1
|
Hou J, Mao YL, Lu YH, Nwankwo C, Hu Y, Zhu LR, Dong XY, Cui HL. A Halophilic Aminopeptidase With Broad Substrate Specificity: Exploring Its Catalytic Potential and Application in Salt-Fermented Foods. J Food Sci 2025; 90:e70218. [PMID: 40271915 DOI: 10.1111/1750-3841.70218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/28/2025] [Accepted: 04/05/2025] [Indexed: 04/25/2025]
Abstract
Halophilic aminopeptidases with broad substrate specificity represent valuable biocatalysts for promoting protein hydrolysis in high-salt fermented foods. In this study, an M42 aminopeptidase from the halophilic archaeon, Haladaptatus litoreus, was identified and designated as APHap. The optimal reaction conditions for APHap were 2-2.5 M NaCl, a temperature of 60°C, and a pH of 7.5. It displayed robust activity and stability across a wide range of salinity, temperature, and pH conditions. APHap demonstrated exceptional tolerance to both organic solvents and surfactants. In contrast to most characterized M42 aminopeptidases, APHap exhibited a broad substrate spectrum, with the highest activity observed when using Leu-p-nitroaniline as the substrate. The Vmax and Km for APHap were 5.28 µmol/min/mg and 0.59 mM, respectively. When applied for fish protein hydrolysis in hypersaline conditions, APHap significantly increased the total free amino acid content, particularly enhancing the proportion of sweet and umami amino acids. To our knowledge, APHap is the first halophilic and mesophilic M42 aminopeptidase characterized from the genus Haladaptus. These desirable properties indicated that APHap has great potential for enhancing protein hydrolysis during the processing of high-salt fermented foods. PRACTICAL APPLICATION: The characteristics of APHap conform with the demands of high-salt fermented food production, highlighting its potential as a biocatalyst for improving both process efficiency and product quality.
Collapse
Affiliation(s)
- Jing Hou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Ya-Ling Mao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Yi-Hui Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Chidiebele Nwankwo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Yao Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Ling-Rui Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Xin-Yue Dong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
2
|
João J, Prazeres DMF. Manufacturing of non-viral protein nanocages for biotechnological and biomedical applications. Front Bioeng Biotechnol 2023; 11:1200729. [PMID: 37520292 PMCID: PMC10374429 DOI: 10.3389/fbioe.2023.1200729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Protein nanocages are highly ordered nanometer scale architectures, which are typically formed by homo- or hetero-self-assembly of multiple monomers into symmetric structures of different size and shape. The intrinsic characteristics of protein nanocages make them very attractive and promising as a biological nanomaterial. These include, among others, a high surface/volume ratio, multi-functionality, ease to modify or manipulate genetically or chemically, high stability, mono-dispersity, and biocompatibility. Since the beginning of the investigation into protein nanocages, several applications were conceived in a variety of areas such as drug delivery, vaccine development, bioimaging, biomineralization, nanomaterial synthesis and biocatalysis. The ability to generate large amounts of pure and well-folded protein assemblies is one of the keys to transform nanocages into clinically valuable products and move biomedical applications forward. This calls for the development of more efficient biomanufacturing processes and for the setting up of analytical techniques adequate for the quality control and characterization of the biological function and structure of nanocages. This review concisely covers and overviews the progress made since the emergence of protein nanocages as a new, next-generation class of biologics. A brief outline of non-viral protein nanocages is followed by a presentation of their main applications in the areas of bioengineering, biotechnology, and biomedicine. Afterwards, we focus on a description of the current processes used in the manufacturing of protein nanocages with particular emphasis on the most relevant aspects of production and purification. The state-of-the-art on current characterization techniques is then described and future alternative or complementary approaches in development are also discussed. Finally, a critical analysis of the limitations and drawbacks of the current manufacturing strategies is presented, alongside with the identification of the major challenges and bottlenecks.
Collapse
Affiliation(s)
- Jorge João
- iBB–Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Duarte Miguel F. Prazeres
- iBB–Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
3
|
Gauto DF, Macek P, Malinverni D, Fraga H, Paloni M, Sučec I, Hessel A, Bustamante JP, Barducci A, Schanda P. Functional control of a 0.5 MDa TET aminopeptidase by a flexible loop revealed by MAS NMR. Nat Commun 2022; 13:1927. [PMID: 35395851 PMCID: PMC8993905 DOI: 10.1038/s41467-022-29423-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/14/2022] [Indexed: 02/07/2023] Open
Abstract
Large oligomeric enzymes control a myriad of cellular processes, from protein synthesis and degradation to metabolism. The 0.5 MDa large TET2 aminopeptidase, a prototypical protease important for cellular homeostasis, degrades peptides within a ca. 60 Å wide tetrahedral chamber with four lateral openings. The mechanisms of substrate trafficking and processing remain debated. Here, we integrate magic-angle spinning (MAS) NMR, mutagenesis, co-evolution analysis and molecular dynamics simulations and reveal that a loop in the catalytic chamber is a key element for enzymatic function. The loop is able to stabilize ligands in the active site and may additionally have a direct role in activating the catalytic water molecule whereby a conserved histidine plays a key role. Our data provide a strong case for the functional importance of highly dynamic - and often overlooked - parts of an enzyme, and the potential of MAS NMR to investigate their dynamics at atomic resolution.
Collapse
Affiliation(s)
- Diego F Gauto
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France
- ICSN, CNRS UPR2301, Univ. Paris-Saclay, Gif-sur-Yvette, France
| | - Pavel Macek
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France
- Celonic AG, Eulerstrasse 55, 4051, Basel, Switzerland
| | - Duccio Malinverni
- Department of Structural Biology and Center for Data Driven Discovery, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Hugo Fraga
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France
- Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- i3S, Instituto de Investigacao e Inovacao em Saude, Universidade do Porto, Porto, Portugal
| | - Matteo Paloni
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Iva Sučec
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France
| | - Audrey Hessel
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France
| | - Juan Pablo Bustamante
- Instituto de Bioingenieria y Bioinformatica, IBB (CONICET-UNER), Oro Verde, Entre Rios, Argentina
| | - Alessandro Barducci
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, INSERM, Montpellier, France.
| | - Paul Schanda
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France.
- Institute of Science and Technology Austria, Am Campus 1, A-3400, Klosterneuburg, Austria.
| |
Collapse
|
4
|
Ali MQ, Kohler TP, Schulig L, Burchhardt G, Hammerschmidt S. Pneumococcal Extracellular Serine Proteases: Molecular Analysis and Impact on Colonization and Disease. Front Cell Infect Microbiol 2021; 11:763152. [PMID: 34790590 PMCID: PMC8592123 DOI: 10.3389/fcimb.2021.763152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/08/2021] [Indexed: 11/24/2022] Open
Abstract
The pathobiont Streptococcus pneumoniae causes life-threatening diseases, including pneumonia, sepsis, meningitis, or non-invasive infections such as otitis media. Serine proteases are enzymes that have been emerged during evolution as one of the most abundant and functionally diverse group of proteins in eukaryotic and prokaryotic organisms. S. pneumoniae expresses up to four extracellular serine proteases belonging to the category of trypsin-like or subtilisin-like family proteins: HtrA, SFP, PrtA, and CbpG. These serine proteases have recently received increasing attention because of their immunogenicity and pivotal role in the interaction with host proteins. This review is summarizing and focusing on the molecular and functional analysis of pneumococcal serine proteases, thereby discussing their contribution to pathogenesis.
Collapse
Affiliation(s)
- Murtadha Q Ali
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Thomas P Kohler
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Lukas Schulig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Gerhard Burchhardt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| |
Collapse
|
5
|
Abstract
Bacterial proteases and peptidases are integral to cell physiology and stability, and their necessity in Streptococcus pneumoniae is no exception. Protein cleavage and processing mechanisms within the bacterial cell serve to ensure that the cell lives and functions in its commensal habitat and can respond to new environments presenting stressful conditions. For S. pneumoniae, the human nasopharynx is its natural habitat. In the context of virulence, movement of S. pneumoniae to the lungs, blood, or other sites can instigate responses by the bacteria that result in their proteases serving dual roles of self-protein processors and virulence factors of host protein targets.
Collapse
Affiliation(s)
- Mary E Marquart
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi USA
| |
Collapse
|
6
|
Dutoit R, Brandt N, Van Gompel T, Van Elder D, Van Dyck J, Sobott F, Droogmans L. M42 aminopeptidase catalytic site: the structural and functional role of a strictly conserved aspartate residue. Proteins 2020; 88:1639-1647. [PMID: 32673419 DOI: 10.1002/prot.25982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/06/2020] [Accepted: 07/02/2020] [Indexed: 11/08/2022]
Abstract
The M42 aminopeptidases are a family of dinuclear aminopeptidases widely distributed in Prokaryotes. They are potentially associated to the proteasome, achieving complete peptide destruction. Their most peculiar characteristic is their quaternary structure, a tetrahedron-shaped particle made of twelve subunits. The catalytic site of M42 aminopeptidases is defined by seven conserved residues. Five of them are involved in metal ion binding which is important to maintain both the activity and the oligomeric state. The sixth conserved residue, a glutamate, is the catalytic base deprotonating the water molecule during peptide bond hydrolysis. The seventh residue is an aspartate whose function remains poorly understood. This aspartate residue, however, must have a critical role as it is strictly conserved in all MH clan enzymes. It forms some kind of catalytic triad with the histidine residue and the metal ion of the M2 binding site. We assess its role in TmPep1050, an M42 aminopeptidase of Thermotoga maritima, through a mutational approach. Asp-62 was substituted with alanine, asparagine, or glutamate residue. The Asp-62 substitutions completely abolished TmPep1050 activity and impeded dodecamer formation. They also interfered with metal ion binding as only one cobalt ion is bound per subunit instead of two. The structure of Asp62Ala variant was solved at 1.5 Å showing how the substitution has an impact on the active site fold. We propose a structural role for Asp-62, helping to stabilize a crucial loop in the active site and to position correctly the catalytic base and a metal ion ligand of the M1 site.
Collapse
Affiliation(s)
- Raphaël Dutoit
- Laboratory of Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, Brussels, Belgium.,Labiris Institut de Recherche, Brussels, Belgium
| | | | - Tom Van Gompel
- Biomolecular & Analytical Mass Spectrometry, Department of Chemistry, Universiteit van Antwerpen, Antwerpen, Belgium
| | - Dany Van Elder
- Laboratory of Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, Brussels, Belgium
| | - Jeroen Van Dyck
- Biomolecular & Analytical Mass Spectrometry, Department of Chemistry, Universiteit van Antwerpen, Antwerpen, Belgium
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry, Department of Chemistry, Universiteit van Antwerpen, Antwerpen, Belgium.,Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - Louis Droogmans
- Laboratory of Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
7
|
P1' Residue-Oriented Virtual Screening for Potent and Selective Phosphinic (Dehydro) Dipeptide Inhibitors of Metallo-Aminopeptidases. Biomolecules 2020; 10:biom10040659. [PMID: 32344658 PMCID: PMC7225938 DOI: 10.3390/biom10040659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 01/01/2023] Open
Abstract
Designing side chain substituents complementary to enzyme binding pockets is of great importance in the construction of potent and selective phosphinic dipeptide inhibitors of metallo-aminopeptidases. Proper structure selection makes inhibitor construction more economic, as the development process typically consists of multiple iterative preparation/bioassay steps. On the basis of these principles, using noncomplex computation and modeling methodologies, we comprehensively screened 900 commercial precursors of the P1′ residues of phosphinic dipeptide and dehydrodipeptide analogs to identify the most promising ligands of 52 metallo-dependent aminopeptidases with known crystal structures. The results revealed several nonproteinogenic residues with an improved energy of binding compared with the best known inhibitors. The data are discussed taking into account the selectivity and stereochemical implications of the enzymes. Using this approach, we were able to identify nontrivial structural elements substituting the recognized phosphinic peptidomimetic scaffold of metallo-aminopeptidase inhibitors.
Collapse
|
8
|
Dutoit R, Van Gompel T, Brandt N, Van Elder D, Van Dyck J, Sobott F, Droogmans L. How metal cofactors drive dimer-dodecamer transition of the M42 aminopeptidase TmPep1050 of Thermotoga maritima. J Biol Chem 2019; 294:17777-17789. [PMID: 31611236 DOI: 10.1074/jbc.ra119.009281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/24/2019] [Indexed: 11/06/2022] Open
Abstract
The M42 aminopeptidases are dinuclear aminopeptidases displaying a peculiar tetrahedron-shaped structure with 12 subunits. Their quaternary structure results from the self-assembly of six dimers controlled by their divalent metal ion cofactors. The oligomeric-state transition remains debated despite the structural characterization of several archaeal M42 aminopeptidases. The main bottleneck is the lack of dimer structures, hindering the understanding of structural changes occurring during the oligomerization process. We present the first dimer structure of an M42 aminopeptidase, TmPep1050 of Thermotoga maritima, along with the dodecamer structure. The comparison of both structures has allowed us to describe how the metal ion cofactors modulate the active-site fold and, subsequently, affect the interaction interface between dimers. A mutational study shows that the M1 site strictly controls dodecamer formation. The dodecamer structure of TmPep1050 also reveals that a part of the dimerization domain delimits the catalytic pocket and could participate in substrate binding.
Collapse
Affiliation(s)
- Raphaël Dutoit
- Laboratory of Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, B6041 Charleroi, Belgium .,Labiris Institut de Recherche, avenue Emile Gryzon 1, B1070 Brussels, Belgium
| | - Tom Van Gompel
- Biomolecular and Analytical Mass Spectrometry, Department of Chemistry, Universiteit van Antwerpen, Groenenborgerlaan 171, B2020 Antwerpen, Belgium
| | - Nathalie Brandt
- Labiris Institut de Recherche, avenue Emile Gryzon 1, B1070 Brussels, Belgium
| | - Dany Van Elder
- Laboratory of Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, B6041 Charleroi, Belgium
| | - Jeroen Van Dyck
- Biomolecular and Analytical Mass Spectrometry, Department of Chemistry, Universiteit van Antwerpen, Groenenborgerlaan 171, B2020 Antwerpen, Belgium
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry, Department of Chemistry, Universiteit van Antwerpen, Groenenborgerlaan 171, B2020 Antwerpen, Belgium.,Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Louis Droogmans
- Laboratory of Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, B6041 Charleroi, Belgium
| |
Collapse
|
9
|
Richts B, Rosenberg J, Commichau FM. A Survey of Pyridoxal 5'-Phosphate-Dependent Proteins in the Gram-Positive Model Bacterium Bacillus subtilis. Front Mol Biosci 2019; 6:32. [PMID: 31134210 PMCID: PMC6522883 DOI: 10.3389/fmolb.2019.00032] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
The B6 vitamer pyridoxal 5′-phosphate (PLP) is a co-factor for proteins and enzymes that are involved in diverse cellular processes. Therefore, PLP is essential for organisms from all kingdoms of life. Here we provide an overview about the PLP-dependent proteins from the Gram-positive soil bacterium Bacillus subtilis. Since B. subtilis serves as a model system in basic research and as a production host in industry, knowledge about the PLP-dependent proteins could facilitate engineering the bacteria for biotechnological applications. The survey revealed that the majority of the PLP-dependent proteins are involved in metabolic pathways like amino acid biosynthesis and degradation, biosynthesis of antibacterial compounds, utilization of nucleotides as well as in iron and carbon metabolism. Many PLP-dependent proteins participate in de novo synthesis of the co-factors biotin, folate, heme, and NAD+ as well as in cell wall metabolism, tRNA modification, regulation of gene expression, sporulation, and biofilm formation. A surprisingly large group of PLP-dependent proteins (29%) belong to the group of poorly characterized proteins. This review underpins the need to characterize the PLP-dependent proteins of unknown function to fully understand the “PLP-ome” of B. subtilis.
Collapse
Affiliation(s)
- Björn Richts
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| | - Jonathan Rosenberg
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| | - Fabian M Commichau
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| |
Collapse
|
10
|
Characterization of a Glycyl-Specific TET Aminopeptidase Complex from Pyrococcus horikoshii. J Bacteriol 2018; 200:JB.00059-18. [PMID: 29866801 DOI: 10.1128/jb.00059-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/29/2018] [Indexed: 01/03/2023] Open
Abstract
The TET peptidases are large self-compartmentalized complexes that form dodecameric particles. These metallopeptidases, members of the M42 family, are widely distributed in prokaryotes. Three different versions of TET complexes, with different substrate specificities, were found to coexist in the cytosol of the hyperthermophilic archaeon Pyrococcus horikoshii In the present work, we identified a novel type of TET complex that we named PhTET4. The recombinant PhTET4 enzyme was found to self-assemble as a tetrahedral edifice similar to other TET complexes. We determined PhTET4 substrate specificity using a broad range of monoacyl chromogenic and fluorogenic compounds. High-performance liquid chromatographic peptide degradation assays were also performed. These experiments demonstrated that PhTET4 is a strict glycyl aminopeptidase, devoid of amidolytic activity toward other types of amino acids. The catalytic efficiency of PhTET4 was studied under various conditions. The protein was found to be a hyperthermophilic alkaline aminopeptidase. Interestingly, unlike other peptidases from the same family, it was activated only by nickel ions.IMPORTANCE We describe here the first known peptidase displaying exclusive activity toward N-terminal glycine residues. This work indicates a specific role for intracellular glycyl peptidases in deep sea hyperthermophilic archaeal metabolism. These observations also provide critical evidence for the use of these archaeal extremozymes for biotechnological applications.
Collapse
|
11
|
Nezakati T, Seifalian A, Tan A, Seifalian AM. Conductive Polymers: Opportunities and Challenges in Biomedical Applications. Chem Rev 2018; 118:6766-6843. [DOI: 10.1021/acs.chemrev.6b00275] [Citation(s) in RCA: 354] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Toktam Nezakati
- Google Inc.., Mountain View, California 94043, United States
- Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London NW3 2QG, United Kingdom
| | - Amelia Seifalian
- UCL Medical School, University College London, London WC1E 6BT, United Kingdom
| | - Aaron Tan
- UCL Medical School, University College London, London WC1E 6BT, United Kingdom
| | - Alexander M. Seifalian
- NanoRegMed Ltd. (Nanotechnology and Regenerative Medicine Commercialization Centre), The London Innovation BioScience Centre, London NW1 0NH, United Kingdom
| |
Collapse
|
12
|
Ewert J, Glück C, Strasdeit H, Fischer L, Stressler T. Influence of the metal ion on the enzyme activity and kinetics of PepA from Lactobacillus delbrueckii. Enzyme Microb Technol 2018; 110:69-78. [DOI: 10.1016/j.enzmictec.2017.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/13/2017] [Accepted: 10/10/2017] [Indexed: 10/18/2022]
|
13
|
Maiti S, Samanta T, Sahoo S, Roy S. The Dual Carboxymethyl Cellulase and Gelatinase Activities of a Newly Isolated Protein from Brevibacillus agri ST15c10 Confer Reciprocal Regulations in Substrate Utilization. J Mol Microbiol Biotechnol 2017; 27:319-331. [PMID: 29197868 DOI: 10.1159/000479109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/27/2017] [Indexed: 11/19/2022] Open
Abstract
A protein showing endoglucanase-peptidase activity was prepared from a newly isolated bacterium (ST15c10). We identified ST15c10 as Brevibacillus agri based on electron-microscopic images and its 16S-rDNA sequence (GenBank accession No. HM446043), which exhibits 98.9% sequence identity to B. agri (KZ17)/B. formosus (DSM-9885T)/B. brevis. The enzyme was purified to homogeneity and gave a single peak during high-performance liquid chromatography on a Seralose 6B-150 gel-matrix/C-18 column. MALDI-TOF mass-spectrometry and bioinformatics studies revealed significant similarity to M42-aminopeptidases/endoglucanases of the CelM family. These enzymes are found in all Brevibacillus strains for which the genome sequence is known. ST15c10 grows optimally on carboxymethyl cellulose (CMC)-gelatin (40°C/pH 8-9), and also shows strong growth/carboxymethyl cellulase (CMCase) activity in submerged bagasse fermentation. The purified enzyme also functions as endoglucanase with solid bagasse/rice straw. Its CMCase activity (optimal at pH 5.6 and 60°C/Km = 35.5 µM/Vmax = 1,024U) was visualized by zymography on a CMC-polyacrylamide gel, which provided a strong band of approximately 70 kDa. The purified enzyme also showed strong peptidase (gelatinase) activity (pH 7.2/40°C during zymography on 6-12% gelatin/1% gelatin-PAGE (at approx. 70 kDa). The CMCase activity is inhibited by the metal ions Mn/Cu/Fe/Co (50%), Hg/KMnO4 (100%), and by glucose or lactose (50-75%; all at 1 mM). The observed dose/time-dependent inhibition by Hg ions could be prevented with 2-mercaptoethanol. A comparison of the B. agri endoglucanase-aminopeptidase (ELK43520; 350 aa) with other members of the M42-family revealed the conservation of active-site residues Cys256/Cys260, which were previously identified as metal-binding sites. Regulation of the endoglucanase activity probably occurs via metal binding-triggered changes in the redox state of the enzyme. Studies on this type of enzyme are of high importance for basic scientific and industrial research.
Collapse
Affiliation(s)
- Smarajit Maiti
- Department of Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, India
| | | | | | | |
Collapse
|
14
|
Stressler T, Tanzer C, Ewert J, Claaßen W, Fischer L. Simple purification method for a recombinantly expressed native His-tag-free aminopeptidase A from Lactobacillus delbrueckii. Protein Expr Purif 2017; 131:7-15. [DOI: 10.1016/j.pep.2016.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/12/2016] [Accepted: 10/31/2016] [Indexed: 10/20/2022]
|
15
|
San BH, Ravichandran S, Park KS, Subramani VK, Kim KK. Bioinorganic Nanohybrid Catalyst for Multistep Synthesis of Acetaminophen, an Analgesic. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30058-30065. [PMID: 27797174 DOI: 10.1021/acsami.6b12875] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A bioinorganic nanohybrid catalyst was synthesized by combining esterase with a platinum nanoparticle (PtNP). The combination of two catalysts resulted in enhanced catalytic activities, esterase hydrolysis, and hydrogenation in PtNPs, as compared to each catalyst alone. This hybrid catalyst can be successfully used in the multistep synthesis of acetaminophen (paracetamol), an analgesic and antipyretic drug, in a one-pot reaction with high yield and efficacy within a short time, demonstrating that the nanobiohybrid catalyst offers advantages in the synthesis of fine chemicals in industrial applications.
Collapse
Affiliation(s)
- Boi Hoa San
- Sungkyunkwan Advanced Institute of Nanotechnology, Sungkyunkwan University , Suwon 440-746, Korea
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine , Suwon 440-746, Korea
| | - Subramaniyam Ravichandran
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine , Suwon 440-746, Korea
| | - Kwang-Su Park
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine , Suwon 440-746, Korea
| | - Vinod Kumar Subramani
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine , Suwon 440-746, Korea
| | - Kyeong Kyu Kim
- Sungkyunkwan Advanced Institute of Nanotechnology, Sungkyunkwan University , Suwon 440-746, Korea
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine , Suwon 440-746, Korea
| |
Collapse
|
16
|
Stressler T, Ewert J, Merz M, Funk J, Claaßen W, Lutz-Wahl S, Schmidt H, Kuhn A, Fischer L. A Novel Glutamyl (Aspartyl)-Specific Aminopeptidase A from Lactobacillus delbrueckii with Promising Properties for Application. PLoS One 2016; 11:e0152139. [PMID: 27003449 PMCID: PMC4803204 DOI: 10.1371/journal.pone.0152139] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/09/2016] [Indexed: 11/20/2022] Open
Abstract
Lactic acid bacteria (LAB) are auxotrophic for a number of amino acids. Thus, LAB have one of the strongest proteolytic systems to acquit their amino acid requirements. One of the intracellular exopeptidases present in LAB is the glutamyl (aspartyl) specific aminopeptidase (PepA; EC 3.4.11.7). Most of the PepA enzymes characterized yet, belonged to Lactococcus lactis sp., but no PepA from a Lactobacillus sp. has been characterized so far. In this study, we cloned a putative pepA gene from Lb. delbrueckii ssp. lactis DSM 20072 and characterized it after purification. For comparison, we also cloned, purified and characterized PepA from Lc. lactis ssp. lactis DSM 20481. Due to the low homology between both enzymes (30%), differences between the biochemical characteristics were very likely. This was confirmed, for example, by the more acidic optimum pH value of 6.0 for Lb-PepA compared to pH 8.0 for Lc-PepA. In addition, although the optimum temperature is quite similar for both enzymes (Lb-PepA: 60°C; Lc-PepA: 65°C), the temperature stability after three days, 20°C below the optimum temperature, was higher for Lb-PepA (60% residual activity) than for Lc-PepA (2% residual activity). EDTA inhibited both enzymes and the strongest activation was found for CoCl2, indicating that both enzymes are metallopeptidases. In contrast to Lc-PepA, disulfide bond-reducing agents such as dithiothreitol did not inhibit Lb-PepA. Finally, Lb-PepA was not product-inhibited by L-Glu, whereas Lc-PepA showed an inhibition.
Collapse
Affiliation(s)
- Timo Stressler
- Department of Biotechnology and Enzyme Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Jacob Ewert
- Department of Biotechnology and Enzyme Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Michael Merz
- Department of Biotechnology and Enzyme Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Joshua Funk
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Wolfgang Claaßen
- Department of Biotechnology and Enzyme Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Sabine Lutz-Wahl
- Department of Biotechnology and Enzyme Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Andreas Kuhn
- Institute of Microbiology, University of Hohenheim, Stuttgart, Germany
| | - Lutz Fischer
- Department of Biotechnology and Enzyme Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
17
|
Colombo M, Girard E, Franzetti B. Tuned by metals: the TET peptidase activity is controlled by 3 metal binding sites. Sci Rep 2016; 6:20876. [PMID: 26853450 PMCID: PMC4745047 DOI: 10.1038/srep20876] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 01/11/2016] [Indexed: 11/09/2022] Open
Abstract
TET aminopeptidases are dodecameric particles shared in the three life domains involved in various biological processes, from carbon source provider in archaea to eye-pressure regulation in humans. Each subunit contains a dinuclear metal site (M1 and M2) responsible for the enzyme catalytic activity. However, the role of each metal ion is still uncharacterized. Noteworthy, while mesophilic TETs are activated by Mn(2+), hyperthermophilic TETs prefers Co(2+). Here, by means of anomalous x-ray crystallography and enzyme kinetics measurements of the TET3 aminopeptidase from the hyperthermophilic organism Pyrococcus furiosus (PfTET3), we show that M2 hosts the catalytic activity of the enzyme, while M1 stabilizes the TET3 quaternary structure and controls the active site flexibility in a temperature dependent manner. A new third metal site (M3) was found in the substrate binding pocket, modulating the PfTET3 substrate preferences. These data show that TET activity is tuned by the molecular interplay among three metal sites.
Collapse
Affiliation(s)
- Matteo Colombo
- CNRS, IBS, F-38027 Grenoble, France.,CEA, DSV, IBS, F-38027 Grenoble, France.,Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France
| | - Eric Girard
- CNRS, IBS, F-38027 Grenoble, France.,CEA, DSV, IBS, F-38027 Grenoble, France.,Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France
| | - Bruno Franzetti
- CNRS, IBS, F-38027 Grenoble, France.,CEA, DSV, IBS, F-38027 Grenoble, France.,Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France
| |
Collapse
|
18
|
Appolaire A, Colombo M, Basbous H, Gabel F, Girard E, Franzetti B. TET peptidases: A family of tetrahedral complexes conserved in prokaryotes. Biochimie 2015; 122:188-96. [PMID: 26546839 DOI: 10.1016/j.biochi.2015.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/02/2015] [Indexed: 11/26/2022]
Abstract
The TET peptidases are large polypeptide destruction machines present among prokaryotes. They form 12-subunits hollow tetrahedral particles, and belong to the family of M42 metallo-peptidases. Structural characterization of various archaeal and bacterial complexes has revealed a unique mechanism of internal compartmentalization and peptide trafficking that distinguishes them from the other oligomeric peptidases. Different versions of the TET complex often co-exist in the cytosol of microorganisms. In depth enzymatic studies have revealed that they are non-processive cobalt-activated aminopeptidases and display contrasting substrate specificities based on the properties of the catalytic chambers. Recent studies have shed light on the assembly mechanism of homo and hetero-dodecameric TET complexes and shown that the activity of TET aminopeptidase towards polypeptides is coupled with its assembly process. These findings suggested a functional regulation based on oligomerization control in vivo. This review describes a current knowledge on M42 TET peptidases biochemistry and discuss their possible physiological roles. This article is a part of the Special Issue entitled: «A potpourri of proteases and inhibitors: from molecular toolboxes to signalling scissors».
Collapse
Affiliation(s)
- Alexandre Appolaire
- CNRS, IBS, F-38027 Grenoble, France; CEA, DSV, IBS, F-38027 Grenoble, France; Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France
| | - Matteo Colombo
- CNRS, IBS, F-38027 Grenoble, France; CEA, DSV, IBS, F-38027 Grenoble, France; Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France
| | - Hind Basbous
- CNRS, IBS, F-38027 Grenoble, France; CEA, DSV, IBS, F-38027 Grenoble, France; Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France
| | - Frank Gabel
- CNRS, IBS, F-38027 Grenoble, France; CEA, DSV, IBS, F-38027 Grenoble, France; Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France
| | - E Girard
- CNRS, IBS, F-38027 Grenoble, France; CEA, DSV, IBS, F-38027 Grenoble, France; Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France
| | - Bruno Franzetti
- CNRS, IBS, F-38027 Grenoble, France; CEA, DSV, IBS, F-38027 Grenoble, France; Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France.
| |
Collapse
|
19
|
San BH, Kim JA, Kulkarni A, Moh SH, Dugasani SR, Subramani VK, Thorat ND, Lee HH, Park SH, Kim T, Kim KK. Combining protein-shelled platinum nanoparticles with graphene to build a bionanohybrid capacitor. ACS NANO 2014; 8:12120-12129. [PMID: 25426677 DOI: 10.1021/nn503178t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The electronic properties of biomolecules and their hybrids with inorganic materials can be utilized for the fabrication of nanoelectronic devices. Here, we report the charge transport behavior of protein-shelled inorganic nanoparticles combined with graphene and demonstrate their possible application as a bionanohybrid capacitor. The conductivity of PepA, a bacterial aminopeptidase used as a protein shell (PS), and the platinum nanoparticles (PtNPs) encapsulated by PepA was measured using a field effect transistor (FET) and a graphene-based FET (GFET). Furthermore, we confirmed that the electronic properties of PepA-PtNPs were controlled by varying the size of the PtNPs. The use of two poly(methyl methacrylate) (PMMA)-coated graphene layers separated by PepA-PtNPs enabled us to build a bionanohybrid capacitor with tunable properties. The combination of bioinorganic nanohybrids with graphene is regarded as the cornerstone for developing flexible and biocompatible bionanoelectronic devices that can be integrated into bioelectric circuits for biomedical purposes.
Collapse
Affiliation(s)
- Boi Hoa San
- Sungkyunkwan Advanced Institute of Nanotechnology, Sungkyunkwan University , Suwon 440-746, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Appolaire A, Girard E, Colombo M, Durá MA, Moulin M, Härtlein M, Franzetti B, Gabel F. Small-angle neutron scattering reveals the assembly mode and oligomeric architecture of TET, a large, dodecameric aminopeptidase. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2983-93. [PMID: 25372688 PMCID: PMC4220976 DOI: 10.1107/s1399004714018446] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/13/2014] [Indexed: 01/10/2023]
Abstract
The specific self-association of proteins into oligomeric complexes is a common phenomenon in biological systems to optimize and regulate their function. However, de novo structure determination of these important complexes is often very challenging for atomic-resolution techniques. Furthermore, in the case of homo-oligomeric complexes, or complexes with very similar building blocks, the respective positions of subunits and their assembly pathways are difficult to determine using many structural biology techniques. Here, an elegant and powerful approach based on small-angle neutron scattering is applied, in combination with deuterium labelling and contrast variation, to elucidate the oligomeric organization of the quaternary structure and the assembly pathways of 468 kDa, hetero-oligomeric and symmetric Pyrococcus horikoshii TET2-TET3 aminopeptidase complexes. The results reveal that the topology of the PhTET2 and PhTET3 dimeric building blocks within the complexes is not casual but rather suggests that their quaternary arrangement optimizes the catalytic efficiency towards peptide substrates. This approach bears important potential for the determination of quaternary structures and assembly pathways of large oligomeric and symmetric complexes in biological systems.
Collapse
Affiliation(s)
- Alexandre Appolaire
- Université Grenoble Alpes, IBS, 38044 Grenoble, France
- CNRS, IBS, 38044 Grenoble, France
- CEA, IBS, 38044 Grenoble, France
| | - Eric Girard
- Université Grenoble Alpes, IBS, 38044 Grenoble, France
- CNRS, IBS, 38044 Grenoble, France
- CEA, IBS, 38044 Grenoble, France
| | - Matteo Colombo
- Université Grenoble Alpes, IBS, 38044 Grenoble, France
- CNRS, IBS, 38044 Grenoble, France
- CEA, IBS, 38044 Grenoble, France
| | - M. Asunción Durá
- Université Grenoble Alpes, IBS, 38044 Grenoble, France
- CNRS, IBS, 38044 Grenoble, France
- CEA, IBS, 38044 Grenoble, France
| | - Martine Moulin
- Life Sciences Group, Institut Laue–Langevin, 38042 Grenoble CEDEX 9, France
| | - Michael Härtlein
- Life Sciences Group, Institut Laue–Langevin, 38042 Grenoble CEDEX 9, France
| | - Bruno Franzetti
- Université Grenoble Alpes, IBS, 38044 Grenoble, France
- CNRS, IBS, 38044 Grenoble, France
- CEA, IBS, 38044 Grenoble, France
| | - Frank Gabel
- Université Grenoble Alpes, IBS, 38044 Grenoble, France
- CNRS, IBS, 38044 Grenoble, France
- CEA, IBS, 38044 Grenoble, France
- Large Scale Structures Group, Institut Laue–Langevin, 38042 Grenoble CEDEX 9, France
| |
Collapse
|
21
|
Appolaire A, Durá MA, Ferruit M, Andrieu JP, Godfroy A, Gribaldo S, Franzetti B. The TET2 and TET3 aminopeptidases fromPyrococcus horikoshiiform a hetero-subunit peptidasome with enhanced peptide destruction properties. Mol Microbiol 2014; 94:803-14. [DOI: 10.1111/mmi.12775] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Alexandre Appolaire
- Univ. Grenoble Alpes; Institut de Biologie Structurale (IBS); F-38027 Grenoble France
- CNRS, IBS; F-38027 Grenoble France
- CEA, DSV, IBS; F-38027 Grenoble France
| | - M. Asunción Durá
- Univ. Grenoble Alpes; Institut de Biologie Structurale (IBS); F-38027 Grenoble France
- CNRS, IBS; F-38027 Grenoble France
- CEA, DSV, IBS; F-38027 Grenoble France
| | - Mylène Ferruit
- Univ. Grenoble Alpes; Institut de Biologie Structurale (IBS); F-38027 Grenoble France
- CNRS, IBS; F-38027 Grenoble France
- CEA, DSV, IBS; F-38027 Grenoble France
| | - Jean-Pierre Andrieu
- Univ. Grenoble Alpes; Institut de Biologie Structurale (IBS); F-38027 Grenoble France
- CNRS, IBS; F-38027 Grenoble France
- CEA, DSV, IBS; F-38027 Grenoble France
| | - Anne Godfroy
- Ifremer, UMR6197; Laboratoire de Microbiologie des Environnements Extrêmes; 29280 Plouzané France
| | - Simonetta Gribaldo
- Institut Pasteur; Unité Biologie Moléculaire du Gène chez les Extremophiles; Département de Microbiologie; 75724 Paris Cedex 15 France
| | - Bruno Franzetti
- Univ. Grenoble Alpes; Institut de Biologie Structurale (IBS); F-38027 Grenoble France
- CNRS, IBS; F-38027 Grenoble France
- CEA, DSV, IBS; F-38027 Grenoble France
| |
Collapse
|
22
|
San BH, Ha EJ, Paik HJ, Kim KK. Radiofrequency treatment enhances the catalytic function of an immobilized nanobiohybrid catalyst. NANOSCALE 2014; 6:6009-6017. [PMID: 24777448 DOI: 10.1039/c4nr00407h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Biocatalysis, the use of enzymes in chemical transformation, has undergone intensive development for a wide range of applications. As such, maximizing the functionality of enzymes for biocatalysis is a major priority to enable industrial use. To date, many innovative technologies have been developed to address the future demand of enzymes for these purposes, but maximizing the catalytic activity of enzymes remains a challenge. In this study, we demonstrated that the functionality of a nanobiocatalyst could be enhanced by combining immobilization and radiofrequency (RF) treatment. Aminopeptidase PepA-encapsulating 2 nm platinum nanoparticles (PepA-PtNPs) with the catalytic activities of hydrolysis and hydrogenation were employed as multifunctional nanobiocatalysts. Immobilizing the nanobiocatalysts in a hydrogel using metal chelation significantly enhanced their functionalities, including catalytic power, thermal-stability, pH tolerance, organic solvent tolerance, and reusability. Most importantly, RF treatment of the hydrogel-immobilized PepA-PtNPs increased their catalytic power by 2.5 fold greater than the immobilized PepA. Our findings indicate that the catalytic activities and functionalities of PepA-PtNPs are greatly enhanced by the combination of hydrogel-immobilization and RF treatment. Based on our findings, we propose that RF treatment of nanobiohybrid catalysts immobilized on the bulk hydrogel represents a new strategy for achieving efficient biocatalysis.
Collapse
Affiliation(s)
- Boi Hoa San
- Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Korea
| | | | | | | |
Collapse
|
23
|
Nguyen DD, Pandian R, Kim D, Ha SC, Yoon HJ, Kim KS, Yun KH, Kim JH, Kim KK. Structural and kinetic bases for the metal preference of the M18 aminopeptidase from Pseudomonas aeruginosa. Biochem Biophys Res Commun 2014; 447:101-107. [PMID: 24704201 DOI: 10.1016/j.bbrc.2014.03.109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 03/22/2014] [Indexed: 11/15/2022]
Abstract
The peptidases in clan MH are known as cocatalytic zinc peptidases that have two zinc ions in the active site, but their metal preference has not been rigorously investigated. In this study, the molecular basis for metal preference is provided from the structural and biochemical analyses. Kinetic studies of Pseudomonas aeruginosa aspartyl aminopeptidase (PaAP) which belongs to peptidase family M18 in clan MH revealed that its peptidase activity is dependent on Co(2+) rather than Zn(2+): the kcat (s(-1)) values of PaAP were 0.006, 5.10 and 0.43 in no-metal, Co(2+), and Zn(2+)conditions, respectively. Consistently, addition of low concentrations of Co(2+) to PaAP previously saturated with Zn(2+) greatly enhanced the enzymatic activity, suggesting that Co(2+)may be the physiologically relevant cocatalytic metal ion of PaAP. The crystal structures of PaAP complexes with Co(2+) or Zn(2+) commonly showed two metal ions in the active site coordinated with three conserved residues and a bicarbonate ion in a tetragonal geometry. However, Co(2+)- and Zn(2+)-bound structures showed no noticeable alterations relevant to differential effects of metal species, except the relative orientation of Glu-265, a general base in the active site. The characterization of mutant PaAP revealed that the first metal binding site is primarily responsible for metal preference. Similar to PaAP, Streptococcus pneumonia glutamyl aminopeptidase (SpGP), belonging to aminopeptidase family M42 in clan MH, also showed requirement for Co(2+) for maximum activity. These results proposed that clan MH peptidases might be a cocatalytic cobalt peptidase rather than a zinc-dependent peptidase.
Collapse
Affiliation(s)
- Duy Duc Nguyen
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Ramesh Pandian
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Doyoun Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Sung Chul Ha
- Pohang Acceleratory Laboratory, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Hye-Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 157-747, Republic of Korea
| | - Kap Sun Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Kyung Hee Yun
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Jin-Hahn Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea.
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea.
| |
Collapse
|
24
|
Schreiber A, Schiller SM. Nanobiotechnology of protein-based compartments: steps toward nanofactories. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2013. [DOI: 10.1680/bbn.13.00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Ta HM, Bae S, Han S, Song J, Ahn TK, Hohng S, Lee S, Kim KK. Structure-based elucidation of the regulatory mechanism for aminopeptidase activity. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1738-47. [PMID: 23999297 DOI: 10.1107/s0907444913012651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 05/08/2013] [Indexed: 11/11/2022]
Abstract
The specificity of proteases for the residues in and length of substrates is key to understanding their regulatory mechanism, but little is known about length selectivity. Crystal structure analyses of the bacterial aminopeptidase PepS, combined with functional and single-molecule FRET assays, have elucidated a molecular basis for length selectivity. PepS exists in open and closed conformations. Substrates can access the binding hole in the open conformation, but catalytic competency is only achieved in the closed conformation by formation of the S1 binding pocket and proximal movement of Glu343, a general base, to the cleavage site. Hence, peptides longer than the depth of the binding hole block the transition from the open to the closed conformation, and thus length selection is a prerequisite for catalytic activation. A triple-sieve interlock mechanism is proposed featuring the coupling of length selectivity with residue specificity and active-site positioning.
Collapse
Affiliation(s)
- Hai Minh Ta
- Department of Molecular Cell Biology, School of Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Appolaire A, Rosenbaum E, Durá MA, Colombo M, Marty V, Savoye MN, Godfroy A, Schoehn G, Girard E, Gabel F, Franzetti B. Pyrococcus horikoshii TET2 peptidase assembling process and associated functional regulation. J Biol Chem 2013; 288:22542-54. [PMID: 23696647 PMCID: PMC3829341 DOI: 10.1074/jbc.m113.450189] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 05/13/2013] [Indexed: 11/06/2022] Open
Abstract
Tetrahedral (TET) aminopeptidases are large polypeptide destruction machines present in prokaryotes and eukaryotes. Here, the rules governing their assembly into hollow 12-subunit tetrahedrons are addressed by using TET2 from Pyrococcus horikoshii (PhTET2) as a model. Point mutations allowed the capture of a stable, catalytically active precursor. Small angle x-ray scattering revealed that it is a dimer whose architecture in solution is identical to that determined by x-ray crystallography within the fully assembled TET particle. Small angle x-ray scattering also showed that the reconstituted PhTET2 dodecameric particle displayed the same quaternary structure and thermal stability as the wild-type complex. The PhTET2 assembly intermediates were characterized by analytical ultracentrifugation, native gel electrophoresis, and electron microscopy. They revealed that PhTET2 assembling is a highly ordered process in which hexamers represent the main intermediate. Peptide degradation assays demonstrated that oligomerization triggers the activity of the TET enzyme toward large polypeptidic substrates. Fractionation experiments in Pyrococcus and Halobacterium cells revealed that, in vivo, the dimeric precursor co-exists together with assembled TET complexes. Taken together, our observations explain the biological significance of TET oligomerization and suggest the existence of a functional regulation of the dimer-dodecamer equilibrium in vivo.
Collapse
Affiliation(s)
- Alexandre Appolaire
- From the Institut de Biologie Structurale, CNRS, UMR5075, F-38027/Commissariat à l'Energie Atomique, F-38054/Université Joseph Fourier, F-38027 Grenoble and
| | - Eva Rosenbaum
- From the Institut de Biologie Structurale, CNRS, UMR5075, F-38027/Commissariat à l'Energie Atomique, F-38054/Université Joseph Fourier, F-38027 Grenoble and
| | - M. Asunción Durá
- From the Institut de Biologie Structurale, CNRS, UMR5075, F-38027/Commissariat à l'Energie Atomique, F-38054/Université Joseph Fourier, F-38027 Grenoble and
| | - Matteo Colombo
- From the Institut de Biologie Structurale, CNRS, UMR5075, F-38027/Commissariat à l'Energie Atomique, F-38054/Université Joseph Fourier, F-38027 Grenoble and
| | - Vincent Marty
- From the Institut de Biologie Structurale, CNRS, UMR5075, F-38027/Commissariat à l'Energie Atomique, F-38054/Université Joseph Fourier, F-38027 Grenoble and
| | - Marjolaine Noirclerc Savoye
- From the Institut de Biologie Structurale, CNRS, UMR5075, F-38027/Commissariat à l'Energie Atomique, F-38054/Université Joseph Fourier, F-38027 Grenoble and
| | - Anne Godfroy
- the Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France
| | - Guy Schoehn
- From the Institut de Biologie Structurale, CNRS, UMR5075, F-38027/Commissariat à l'Energie Atomique, F-38054/Université Joseph Fourier, F-38027 Grenoble and
| | - Eric Girard
- From the Institut de Biologie Structurale, CNRS, UMR5075, F-38027/Commissariat à l'Energie Atomique, F-38054/Université Joseph Fourier, F-38027 Grenoble and
| | - Frank Gabel
- From the Institut de Biologie Structurale, CNRS, UMR5075, F-38027/Commissariat à l'Energie Atomique, F-38054/Université Joseph Fourier, F-38027 Grenoble and
| | - Bruno Franzetti
- From the Institut de Biologie Structurale, CNRS, UMR5075, F-38027/Commissariat à l'Energie Atomique, F-38054/Université Joseph Fourier, F-38027 Grenoble and
| |
Collapse
|
27
|
Artificial Metalloenzymes Constructed From Hierarchically-Assembled Proteins. Chem Asian J 2013; 8:1646-60. [DOI: 10.1002/asia.201300347] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Indexed: 01/20/2023]
|
28
|
Robinson MW, Buchtmann KA, Jenkins C, Tacchi JL, Raymond BBA, To J, Roy Chowdhury P, Woolley LK, Labbate M, Turnbull L, Whitchurch CB, Padula MP, Djordjevic SP. MHJ_0125 is an M42 glutamyl aminopeptidase that moonlights as a multifunctional adhesin on the surface of Mycoplasma hyopneumoniae. Open Biol 2013; 3:130017. [PMID: 23594879 PMCID: PMC3718333 DOI: 10.1098/rsob.130017] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Bacterial aminopeptidases play important roles in pathogenesis by providing a source of amino acids from exogenous proteins, destroying host immunological effector peptides and executing posttranslational modification of bacterial and host proteins. We show that MHJ_0125 from the swine respiratory pathogen Mycoplasma hyopneumoniae represents a new member of the M42 class of bacterial aminopeptidases. Despite lacking a recognizable signal sequence, MHJ_0125 is detectable on the cell surface by fluorescence microscopy and LC-MS/MS of (i) biotinylated surface proteins captured by avidin chromatography and (ii) peptides released by mild trypsin shaving. Furthermore, surface-associated glutamyl aminopeptidase activity was detected by incubation of live M. hyopneumoniae cells with the diagnostic substrate H-Glu-AMC. MHJ_0125 moonlights as a multifunctional adhesin, binding to both heparin and plasminogen. Native proteomics and comparative modelling studies suggest MHJ_0125 forms a dodecameric, homopolymeric structure and provide insight into the positions of key residues that are predicted to interact with heparin and plasminogen. MHJ_0125 is the first aminopeptidase shown to both bind plasminogen and facilitate its activation by tissue plasminogen activator. Plasmin cleaves host extracellular matrix proteins and activates matrix metalloproteases, generating peptide substrates for MHJ_0125 and a source of amino acids for growth of M. hyopneumoniae. This unique interaction represents a new paradigm in microbial pathogenesis.
Collapse
Affiliation(s)
- Mark W Robinson
- Ithree institute, University of Technology, Sydney PO Box 123, Broadway, New South Wales 2007, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
San BH, Lee S, Moh SH, Park JG, Lee JH, Hwang HY, Kim KK. Size-controlled synthesis and characterization of CoPt nanoparticles using protein shells. J Mater Chem B 2013; 1:1453-1460. [DOI: 10.1039/c2tb00290f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Dutoit R, Brandt N, Legrain C, Bauvois C. Functional characterization of two M42 aminopeptidases erroneously annotated as cellulases. PLoS One 2012; 7:e50639. [PMID: 23226342 PMCID: PMC3511314 DOI: 10.1371/journal.pone.0050639] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 10/23/2012] [Indexed: 11/18/2022] Open
Abstract
Several aminopeptidases of the M42 family have been described as tetrahedral-shaped dodecameric (TET) aminopeptidases. A current hypothesis suggests that these enzymes are involved, along with the tricorn peptidase, in degrading peptides produced by the proteasome. Yet the M42 family remains ill defined, as some members have been annotated as cellulases because of their homology with CelM, formerly described as an endoglucanase of Clostridium thermocellum. Here we describe the catalytic functions and substrate profiles CelM and of TmPep1050, the latter having been annotated as an endoglucanase of Thermotoga maritima. Both enzymes were shown to catalyze hydrolysis of nonpolar aliphatic L-amino acid-pNA substrates, the L-leucine derivative appearing as the best substrate. No significant endoglucanase activity was measured, either for TmPep1050 or CelM. Addition of cobalt ions enhanced the activity of both enzymes significantly, while both the chelating agent EDTA and bestatin, a specific inhibitor of metalloaminopeptidases, proved inhibitory. Our results strongly suggest that one should avoid annotating members of the M42 aminopeptidase family as cellulases. In an updated assessment of the distribution of M42 aminopeptidases, we found TET aminopeptidases to be distributed widely amongst archaea and bacteria. We additionally observed that several phyla lack both TET and tricorn. This suggests that other complexes may act downstream from the proteasome.
Collapse
Affiliation(s)
- Raphaël Dutoit
- Institut de Recherches Microbiologiques JM Wiame, Brussels, Belgium.
| | | | | | | |
Collapse
|
31
|
Chaikuad A, Pilka ES, De Riso A, von Delft F, Kavanagh KL, Vénien-Bryan C, Oppermann U, Yue WW. Structure of human aspartyl aminopeptidase complexed with substrate analogue: insight into catalytic mechanism, substrate specificity and M18 peptidase family. BMC STRUCTURAL BIOLOGY 2012; 12:14. [PMID: 22720794 PMCID: PMC3472314 DOI: 10.1186/1472-6807-12-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/29/2012] [Indexed: 11/13/2022]
Abstract
Backround Aspartyl aminopeptidase (DNPEP), with specificity towards an acidic amino acid at the N-terminus, is the only mammalian member among the poorly understood M18 peptidases. DNPEP has implicated roles in protein and peptide metabolism, as well as the renin-angiotensin system in blood pressure regulation. Despite previous enzyme and substrate characterization, structural details of DNPEP regarding ligand recognition and catalytic mechanism remain to be delineated. Results The crystal structure of human DNPEP complexed with zinc and a substrate analogue aspartate-β-hydroxamate reveals a dodecameric machinery built by domain-swapped dimers, in agreement with electron microscopy data. A structural comparison with bacterial homologues identifies unifying catalytic features among the poorly understood M18 enzymes. The bound ligands in the active site also reveal the coordination mode of the binuclear zinc centre and a substrate specificity pocket for acidic amino acids. Conclusions The DNPEP structure provides a molecular framework to understand its catalysis that is mediated by active site loop swapping, a mechanism likely adopted in other M18 and M42 metallopeptidases that form dodecameric complexes as a self-compartmentalization strategy. Small differences in the substrate binding pocket such as shape and positive charges, the latter conferred by a basic lysine residue, further provide the key to distinguishing substrate preference. Together, the structural knowledge will aid in the development of enzyme-/family-specific aminopeptidase inhibitors.
Collapse
Affiliation(s)
- Apirat Chaikuad
- Structural Genomics Consortium, Old Road Research Campus Building, Oxford OX3 7DQ, UK
| | | | | | | | | | | | | | | |
Collapse
|
32
|
San BH, Moh SH, Kim KK. The effect of protein shells on the antioxidant activity of protein-encapsulated platinum nanoparticles. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c1jm14581a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
San BH, Kim S, Moh SH, Lee H, Jung DY, Kim KK. Platinum nanoparticles encapsulated by aminopeptidase: a multifunctional bioinorganic nanohybrid catalyst. Angew Chem Int Ed Engl 2011; 50:11924-11929. [PMID: 21882302 DOI: 10.1002/anie.201101833] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/16/2011] [Indexed: 02/09/2025]
Affiliation(s)
- Boi Hoa San
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, South Korea
| | | | | | | | | | | |
Collapse
|
34
|
San BH, Kim S, Moh SH, Lee H, Jung DY, Kim KK. Platinum Nanoparticles Encapsulated by Aminopeptidase: A Multifunctional Bioinorganic Nanohybrid Catalyst. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201101833] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Glutamate-induced metabolic changes in Lactococcus lactis NCDO 2118 during GABA production: combined transcriptomic and proteomic analysis. Amino Acids 2010; 39:727-37. [PMID: 20174841 DOI: 10.1007/s00726-010-0507-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 01/27/2010] [Indexed: 12/17/2022]
Abstract
GABA is a molecule of increasing nutraceutical interest due to its modulatory activity on the central nervous system and smooth muscle relaxation. Potentially probiotic bacteria can produce it by glutamate decarboxylation, but nothing is known about the physiological modifications occurring at the microbial level during GABA production. In the present investigation, a GABA-producing Lactococcus lactis strain grown in a medium supplemented with or without glutamate was studied using a combined transcriptome/proteome analysis. A tenfold increase in GABA production in the glutamate medium was observed only during the stationary phase and at low pH. About 30 genes and/or proteins were shown to be differentially expressed in glutamate-stimulated conditions as compared to control conditions, and the modulation exerted by glutamate on entire metabolic pathways was highlighted by the complementary nature of transcriptomics and proteomics. Most glutamate-induced responses consisted in under-expression of metabolic pathways, with the exception of glycolysis where either over- or under-expression of specific genes was observed. The energy-producing arginine deiminase pathway, the ATPase, and also some stress proteins were down-regulated, suggesting that glutamate is not only an alternative means to get energy, but also a protective agent against stress for the strain studied.
Collapse
|