1
|
Colombo S, Domingues P, Domingues MR. Mass spectrometry strategies to unveil modified aminophospholipids of biological interest. MASS SPECTROMETRY REVIEWS 2019; 38:323-355. [PMID: 30597614 DOI: 10.1002/mas.21584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
The biological functions of modified aminophospholipids (APL) have become a topic of interest during the last two decades, and distinct roles have been found for these biomolecules in both physiological and pathological contexts. Modifications of APL include oxidation, glycation, and adduction to electrophilic aldehydes, altogether contributing to a high structural variability of modified APL. An outstanding technique used in this challenging field is mass spectrometry (MS). MS has been widely used to unveil modified APL of biological interest, mainly when associated with soft ionization methods (electrospray and matrix-assisted laser desorption ionization) and coupled with separation techniques as liquid chromatography. This review summarizes the biological roles and the chemical mechanisms underlying APL modifications, and comprehensively reviews the current MS-based knowledge that has been gathered until now for their analysis. The interpretation of the MS data obtained by in vitro-identification studies is explained in detail. The perspective of an analytical detection of modified APL in clinical samples is explored, highlighting the fundamental role of MS in unveiling APL modifications and their relevance in pathophysiology.
Collapse
Affiliation(s)
- Simone Colombo
- Mass Spectrometry Centre, Department of Chemistry and QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, Department of Chemistry and QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, Department of Chemistry and QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
- Department of Chemistry and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
2
|
Nakamura T, Hirakawa M, Nakamura Y, Ishisaka A, Kitamoto N, Murakami A, Kato Y. Covalent Modification of Phosphatidylethanolamine by Benzyl Isothiocyanate and the Resultant Generation of Ethanolamine Adduct as Its Metabolite. Chem Res Toxicol 2019; 32:638-644. [PMID: 30735032 DOI: 10.1021/acs.chemrestox.8b00331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Benzyl isothiocyanate (BITC), a dietary isothiocyanate (ITC) derived from cruciferous vegetables, has anticancer properties. It is believed that the ITC moiety (-N═C═S) that reacts predominantly with thiol compounds plays a central role in triggering the activities resulting from these properties. Recent studies have demonstrated that ITCs also covalently modify amino moieties in a protein. In this study, we examined the chemical reaction between BITC and the aminophospholipid, phosphatidylethanolamine (PE), in the cell membrane or lipoprotein particle. To detect the BITC-modified PE, the bond between ethanolamine (EA) and phosphatidic acid in PE was cleaved using phospholipase D to form the BITC-EA adduct, which was then measured. BITC-EA was detected from the BITC-treated unilamellar liposome and low-density lipoprotein even with only a few micromoles of BITC treatment, suggesting that BITC might react with not only a thiol/amino group of a protein but also an amino moiety of an aminophospholipid. Moreover, after incorporating BITC-PE included in the liposomes into the cultured cells or after direct exposure of BITC to the cells, free BITC-EA was excreted and accumulated in the medium in a time-dependent manner. It indicates that an intracellular enzyme catalyzes the cleavage of BITC-PE to produce BITC-EA. Because the ITC-amine adduct is stable, the ITC-EA adduct could be a promising indicator of ITC exposure in vivo.
Collapse
Affiliation(s)
- Toshiyuki Nakamura
- Graduate School of Environmental and Life Science , Okayama University , Okayama 700-0082 , Japan
| | - Miho Hirakawa
- Graduate School of Human Science and Environment , University of Hyogo , Himeji , Hyogo 670-0092 , Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science , Okayama University , Okayama 700-0082 , Japan
| | - Akari Ishisaka
- Graduate School of Human Science and Environment , University of Hyogo , Himeji , Hyogo 670-0092 , Japan.,Research Institute for Food and Nutritional Sciences , University of Hyogo , Himeji , Hyogo 670-0092 , Japan
| | - Noritoshi Kitamoto
- Graduate School of Human Science and Environment , University of Hyogo , Himeji , Hyogo 670-0092 , Japan.,Research Institute for Food and Nutritional Sciences , University of Hyogo , Himeji , Hyogo 670-0092 , Japan
| | - Akira Murakami
- Graduate School of Human Science and Environment , University of Hyogo , Himeji , Hyogo 670-0092 , Japan.,Research Institute for Food and Nutritional Sciences , University of Hyogo , Himeji , Hyogo 670-0092 , Japan
| | - Yoji Kato
- Graduate School of Human Science and Environment , University of Hyogo , Himeji , Hyogo 670-0092 , Japan.,Research Institute for Food and Nutritional Sciences , University of Hyogo , Himeji , Hyogo 670-0092 , Japan
| |
Collapse
|
3
|
Abstract
Abstract
Oxidative stress may cause a wide variety of free radical reactions to produce deleterious modifications in membranes, proteins, enzymes, and DNA. Reactive Oxygen Species (ROS) generated by myeloperoxidase (MPO) can induce lipid peroxidation and also play an important role in the generation of reactive chlorinating and brominating species. As the universal biomarkers, chemical, and immunochemical approach on oxidatively modified and halogenated tyrosines has been carried out. As amido-type adduct biomarkers, chemical, and immunochemical evaluation of hexanoyl- and propanoyl-lysines, hexanoyl- and propanoyl-dopamines and phospholipids were prepared and developed for application of evaluation of novel antioxidative functional food factors. We have also involved in application of oxidatively modified DNAs such as 8-hydroxy- and 8-halogenated deoxyguanosines as the useful biomarkers for age-related diseases using both in vitro and in vivo systems. Application of these oxidative stress biomarkers for novel type of functional food development and recent approach for development of novel evaluation systems are also discussed.
Collapse
Affiliation(s)
- Toshihiko Osawa
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, Aichi, Japan
| |
Collapse
|
4
|
Annibal A, Schubert K, Wagner U, Hoffmann R, Schiller J, Fedorova M. New covalent modifications of phosphatidylethanolamine by alkanals: mass spectrometry based structural characterization and biological effects. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:557-569. [PMID: 25044840 PMCID: PMC4207196 DOI: 10.1002/jms.3373] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/31/2014] [Accepted: 04/10/2014] [Indexed: 06/03/2023]
Abstract
The pathophysiology of numerous human disorders, such as atherosclerosis, diabetes, obesity and Alzheimer's disease, is accompanied by increased production of reactive oxygen species (ROS). ROS can oxidatively damage nearly all biomolecules, including lipids, proteins and nucleic acids. In particular, (poly)unsaturated fatty acids within the phospholipid (PL) structure are easily oxidized by ROS to lipid peroxidation products (LPP) carrying reactive carbonyl groups. Carbonylated LPP are characterized by high in vivo toxicity due to their reactivity with nucleophilic substrates (Lys-, Cys-and His-residues in proteins or amino groups of phosphatidylethanolamines [PE]). Adducts of unsaturated LPP with PE amino groups have been reported before, whereas less is known about the reactivity of saturated alkanals - which are significantly increased in vivo under oxidative stress conditions - towards nucleophilic groups of PLs. Here, we present a study of new alkanal-dipalmitoyl-phosphatidylethanolamine (DPPE) adducts by MS-based approaches, using consecutive fragmentation (MS(n)) and multiple reaction monitoring techniques. At least eight different DPPE-hexanal adducts were identified, including Schiff base and amide adducts, six of which have not been reported before. The structures of these new compounds were determined by their fragmentation patterns using MS(n) experiments. The new PE-hexanal adducts contained dimeric and trimeric hexanal conjugates, including cyclic adducts. A new pyridine ring containing adduct of DPPE and hexanal was purified by HPLC, and its biological effects were investigated. Incubation of peripheral blood mononuclear cells and monocytes with modified DPPE did not result in increased production of TNF-α as one selected inflammation marker. However, incorporation of modified DPPE into 1,2-dipalmitoleoyl-sn-phosphatidylethanolamine multilamellar vesicles resulted in a negative shift of the transition temperature, indicating a possible role of alkanal-derived modifications in changes of membrane structure.
Collapse
Affiliation(s)
- Andrea Annibal
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität LeipzigGermany
- Center for Biotechnology and Biomedicine, Universität LeipzigGermany
- Institute for Medical Physics and Biophysics, Faculty of Medicine, Universität LeipzigGermany
- LIFE-Leipzig Research Center for Civilization Diseases, Universität LeipzigGermany
| | - Kristin Schubert
- Division of Rheumatology, Department of Internal Medicine, Universität LeipzigGermany
| | - Ulf Wagner
- Division of Rheumatology, Department of Internal Medicine, Universität LeipzigGermany
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität LeipzigGermany
- Center for Biotechnology and Biomedicine, Universität LeipzigGermany
- LIFE-Leipzig Research Center for Civilization Diseases, Universität LeipzigGermany
| | - Jürgen Schiller
- Center for Biotechnology and Biomedicine, Universität LeipzigGermany
- Institute for Medical Physics and Biophysics, Faculty of Medicine, Universität LeipzigGermany
- LIFE-Leipzig Research Center for Civilization Diseases, Universität LeipzigGermany
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität LeipzigGermany
- Center for Biotechnology and Biomedicine, Universität LeipzigGermany
| |
Collapse
|
5
|
Davies SS, Guo L. Lipid peroxidation generates biologically active phospholipids including oxidatively N-modified phospholipids. Chem Phys Lipids 2014; 181:1-33. [PMID: 24704586 DOI: 10.1016/j.chemphyslip.2014.03.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/28/2014] [Accepted: 03/18/2014] [Indexed: 12/25/2022]
Abstract
Peroxidation of membranes and lipoproteins converts "inert" phospholipids into a plethora of oxidatively modified phospholipids (oxPL) that can act as signaling molecules. In this review, we will discuss four major classes of oxPL: mildly oxygenated phospholipids, phospholipids with oxidatively truncated acyl chains, phospholipids with cyclized acyl chains, and phospholipids that have been oxidatively N-modified on their headgroups by reactive lipid species. For each class of oxPL we will review the chemical mechanisms of their formation, the evidence for their formation in biological samples, the biological activities and signaling pathways associated with them, and the catabolic pathways for their elimination. We will end by briefly highlighting some of the critical questions that remain about the role of oxPL in physiology and disease.
Collapse
Affiliation(s)
- Sean S Davies
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt University, United States.
| | - Lilu Guo
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt University, United States
| |
Collapse
|
6
|
Hisaka S, Osawa T. Lipid hydroperoxide-derived adduction to amino-phospholipid in biomembrane. Subcell Biochem 2014; 77:41-8. [PMID: 24374916 DOI: 10.1007/978-94-007-7920-4_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Phospholipids such as phosphatidylethanolamine and phosphatidylcholine play crucial roles in the biological system to maintain the cellular environmental condition. Despite that, oxidative stress targets these phospholipids containing polyunsaturated fatty acids and accompanies the oxidized phospholipids. Recent studies have been suggested that oxidized phospholipids have the relationship with inflammation and might induce the atherosclerosis formation by uptake of oxidized LDL through scavenger receptor as ligands. Red blood cells, which have been studied the bilayer model, are also modified by oxidative stress because hemoglobin can mediate and produce the reactive oxygen species, which leads to lipid peroxidation of biomembrane. In these oxidation processes of biomolecules, hexanoylation against phosphatidylethanolamine and phosphatidylserine, which has the primary amine and is the target of this modification, generates the oxidized membrane such as erythrocyte ghosts. This unique structure of phosphatidylethanolamine and phosphatidylserine is possibly the useful biomarker to evaluate the oxidation of biomembrane in vivo using liquid chromatography tandem mass spectrometry and monoclonal antibody.
Collapse
|
7
|
Guo L, Chen Z, Amarnath V, Davies SS. Identification of novel bioactive aldehyde-modified phosphatidylethanolamines formed by lipid peroxidation. Free Radic Biol Med 2012; 53:1226-38. [PMID: 22898174 PMCID: PMC3461964 DOI: 10.1016/j.freeradbiomed.2012.07.077] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/20/2012] [Accepted: 07/25/2012] [Indexed: 12/15/2022]
Abstract
Lipid aldehydes generated by lipid peroxidation induce cell damage and inflammation. Recent evidence indicates that γ-ketoaldehydes (isolevuglandins, IsoLGs) form inflammatory mediators by modifying the ethanolamine headgroup of phosphatidylethanolamines (PEs). To determine if other species of aldehyde-modified PEs (al-PEs) with inflammatory bioactivity were generated by lipid peroxidation, we oxidized liposomes containing arachidonic acid and characterized the resulting products. We detected PE modified by IsoLGs, malondialdehyde (MDA), and 4-hydroxynonenal (HNE), as well as a novel series of N-acyl-PEs and N-carboxyacyl-PEs in these oxidized liposomes. These al-PEs were also detected in high-density lipoproteins exposed to myeloperoxidase. When we tested the ability of al-PEs to induce THP-1 monocyte adhesion to cultured endothelial cells, we found that PEs modified by MDA, HNE, and 4-oxononenal induced adhesion with potencies similar to those of PEs modified by IsoLGs (∼2μM). A commercially available medium-chain N-carboxyacyl-PE (C11:0CAPE) also stimulated adhesion, whereas C4:0CAPE and N-acyl-PEs did not. PEs modified by acrolein or by glucose were only partial agonists for adhesion. These studies indicate that lipid peroxidation generates a large family of al-PEs, many of which have the potential to drive inflammation.
Collapse
Affiliation(s)
- Lilu Guo
- Division of Clinical Pharmacology, Vanderbilt University at Nashville, Tennessee
| | - Zhongyi Chen
- Division of Clinical Pharmacology, Vanderbilt University at Nashville, Tennessee
| | | | - Sean S. Davies
- Division of Clinical Pharmacology, Vanderbilt University at Nashville, Tennessee
- Department of Pharmacology, Vanderbilt University at Nashville, Tennessee
| |
Collapse
|
8
|
Guo L, Davies SS. Bioactive aldehyde-modified phosphatidylethanolamines. Biochimie 2012; 95:74-8. [PMID: 22819995 DOI: 10.1016/j.biochi.2012.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/10/2012] [Indexed: 12/21/2022]
Abstract
Lipid peroxidation generates a variety of lipid aldehydes, which have been recognized to modify protein and DNA, causing inflammation and cancer. However, recent studies demonstrate that phosphatidylethanolamine (PE) is a major target for these aldehydes, forming aldehyde-modified PEs (al-PEs) as a novel family of mediators for inflammation. This review summarizes our current understanding of these al-PEs, including formation, detection, structural characterization, physiological relevance and mechanism of action.
Collapse
Affiliation(s)
- Lilu Guo
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-6602, USA.
| | | |
Collapse
|