1
|
Pesce M, Felaco P, Franceschelli S, Speranza L, Grilli A, De Lutiis MA, Ferrone A, Sirolli V, Bonomini M, Felaco M, Patruno A. Effect of erythropoietin on primed leucocyte expression profile. Open Biol 2014; 4:140026. [PMID: 24920275 PMCID: PMC4077059 DOI: 10.1098/rsob.140026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/20/2014] [Indexed: 02/04/2023] Open
Abstract
Resistance to erythropoietin (EPO) affects a significant number of anaemic patients with end-stage renal disease. Previous reports suggest that inflammation is one of the major independent predictors of EPO resistance, and the effects of EPO treatment on inflammatory mediators are not well established. The aim of this study was to investigate EPO-induced modification to gene expression in primary cultured leucocytes. Microarray experiments were performed on primed ex vivo peripheral blood mononuclear cells (PBMCs) and treated with human EPO-α. Data suggested that EPO-α modulated genes involved in cell movement and interaction in primed PBMCs. Of note, EPO-α exerts anti-inflammatory effects inhibiting the expression of pro-inflammatory cytokine IL-8 and its receptor CXCR2; by contrast, EPO-α increases expression of genes relating to promotion of inflammation encoding for IL-1β and CCL8, and induces de novo synthesis of IL-1α, CXCL1 and CXCL5 in primed cells. The reduction in MAPK p38-α activity is involved in modulating both IL-1β and IL-8 expression. Unlike the induction of MAPK, Erk1/2 activity leads to upregulation of IL-1β, but does not affect IL-8 expression and release. Furthermore, EPO-α treatment of primed cells induces the activation of caspase-1 upstream higher secretion of IL-1β, and this process is not dependent on caspase-8 activation. In conclusion, our findings highlight new potential molecules involved in EPO resistance and confirm the anti-inflammatory role for EPO, but also suggest a plausible in vivo scenario in which the positive correlation found between EPO resistance and elevated levels of some pro-inflammatory mediators is due to treatment with EPO itself.
Collapse
Affiliation(s)
- Mirko Pesce
- Department of Psychological, Humanistic and Territorial Sciences, University 'G. D'Annunzio', Chieti, Italy
| | - Paolo Felaco
- Department of Medicine and Science of Aging, University 'G. D'Annunzio', Chieti, Italy
| | - Sara Franceschelli
- Department of Medicine and Science of Aging, University 'G. D'Annunzio', Chieti, Italy
| | - Lorenza Speranza
- Department of Medicine and Science of Aging, University 'G. D'Annunzio', Chieti, Italy
| | - Alfredo Grilli
- Department of Medicine and Science of Aging, University 'G. D'Annunzio', Chieti, Italy
| | - Maria Anna De Lutiis
- Department of Medicine and Science of Aging, University 'G. D'Annunzio', Chieti, Italy
| | - Alessio Ferrone
- Department of Medicine and Science of Aging, University 'G. D'Annunzio', Chieti, Italy
| | - Vittorio Sirolli
- Department of Medicine and Science of Aging, University 'G. D'Annunzio', Chieti, Italy
| | - Mario Bonomini
- Department of Medicine and Science of Aging, University 'G. D'Annunzio', Chieti, Italy
| | - Mario Felaco
- Department of Medicine and Science of Aging, University 'G. D'Annunzio', Chieti, Italy
| | - Antonia Patruno
- Department of Medicine and Science of Aging, University 'G. D'Annunzio', Chieti, Italy
| |
Collapse
|
2
|
Chaix A, Arcangeli ML, Lopez S, Voisset E, Yang Y, Vita M, Letard S, Audebert S, Finetti P, Birnbaum D, Bertucci F, Aurrand-Lions M, Dubreuil P, De Sepulveda P. KIT-D816V oncogenic activity is controlled by the juxtamembrane docking site Y568-Y570. Oncogene 2013; 33:872-81. [PMID: 23416972 DOI: 10.1038/onc.2013.12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 11/20/2012] [Accepted: 12/14/2012] [Indexed: 02/06/2023]
Abstract
Mutation of KIT receptor tyrosine kinase at residue D816 results in ligand-independent constitutive kinase activity. This mutation occurs in most patients with mastocytosis, a myeloproliferative neoplasm, and is detected at lower frequencies in acute myeloid leukemia and in germ cell tumors. Other KIT mutations occur in gastrointestinal stromal tumors (GIST) and mucosal melanoma. KIT is considered as a bona fide therapeutic target as c-kit mutations are driving oncogenes in these pathologies. However, several evidences suggest that KIT-D816V mutant is not as aggressive as other KIT mutants. Here, we show that an intracellular docking site in the juxtamembrane region of KIT maintains a negative regulation on KIT-D816V transforming potential. Sixteen signaling proteins were shown to interact with this motif. We further demonstrate that mutation of this site results in signaling modifications, altered gene expression profile and increased transforming activity of KIT-D816V mutant. This result was unexpected as mutations of the homologous sites on wild-type (WT) KIT, or on the related oncogenic FLT3-ITD receptor, impair their function. Our results support the hypothesis that, KIT-D816V mutation is a mild oncogenic event that is sufficient to confer partial transforming properties, but requires additional mutations to acquire its full transforming potential.
Collapse
Affiliation(s)
- A Chaix
- 1] INSERM, U1068, Centre de Recherche en Cancérologie de Marseille, Marseille, France [2] Institut Paoli-Calmettes, Marseille, France [3] Aix-Marseille University, Marseille, France
| | - M-L Arcangeli
- 1] INSERM, U1068, Centre de Recherche en Cancérologie de Marseille, Marseille, France [2] Institut Paoli-Calmettes, Marseille, France [3] Aix-Marseille University, Marseille, France
| | - S Lopez
- 1] INSERM, U1068, Centre de Recherche en Cancérologie de Marseille, Marseille, France [2] Institut Paoli-Calmettes, Marseille, France [3] Aix-Marseille University, Marseille, France
| | - E Voisset
- 1] INSERM, U1068, Centre de Recherche en Cancérologie de Marseille, Marseille, France [2] Institut Paoli-Calmettes, Marseille, France [3] Aix-Marseille University, Marseille, France
| | - Y Yang
- 1] INSERM, U1068, Centre de Recherche en Cancérologie de Marseille, Marseille, France [2] Institut Paoli-Calmettes, Marseille, France [3] Aix-Marseille University, Marseille, France
| | - M Vita
- 1] INSERM, U1068, Centre de Recherche en Cancérologie de Marseille, Marseille, France [2] Institut Paoli-Calmettes, Marseille, France [3] Aix-Marseille University, Marseille, France
| | - S Letard
- 1] INSERM, U1068, Centre de Recherche en Cancérologie de Marseille, Marseille, France [2] Institut Paoli-Calmettes, Marseille, France [3] Aix-Marseille University, Marseille, France
| | - S Audebert
- 1] INSERM, U1068, Centre de Recherche en Cancérologie de Marseille, Marseille, France [2] Institut Paoli-Calmettes, Marseille, France [3] Aix-Marseille University, Marseille, France
| | - P Finetti
- 1] INSERM, U1068, Centre de Recherche en Cancérologie de Marseille, Marseille, France [2] Institut Paoli-Calmettes, Marseille, France [3] Aix-Marseille University, Marseille, France
| | - D Birnbaum
- 1] INSERM, U1068, Centre de Recherche en Cancérologie de Marseille, Marseille, France [2] Institut Paoli-Calmettes, Marseille, France [3] Aix-Marseille University, Marseille, France
| | - F Bertucci
- 1] INSERM, U1068, Centre de Recherche en Cancérologie de Marseille, Marseille, France [2] Institut Paoli-Calmettes, Marseille, France [3] Aix-Marseille University, Marseille, France
| | - M Aurrand-Lions
- 1] INSERM, U1068, Centre de Recherche en Cancérologie de Marseille, Marseille, France [2] Institut Paoli-Calmettes, Marseille, France [3] Aix-Marseille University, Marseille, France
| | - P Dubreuil
- 1] INSERM, U1068, Centre de Recherche en Cancérologie de Marseille, Marseille, France [2] Institut Paoli-Calmettes, Marseille, France [3] Aix-Marseille University, Marseille, France
| | - P De Sepulveda
- 1] INSERM, U1068, Centre de Recherche en Cancérologie de Marseille, Marseille, France [2] Institut Paoli-Calmettes, Marseille, France [3] Aix-Marseille University, Marseille, France
| |
Collapse
|
4
|
Jeyapalan JN, Noor DAM, Lee SH, Tan CL, Appleby VA, Kilday JP, Palmer RD, Schwalbe EC, Clifford SC, Walker DA, Murray MJ, Coleman N, Nicholson JC, Scotting PJ. Methylator phenotype of malignant germ cell tumours in children identifies strong candidates for chemotherapy resistance. Br J Cancer 2011; 105:575-85. [PMID: 21712824 PMCID: PMC3170957 DOI: 10.1038/bjc.2011.218] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 05/11/2011] [Accepted: 05/17/2011] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Yolk sac tumours (YSTs) and germinomas are the two major pure histological subtypes of germ cell tumours. To date, the role of DNA methylation in the aetiology of this class of tumour has only been analysed in adult testicular forms and with respect to only a few genes. METHODS A bank of paediatric tumours was analysed for global methylation of LINE-1 repeat elements and global methylation of regulatory elements using GoldenGate methylation arrays. RESULTS Both germinomas and YSTs exhibited significant global hypomethylation of LINE-1 elements. However, in germinomas, methylation of gene regulatory regions differed little from control samples, whereas YSTs exhibited increased methylation at a large proportion of the loci tested, showing a 'methylator' phenotype, including silencing of genes associated with Caspase-8-dependent apoptosis. Furthermore, we found that the methylator phenotype of YSTs was coincident with higher levels of expression of the DNA methyltransferase, DNA (cytosine-5)-methyltransferase 3B, suggesting a mechanism underlying the phenotype. CONCLUSION Epigenetic silencing of a large number of potential tumour suppressor genes in YSTs might explain why they exhibit a more aggressive natural history than germinomas and silencing of genes associated with Caspase-8-dependent cell death might explain the relative resistance of YSTs to conventional therapy.
Collapse
Affiliation(s)
- J N Jeyapalan
- Children's Brain Tumour Research Centre, Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - D A Mohamed Noor
- Children's Brain Tumour Research Centre, Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - S-H Lee
- Children's Brain Tumour Research Centre, Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - C L Tan
- Children's Brain Tumour Research Centre, Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - V A Appleby
- Children's Brain Tumour Research Centre, Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - J P Kilday
- Children's Brain Tumour Research Centre, Child Health, School of Clinical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - R D Palmer
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Box 197, Hills Road, Cambridge CB2 0XZ, UK
| | - E C Schwalbe
- Northern Institute for Cancer Research, Sir James Spence Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - S C Clifford
- Northern Institute for Cancer Research, Sir James Spence Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - D A Walker
- Children's Brain Tumour Research Centre, Child Health, School of Clinical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - M J Murray
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Box 197, Hills Road, Cambridge CB2 0XZ, UK
| | - N Coleman
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Box 197, Hills Road, Cambridge CB2 0XZ, UK
| | - J C Nicholson
- Department of Paediatric Oncology, Addenbrooke's Hospital, Box 181, Hills Road, Cambridge CB2 0QQ, UK
| | - P J Scotting
- Children's Brain Tumour Research Centre, Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|