Overall results indicate that the water soluble components of Tasco(®) imparted thermal stress tolerance in the C. elegans by altering stress related biochemical pathways.
Collapse
Affiliation(s)
- Saveetha Kandasamy
- Department of Environmental Sciences, Nova Scotia Agricultural College, P.O. Box 550, Truro NS B2B 5E3, Canada; E-Mails: (S.K.); (D.F.); (J.S.S.)
| | - Di Fan
- Department of Environmental Sciences, Nova Scotia Agricultural College, P.O. Box 550, Truro NS B2B 5E3, Canada; E-Mails: (S.K.); (D.F.); (J.S.S.)
| | - Jatinder Singh Sangha
- Department of Environmental Sciences, Nova Scotia Agricultural College, P.O. Box 550, Truro NS B2B 5E3, Canada; E-Mails: (S.K.); (D.F.); (J.S.S.)
- Acadian Seaplants Limited, 30 Brown Avenue, Dartmouth NS B3B 1X8, Canada; E-Mails: (F.E.); (A.T.C.)
| | - Wajahatullah Khan
- Genome Research Chair Unit, Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia; E-Mail:
| | - Franklin Evans
- Acadian Seaplants Limited, 30 Brown Avenue, Dartmouth NS B3B 1X8, Canada; E-Mails: (F.E.); (A.T.C.)
| | - Alan T. Critchley
- Acadian Seaplants Limited, 30 Brown Avenue, Dartmouth NS B3B 1X8, Canada; E-Mails: (F.E.); (A.T.C.)
| | - Balakrishnan Prithiviraj
- Department of Environmental Sciences, Nova Scotia Agricultural College, P.O. Box 550, Truro NS B2B 5E3, Canada; E-Mails: (S.K.); (D.F.); (J.S.S.)
| |
Collapse
|
41
|
Savory FR, Sait SM, Hope IA. DAF-16 and Δ9 desaturase genes promote cold tolerance in long-lived Caenorhabditis elegans age-1 mutants. PLoS One 2011; 6:e24550. [PMID: 21931751 PMCID: PMC3169625 DOI: 10.1371/journal.pone.0024550] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 08/12/2011] [Indexed: 01/22/2023] Open
Abstract
In Caenorhabditis elegans, mutants of the conserved insulin/IGF-1 signalling (IIS) pathway are long-lived and stress resistant due to the altered expression of DAF-16 target genes such as those involved in cellular defence and metabolism. The three Δ9 desaturase genes, fat-5, fat-6 and fat-7, are included amongst these DAF-16 targets, and it is well established that Δ9 desaturase enzymes play an important role in survival at low temperatures. However, no assessment of cold tolerance has previously been reported for IIS mutants. We demonstrate that long-lived age-1(hx546) mutants are remarkably resilient to low temperature stress relative to wild type worms, and that this is dependent upon daf-16. We also show that cold tolerance following direct transfer to low temperatures is increased in wild type worms during the facultative, daf-16 dependent, dauer stage. Although the cold tolerant phenotype of age-1(hx546) mutants is predominantly due to the Δ9 desaturase genes, additional transcriptional targets of DAF-16 are also involved. Surprisingly, survival of wild type adults following a rapid temperature decline is not dependent upon functional daf-16, and cellular distributions of a DAF-16::GFP fusion protein indicate that DAF-16 is not activated during low temperature stress. This suggests that cold-induced physiological defences are not specifically regulated by the IIS pathway and DAF-16, but expression of DAF-16 target genes in IIS mutants and dauers is sufficient to promote cross tolerance to low temperatures in addition to other forms of stress.
Collapse
Affiliation(s)
- Fiona R. Savory
- Institute of Integrative and Comparative Biology, Faculty of Biological Sciences, The University of Leeds, Leeds, United Kingdom
| | - Steven M. Sait
- Institute of Integrative and Comparative Biology, Faculty of Biological Sciences, The University of Leeds, Leeds, United Kingdom
| | - Ian A. Hope
- Institute of Integrative and Comparative Biology, Faculty of Biological Sciences, The University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
Thyagarajan B, Blaszczak AG, Chandler KJ, Watts JL, Johnson WE, Graves BJ. ETS-4 is a transcriptional regulator of life span in Caenorhabditis elegans. PLoS Genet 2010; 6:e1001125. [PMID: 20862312 PMCID: PMC2940738 DOI: 10.1371/journal.pgen.1001125] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 08/13/2010] [Indexed: 01/05/2023] Open
Abstract
Aging is a complex phenotype responsive to a plethora of environmental inputs; yet only a limited number of transcriptional regulators are known to influence life span. How the downstream expression programs mediated by these factors (or others) are coordinated into common or distinct set of aging effectors is an addressable question in model organisms, such as C. elegans. Here, we establish the transcription factor ETS-4, an ortholog of vertebrate SPDEF, as a longevity determinant. Adult worms with ets-4 mutations had a significant extension of mean life span. Restoring ETS-4 activity in the intestine, but not neurons, of ets-4 mutant worms rescued life span to wild-type levels. Using RNAi, we demonstrated that ets-4 is required post-developmentally to regulate adult life span; thus uncoupling the role of ETS-4 in aging from potential functions in worm intestinal development. Seventy ETS-4-regulated genes, identified by gene expression profiling of two distinct ets-4 alleles and analyzed by bioinformatics, were enriched for known longevity effectors that function in lipid transport, lipid metabolism, and innate immunity. Putative target genes were enriched for ones that change expression during normal aging, the majority of which are controlled by the GATA factors. Also, some ETS-4-regulated genes function downstream of the FOXO factor, DAF-16 and the insulin/IGF-1 signaling pathway. However, epistasis and phenotypic analyses indicate that ets-4 functioned in parallel to the insulin/IGF-1 receptor, daf-2 and akt-1/2 kinases. Furthermore, ets-4 required daf-16 to modulate aging, suggesting overlap in function at the level of common targets that affect life span. In conclusion, ETS-4 is a new transcriptional regulator of aging, which shares transcriptional targets with GATA and FOXO factors, suggesting that overlapping pathways direct common sets of lifespan-related genes. Animal life span is regulated in response to developmental and environmental inputs through coordinate changes in gene expression. Thus, longevity determinants include DNA-binding proteins that regulate gene expression by controlling transcription. Here, we explored the physiological role of the transcriptional regulator, ETS-4, in the roundworm Caenorhabditis elegans. Our data showed that worms that lack ETS-4 lived significantly longer, revealing ETS-4′s role in the transcription network that regulates life span. We identified 70 genes whose expression was modulated by ETS-4 that function in lipid transport, lipid metabolism and innate immunity. Some of the ETS-4-regulated genes were also controlled by two other regulators of aging, the FOXO and GATA factors. We concluded that a common set of transcriptional targets orchestrate the network of physiological factors that affect aging. ETS-4 is closely related to the human ETS protein SPDEF that exhibits aberrant expression in breast and prostate tumors. Because the genetic pathways that regulate aging are well conserved in other organisms, including humans, our findings could lead to a better understanding of SPDEF function and longevity regulation in mammals.
Collapse
Affiliation(s)
- Bargavi Thyagarajan
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Adam G. Blaszczak
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Katherine J. Chandler
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Jennifer L. Watts
- School of Molecular Biosciences, Washington State University, Pullman, Washington, United States of America
| | - W. Evan Johnson
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, United States of America
- Department of Statistics, Brigham Young University, Provo, Utah, United States of America
| | - Barbara J. Graves
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|