1
|
Zhou X, Chen D, Yu M, Jiao Y, Tao F. Role of Flavohemoglobins in the Development and Aflatoxin Biosynthesis of Aspergillus flavus. J Fungi (Basel) 2024; 10:437. [PMID: 38921422 PMCID: PMC11204391 DOI: 10.3390/jof10060437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Aspergillus flavus is notorious for contaminating food with its secondary metabolite-highly carcinogenic aflatoxins. In this study, we found that exogenous nitric oxide (NO) donor could influence aflatoxin production in A. flavus. Flavohemoglobins (FHbs) are vital functional units in maintaining nitric oxide (NO) homeostasis and are crucial for normal cell function. To investigate whether endogenous NO changes affect aflatoxin biosynthesis, two FHbs, FHbA and FHbB, were identified in this study. FHbA was confirmed as the main protein to maintain NO homeostasis, as its absence led to a significant increase in intracellular NO levels and heightened sensitivity to SNP stress. Dramatically, FHbA deletion retarded aflatoxin production. In addition, FHbA played important roles in mycelial growth, conidial germination, and sclerotial development, and response to oxidative stress and high-temperature stress. Although FHbB did not significantly impact the cellular NO level, it was also involved in sclerotial development, aflatoxin synthesis, and stress response. Our findings provide a new perspective for studying the regulatory mechanism of the development and secondary mechanism in A. flavus.
Collapse
Affiliation(s)
| | | | | | | | - Fang Tao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (X.Z.); (D.C.); (M.Y.); (Y.J.)
| |
Collapse
|
2
|
Jedelská T, Luhová L, Petřivalský M. Nitric oxide signalling in plant interactions with pathogenic fungi and oomycetes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:848-863. [PMID: 33367760 DOI: 10.1093/jxb/eraa596] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/18/2020] [Indexed: 05/11/2023]
Abstract
Nitric oxide (NO) and reactive nitrogen species have emerged as crucial signalling and regulatory molecules across all organisms. In plants, fungi, and fungi-like oomycetes, NO is involved in the regulation of multiple processes during their growth, development, reproduction, responses to the external environment, and biotic interactions. It has become evident that NO is produced and used as a signalling and defence cue by both partners in multiple forms of plant interactions with their microbial counterparts, ranging from symbiotic to pathogenic modes. This review summarizes current knowledge on the role of NO in plant-pathogen interactions, focused on biotrophic, necrotrophic, and hemibiotrophic fungi and oomycetes. Actual advances and gaps in the identification of NO sources and fate in plant and pathogen cells are discussed. We review the decisive role of time- and site-specific NO production in germination, oriented growth, and active penetration by filamentous pathogens of the host tissues, as well in pathogen recognition, and defence activation in plants. Distinct functions of NO in diverse interactions of host plants with fungal and oomycete pathogens of different lifestyles are highlighted, where NO in interplay with reactive oxygen species governs successful plant colonization, cell death, and establishment of resistance.
Collapse
Affiliation(s)
- Tereza Jedelská
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| | - Lenka Luhová
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| |
Collapse
|
3
|
Liu YN, Tong T, Zhang RR, Liu LM, Shi ML, Ma YC, Liu GQ. Interdependent nitric oxide and hydrogen peroxide independently regulate the coix seed oil-induced triterpene acid accumulation in Ganoderma lingzhi. Mycologia 2019; 111:529-540. [PMID: 31158070 DOI: 10.1080/00275514.2019.1615816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recent progress has been made in adding exogenous vegetable oils in culture media to promote bioactive metabolite production in several medicinal mushrooms, but the mechanism is still unclear. In this study, we found that the vegetable oil coix seed oil (CSO) could induce the biosynthesis of triterpene acids (TAs) and also significantly increase cytoplasmic nitric oxide (NO) and hydrogen peroxide (H2O2) concentrations in the mycelium of Ganoderma lingzhi. The change in TA biosynthesis caused by CSO could be reversed by adding NO scavenger or H2O2 scavenger, and adding NO scavenger or H2O2 scavenger resulted in the reduction of the cytoplasmic H2O2 or NO concentration under CSO treatment, respectively. Moreover, adding NO scavenger or H2O2 scavenger reversed TA biosynthesis, which could be rescued by H2O2 or NO donor, respectively. Taken together, our study indicated that both NO and H2O2 were involved in the regulation of TA biosynthesis, and CSO-activated NO and H2O2 were interdependent but independently regulated the TA biosynthesis under CSO treatment in G. lingzhi.
Collapse
Affiliation(s)
- Yong-Nan Liu
- a International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology , 498 Southern Shaoshan Road, Changsha 410004 , China.,b Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology , Changsha 410004 , China
| | - Tian Tong
- a International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology , 498 Southern Shaoshan Road, Changsha 410004 , China.,b Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology , Changsha 410004 , China
| | - Rong-Rong Zhang
- a International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology , 498 Southern Shaoshan Road, Changsha 410004 , China.,b Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology , Changsha 410004 , China
| | - Li-Ming Liu
- c School of Biotechnology, Jiangnan University , Wuxi 214122 , China
| | - Mu-Ling Shi
- a International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology , 498 Southern Shaoshan Road, Changsha 410004 , China.,b Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology , Changsha 410004 , China
| | - You-Chu Ma
- a International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology , 498 Southern Shaoshan Road, Changsha 410004 , China.,b Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology , Changsha 410004 , China
| | - Gao-Qiang Liu
- a International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology , 498 Southern Shaoshan Road, Changsha 410004 , China.,b Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology , Changsha 410004 , China
| |
Collapse
|
4
|
Moore MM. The crucial role of iron uptake in Aspergillus fumigatus virulence. Curr Opin Microbiol 2013; 16:692-9. [DOI: 10.1016/j.mib.2013.07.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 02/01/2023]
|
5
|
Genetic and functional investigation of Zn(2)Cys(6) transcription factors RSE2 and RSE3 in Podospora anserina. EUKARYOTIC CELL 2013; 13:53-65. [PMID: 24186951 DOI: 10.1128/ec.00172-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Podospora anserina, the two zinc cluster proteins RSE2 and RSE3 are essential for the expression of the gene encoding the alternative oxidase (aox) when the mitochondrial electron transport chain is impaired. In parallel, they activated the expression of gluconeogenic genes encoding phosphoenolpyruvate carboxykinase (pck) and fructose-1,6-biphosphatase (fbp). Orthologues of these transcription factors are present in a wide range of filamentous fungi, and no other role than the regulation of these three genes has been evidenced so far. In order to better understand the function and the organization of RSE2 and RSE3, we conducted a saturated genetic screen based on the constitutive expression of the aox gene. We identified 10 independent mutations in 9 positions in rse2 and 11 mutations in 5 positions in rse3. Deletions were generated at some of these positions and the effects analyzed. This analysis suggests the presence of central regulatory domains and a C-terminal activation domain in both proteins. Microarray analysis revealed 598 genes that were differentially expressed in the strains containing gain- or loss-of-function mutations in rse2 or rse3. It showed that in addition to aox, fbp, and pck, RSE2 and RSE3 regulate the expression of genes encoding the alternative NADH dehydrogenase, a Zn2Cys6 transcription factor, a flavohemoglobin, and various hydrolases. As a complement to expression data, a metabolome profiling approach revealed that both an rse2 gain-of-function mutation and growth on antimycin result in similar metabolic alterations in amino acids, fatty acids, and α-ketoglutarate pools.
Collapse
|
6
|
Vinogradov SN, Bailly X, Smith DR, Tinajero-Trejo M, Poole RK, Hoogewijs D. Microbial eukaryote globins. Adv Microb Physiol 2013; 63:391-446. [PMID: 24054801 DOI: 10.1016/b978-0-12-407693-8.00009-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A bioinformatics survey of about 120 protist and 240 fungal genomes and transcriptomes revealed a broad array of globins, representing five of the eight subfamilies identified in bacteria. Most conspicuous is the absence of protoglobins and globin-coupled sensors, except for a two-domain globin in Leishmanias, that comprises a nucleotidyl cyclase domain, and the virtual absence of truncated group 3 globins. In contrast to bacteria, co-occurrence of more than two globin subfamilies appears to be rare in protists. Although globins were lacking in the Apicomplexa and the Microsporidia intracellular pathogens, they occurred in the pathogenic Trypanosomatidae, Stramenopiles and certain fungi. Flavohaemoglobins (FHbs) and related single-domain globins occur across the protist groups. Fungi are unique in having FHbs co-occurring with sensor single-domain globins (SSDgbs). Obligately biotrophic fungi covered in our analysis lack globins. Furthermore, SSDgbs occur only in a heterolobosean amoeba, Naegleria and the stramenopile Hyphochytrium. Of the three subfamilies of truncated Mb-fold globins, TrHb1s appear to be the most widespread, occurring as multiple copies in chlorophyte and ciliophora genomes, many as multidomain proteins. Although the ciliates appear to have only TrHb1s, the chlorophytes have Mb-like globins and TrHb2s, both closely related to the corresponding plant globins. The presently available number of protist genomes is inadequate to provide a definitive census of their globins. Bayesian molecular analyses of single-domain 3/3 Mb-fold globins suggest a close relationship of chlorophyte and haptophyte globins, including choanoflagellate and Capsaspora globins to land plant symbiotic and non-symbiotic haemoglobins and to vertebrate neuroglobins.
Collapse
|
7
|
Hoogewijs D, Dewilde S, Vierstraete A, Moens L, Vinogradov SN. A phylogenetic analysis of the globins in fungi. PLoS One 2012; 7:e31856. [PMID: 22384087 PMCID: PMC3287990 DOI: 10.1371/journal.pone.0031856] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 01/13/2012] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND All globins belong to one of three families: the F (flavohemoglobin) and S (sensor) families that exhibit the canonical 3/3 α-helical fold, and the T (truncated 3/3 fold) globins characterized by a shortened 2/2 α-helical fold. All eukaryote 3/3 hemoglobins are related to the bacterial single domain F globins. It is known that Fungi contain flavohemoglobins and single domain S globins. Our aims are to provide a census of fungal globins and to examine their relationships to bacterial globins. RESULTS Examination of 165 genomes revealed that globins are present in >90% of Ascomycota and ~60% of Basidiomycota genomes. The S globins occur in Blastocladiomycota and Chytridiomycota in addition to the phyla that have FHbs. Unexpectedly, group 1 T globins were found in one Blastocladiomycota and one Chytridiomycota genome. Phylogenetic analyses were carried out on the fungal globins, alone and aligned with representative bacterial globins. The Saccharomycetes and Sordariomycetes with two FHbs form two widely divergent clusters separated by the remaining fungal sequences. One of the Saccharomycete groups represents a new subfamily of FHbs, comprising a previously unknown N-terminal and a FHb missing the C-terminal moiety of its reductase domain. The two Saccharomycete groups also form two clusters in the presence of bacterial FHbs; the surrounding bacterial sequences are dominated by Proteobacteria and Bacilli (Firmicutes). The remaining fungal FHbs cluster with Proteobacteria and Actinobacteria. The Sgbs cluster separately from their bacterial counterparts, except for the intercalation of two Planctomycetes and a Proteobacterium between the Fungi incertae sedis and the Blastocladiomycota and Chytridiomycota. CONCLUSION Our results are compatible with a model of globin evolution put forward earlier, which proposed that eukaryote F, S and T globins originated via horizontal gene transfer of their bacterial counterparts to the eukaryote ancestor, resulting from the endosymbiotic events responsible for the origin of mitochondria and chloroplasts.
Collapse
Affiliation(s)
- David Hoogewijs
- Institute of Physiology and Zürich Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
8
|
Franken ACW, Lokman BC, Ram AFJ, Punt PJ, van den Hondel CAMJJ, de Weert S. Heme biosynthesis and its regulation: towards understanding and improvement of heme biosynthesis in filamentous fungi. Appl Microbiol Biotechnol 2011; 91:447-60. [PMID: 21687966 PMCID: PMC3136693 DOI: 10.1007/s00253-011-3391-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 05/16/2011] [Accepted: 05/16/2011] [Indexed: 12/01/2022]
Abstract
Heme biosynthesis in fungal host strains has acquired considerable interest in relation to the production of secreted heme-containing peroxidases. Class II peroxidase enzymes have been suggested as eco-friendly replacements of polluting chemical processes in industry. These peroxidases are naturally produced in small amounts by basidiomycetes. Filamentous fungi like Aspergillus sp. are considered as suitable hosts for protein production due to their high capacity of protein secretion. For the purpose of peroxidase production, heme is considered a putative limiting factor. However, heme addition is not appropriate in large-scale production processes due to its high hydrophobicity and cost price. The preferred situation in order to overcome the limiting effect of heme would be to increase intracellular heme levels. This requires a thorough insight into the biosynthetic pathway and its regulation. In this review, the heme biosynthetic pathway is discussed with regards to synthesis, regulation, and transport. Although the heme biosynthetic pathway is a highly conserved and tightly regulated pathway, the mode of regulation does not appear to be conserved among eukaryotes. However, common factors like feedback inhibition and regulation by heme, iron, and oxygen appear to be involved in regulation of the heme biosynthesis pathway in most organisms. Therefore, they are the initial targets to be investigated in Aspergillus niger.
Collapse
Affiliation(s)
- Angelique C W Franken
- The Netherlands & Kluyver Centre for Genomics of Industrial Fermentation, PO Box 5057, 2600 GA Delft, The Netherlands
| | | | | | | | | | | |
Collapse
|
9
|
Role of nitric oxide and flavohemoglobin homolog genes in Aspergillus nidulans sexual development and mycotoxin production. Appl Environ Microbiol 2011; 77:5524-8. [PMID: 21642398 DOI: 10.1128/aem.00638-11] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Flavohemoglobins are widely distributed in both prokaryotes and eukaryotes. These proteins are involved in reducing nitric oxide levels. Deletion of the Aspergillus nidulans flavohemoglobin gene fhbA induced sexual development and decreased sterigmatocystin production. Supplementation with a nitric oxide-releasing compound promoted cleistothecial formation and increased nsdD and steA expression, indicating that nitric oxide induces sexual development. This is the first study on the effect of nitric oxide on morphogenesis and secondary metabolism in fungi.
Collapse
|
10
|
Functional analysis and subcellular location of two flavohemoglobins from Aspergillus oryzae. Fungal Genet Biol 2011; 48:200-7. [DOI: 10.1016/j.fgb.2010.08.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/06/2010] [Accepted: 08/24/2010] [Indexed: 01/28/2023]
|
11
|
Heller J, Tudzynski P. Reactive oxygen species in phytopathogenic fungi: signaling, development, and disease. ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:369-90. [PMID: 21568704 DOI: 10.1146/annurev-phyto-072910-095355] [Citation(s) in RCA: 327] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Reactive oxygen species (ROS) play a major role in pathogen-plant interactions: recognition of a pathogen by the plant rapidly triggers the oxidative burst, which is necessary for further defense reactions. The specific role of ROS in pathogen defense is still unclear. Studies on the pathogen so far have focused on the importance of the oxidative stress response (OSR) systems to overcome the oxidative burst or of its avoidance by effectors. This review focuses on the role of ROS for fungal virulence and development. In the recent years, it has become obvious that (a) fungal OSR systems might not have the predicted crucial role in pathogenicity, (b) fungal pathogens, especially necrotrophs, can actively contribute to the ROS level in planta and even take advantage of the host's response, (c) fungi possess superoxide-generating NADPH oxidases similar to mammalian Nox complexes that are important for pathogenicity; however, recent data indicate that they are not directly involved in pathogen-host communication but in fungal differentiation processes that are necessary for virulence.
Collapse
Affiliation(s)
- Jens Heller
- Molecular Biology and Biotechnology of Fungi, Institute of Biology and Biotechnology of Plants, Westfälische Wilhelms-Universität Münster, Germany.
| | | |
Collapse
|
12
|
Schinko T, Berger H, Lee W, Gallmetzer A, Pirker K, Pachlinger R, Buchner I, Reichenauer T, Güldener U, Strauss J. Transcriptome analysis of nitrate assimilation in Aspergillus nidulans reveals connections to nitric oxide metabolism. Mol Microbiol 2010; 78:720-38. [PMID: 20969648 PMCID: PMC3020322 DOI: 10.1111/j.1365-2958.2010.07363.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2010] [Indexed: 01/08/2023]
Abstract
Nitrate is a dominant form of inorganic nitrogen (N) in soils and can be efficiently assimilated by bacteria, fungi and plants. We studied here the transcriptome of the short-term nitrate response using assimilating and non-assimilating strains of the model ascomycete Aspergillus nidulans. Among the 72 genes positively responding to nitrate, only 18 genes carry binding sites for the pathway-specific activator NirA. Forty-five genes were repressed by nitrate metabolism. Because nirA(-) strains are N-starved at nitrate induction conditions, we also compared the nitrate transcriptome with N-deprived conditions and found a partial overlap of differentially regulated genes between these conditions. Nitric oxide (NO)-metabolizing flavohaemoglobins were found to be co-regulated with nitrate assimilatory genes. Subsequent molecular characterization revealed that the strongly inducible FhbA is required for full activity of nitrate and nitrite reductase enzymes. The co-regulation of NO-detoxifying and nitrate/nitrite assimilating systems may represent a conserved mechanism, which serves to neutralize nitrosative stress imposed by an external NO source in saprophytic and pathogenic fungi. Our analysis using membrane-permeable NO donors suggests that signalling for NirA activation only indirectly depends on the nitrate transporters NrtA (CrnA) and NrtB (CrnB).
Collapse
Affiliation(s)
- Thorsten Schinko
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, Austrian Institute of Technology and BOKU University ViennaMuthgasse 18, 1190 Vienna, Austria
| | - Harald Berger
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, Austrian Institute of Technology and BOKU University ViennaMuthgasse 18, 1190 Vienna, Austria
| | - Wanseon Lee
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München85764 Neuherberg, Germany
| | - Andreas Gallmetzer
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, Austrian Institute of Technology and BOKU University ViennaMuthgasse 18, 1190 Vienna, Austria
| | | | - Robert Pachlinger
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, Austrian Institute of Technology and BOKU University ViennaMuthgasse 18, 1190 Vienna, Austria
| | - Ingrid Buchner
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, Austrian Institute of Technology and BOKU University ViennaMuthgasse 18, 1190 Vienna, Austria
| | | | - Ulrich Güldener
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München85764 Neuherberg, Germany
| | - Joseph Strauss
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, Austrian Institute of Technology and BOKU University ViennaMuthgasse 18, 1190 Vienna, Austria
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München85764 Neuherberg, Germany
| |
Collapse
|