1
|
Pseudomonas aeruginosa Alters Critical Lung Epithelial Cell Functions through Activation of ADAM17. Cells 2022; 11:cells11152303. [PMID: 35892600 PMCID: PMC9331763 DOI: 10.3390/cells11152303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 02/01/2023] Open
Abstract
Severe epithelial dysfunction is one major hallmark throughout the pathophysiological progress of bacterial pneumonia. Junctional and cellular adhesion molecules (e.g., JAMA-A, ICAM-1), cytokines (e.g., TNFα), and growth factors (e.g., TGFα), controlling proper lung barrier function and leukocyte recruitment, are proteolytically cleaved and released into the extracellular space through a disintegrin and metalloproteinase (ADAM) 17. In cell-based assays, we could show that the protein expression, maturation, and activation of ADAM17 is upregulated upon infection of lung epithelial cells with Pseudomonas aeruginosa and Exotoxin A (ExoA), without any impact of infection by Streptococcus pneumoniae. The characterization of released extracellular vesicles/exosomes and the comparison to heat-inactivated bacteria revealed that this increase occurred in a cell-associated and toxin-dependent manner. Pharmacological targeting and gene silencing of ADAM17 showed that its activation during infection with Pseudomonas aeruginosa was critical for the cleavage of junctional adhesion molecule A (JAM-A) and epithelial cell survival, both modulating barrier integrity, epithelial regeneration, leukocyte adhesion and transepithelial migration. Thus, site-specific targeting of ADAM17 or blockage of the activating toxins may constitute a novel anti-infective therapeutic option in Pseudomonas aeruginosa lung infection preventing severe epithelial and organ dysfunctions and stimulating future translational studies.
Collapse
|
2
|
Pseudomonas aeruginosa Triggered Exosomal Release of ADAM10 Mediates Proteolytic Cleavage in Trans. Int J Mol Sci 2022; 23:ijms23031259. [PMID: 35163191 PMCID: PMC8835980 DOI: 10.3390/ijms23031259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
Pneumonia is a life-threatening disease often caused by infection with Streptococcus pneumoniae and Pseudomonas aeruginosa. Many of the mediators (e.g., TNF, IL-6R) and junction molecules (e.g., E-cadherin) orchestrating inflammatory cell recruitment and loss of barrier integrity are proteolytically cleaved through a disintegrin and metalloproteinases (ADAMs). We could show by Western blot, surface expression analysis and measurement of proteolytic activity in cell-based assays, that ADAM10 in epithelial cells is upregulated and activated upon infection with Pseudomonas aeruginosa and Exotoxin A (ExoA), but not upon infection with Streptococcus pneumoniae. Targeting ADAM10 by pharmacological inhibition or gene silencing, we demonstrated that this activation was critical for cleavage of E-cadherin and modulated permeability and epithelial integrity. Stimulation with heat-inactivated bacteria revealed that the activation was based on the toxin repertoire rather than the interaction with the bacterial particle itself. Furthermore, calcium imaging experiments showed that the ExoA action was based on the induction of calcium influx. Investigating the extracellular vesicles and their proteolytic activity, we could show that Pseudomonas aeruginosa triggered exosomal release of ADAM10 and proteolytic cleavage in trans. This newly described mechanism could constitute an essential mechanism causing systemic inflammation in patients suffering from Pseudomonas aeruginosa-induced pneumonia stimulating future translational studies.
Collapse
|
3
|
Tosetti F, Alessio M, Poggi A, Zocchi MR. ADAM10 Site-Dependent Biology: Keeping Control of a Pervasive Protease. Int J Mol Sci 2021; 22:4969. [PMID: 34067041 PMCID: PMC8124674 DOI: 10.3390/ijms22094969] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
Enzymes, once considered static molecular machines acting in defined spatial patterns and sites of action, move to different intra- and extracellular locations, changing their function. This topological regulation revealed a close cross-talk between proteases and signaling events involving post-translational modifications, membrane tyrosine kinase receptors and G-protein coupled receptors, motor proteins shuttling cargos in intracellular vesicles, and small-molecule messengers. Here, we highlight recent advances in our knowledge of regulation and function of A Disintegrin And Metalloproteinase (ADAM) endopeptidases at specific subcellular sites, or in multimolecular complexes, with a special focus on ADAM10, and tumor necrosis factor-α convertase (TACE/ADAM17), since these two enzymes belong to the same family, share selected substrates and bioactivity. We will discuss some examples of ADAM10 activity modulated by changing partners and subcellular compartmentalization, with the underlying hypothesis that restraining protease activity by spatial segregation is a complex and powerful regulatory tool.
Collapse
Affiliation(s)
- Francesca Tosetti
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico S. Martino Largo R. Benzi 10, 16132 Genoa, Italy;
| | - Massimo Alessio
- Proteome Biochemistry, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico S. Martino Largo R. Benzi 10, 16132 Genoa, Italy;
| | - Maria Raffaella Zocchi
- Division of Immunology, Transplants and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| |
Collapse
|
4
|
Seifert A, Düsterhöft S, Wozniak J, Koo CZ, Tomlinson MG, Nuti E, Rossello A, Cuffaro D, Yildiz D, Ludwig A. The metalloproteinase ADAM10 requires its activity to sustain surface expression. Cell Mol Life Sci 2021; 78:715-732. [PMID: 32372373 PMCID: PMC7873107 DOI: 10.1007/s00018-020-03507-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 12/25/2022]
Abstract
The metalloproteinase ADAM10 critically contributes to development, inflammation, and cancer and can be controlled by endogenous or synthetic inhibitors. Here, we demonstrate for the first time that loss of proteolytic activity of ADAM10 by either inhibition or loss of function mutations induces removal of the protease from the cell surface and the whole cell. This process is temperature dependent, restricted to mature ADAM10, and associated with an increased internalization, lysosomal degradation, and release of mature ADAM10 in extracellular vesicles. Recovery from this depletion requires de novo synthesis. Functionally, this is reflected by loss and recovery of ADAM10 substrate shedding. Finally, ADAM10 inhibition in mice reduces systemic ADAM10 levels in different tissues. Thus, ADAM10 activity is critically required for its surface expression in vitro and in vivo. These findings are crucial for development of therapeutic ADAM10 inhibition strategies and may showcase a novel, physiologically relevant mechanism of protease removal due to activity loss.
Collapse
Affiliation(s)
- Anke Seifert
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Stefan Düsterhöft
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Justyna Wozniak
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Chek Z Koo
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | | - Elisa Nuti
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | | - Daniela Yildiz
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Institute of Experimental and Clinical Pharmacology and Toxicology, PZMS, ZHMB, Saarland University, Homburg, Germany
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany.
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
| |
Collapse
|
5
|
Loxham M, Smart DE, Bedke NJ, Smithers NP, Filippi I, Blume C, Swindle EJ, Tariq K, Howarth PH, Holgate ST, Davies DE. Allergenic proteases cleave the chemokine CX3CL1 directly from the surface of airway epithelium and augment the effect of rhinovirus. Mucosal Immunol 2018; 11:404-414. [PMID: 28677664 DOI: 10.1038/mi.2017.63] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 05/29/2017] [Indexed: 02/04/2023]
Abstract
CX3CL1 has been implicated in allergen-induced airway CD4+ T-lymphocyte recruitment in asthma. As epidemiological evidence supports a viral infection-allergen synergy in asthma exacerbations, we postulated that rhinovirus (RV) infection in the presence of allergen augments epithelial CX3CL1 release. Fully differentiated primary bronchial epithelial cultures were pretreated apically with house dust mite (HDM) extract and infected with rhinovirus-16 (RV16). CX3CL1 was measured by enzyme-linked immunosorbent assay and western blotting, and shedding mechanisms assessed using inhibitors, protease-activated receptor-2 (PAR-2) agonist, and recombinant CX3CL1-expressing HEK293T cells. Basolateral CX3CL1 release was unaffected by HDM but stimulated by RV16; inhibition by fluticasone or GM6001 implicated nuclear factor-κB and ADAM (A Disintegrin and Metalloproteinase) sheddases. Conversely, apical CX3CL1 shedding was stimulated by HDM and augmented by RV16. Although fluticasone or GM6001 reduced RV16+HDM-induced apical CX3CL1 release, heat inactivation or cysteine protease inhibition completely blocked CX3CL1 shedding. The HDM effect was via enzymatic cleavage of CX3CL1, not PAR-2 activation, yielding a product mitogenic for smooth muscle cells. Extracts of Alternaria fungus caused similar CX3CL1 shedding. We have identified a novel mechanism whereby allergenic proteases cleave CX3CL1 from the apical epithelial surface to yield a biologically active product. RV16 infection augmented HDM-induced CX3CL1 shedding-this may contribute to synergy between allergen exposure and RV infection in triggering asthma exacerbations and airway remodeling.
Collapse
Affiliation(s)
- M Loxham
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton, UK.,Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton, UK
| | - D E Smart
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton, UK
| | - N J Bedke
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton, UK
| | - N P Smithers
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton, UK
| | - I Filippi
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton, UK.,Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - C Blume
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton, UK
| | - E J Swindle
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton, UK.,Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton, UK
| | - K Tariq
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton, UK.,NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton, UK
| | - P H Howarth
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton, UK.,NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton, UK
| | - S T Holgate
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton, UK
| | - D E Davies
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton, UK.,Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton, UK.,NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton, UK
| |
Collapse
|
6
|
Dreymueller D, Pruessmeyer J, Schumacher J, Fellendorf S, Hess FM, Seifert A, Babendreyer A, Bartsch JW, Ludwig A. The metalloproteinase ADAM8 promotes leukocyte recruitment in vitro and in acute lung inflammation. Am J Physiol Lung Cell Mol Physiol 2017; 313:L602-L614. [PMID: 28596294 DOI: 10.1152/ajplung.00444.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 12/20/2022] Open
Abstract
Alveolar leukocyte recruitment is a hallmark of acute lung inflammation and involves transmigration of leukocytes through endothelial and epithelial layers. The disintegrin and metalloproteinase (ADAM) 8 is expressed on human isolated leukocytic cells and can be further upregulated on cultured endothelial and epithelial cells by proinflammatory cytokines. By shRNA-mediated knockdown we show that leukocytic ADAM8 is required on monocytic THP-1 cells for chemokine-induced chemotaxis as well as transendothelial and transepithelial migration. Furthermore, ADAM8 promotes αL-integrin upregulation and THP-1 cell adhesion to endothelial cells. On endothelial cells ADAM8 enhances transendothelial migration and increases cytokine-induced permeability. On epithelial cells the protease facilitates migration in a wound closure assay but does not affect transepithelial leukocyte migration. Blood leukocytes and bone marrow-derived macrophages (BMDM) from ADAM8-deficient mice show suppressed chemotactic response. Intranasal application of LPS to mice is accompanied with ADAM8 upregulation in the lung. In this model of acute lung inflammation ADAM8-deficient mice are protected against leukocyte infiltration. Finally, transfer experiments of BMDM in mice indicate that ADAM8 exerts a promigratory function predominantly on leukocytes. Our study provides in vitro and in vivo evidence that ADAM8 on leukocytes holds a proinflammatory function in acute lung inflammation by promoting alveolar leukocyte recruitment.
Collapse
Affiliation(s)
- Daniela Dreymueller
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany; and
| | - Jessica Pruessmeyer
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany; and
| | - Julian Schumacher
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany; and
| | - Sandra Fellendorf
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany; and
| | - Franz Martin Hess
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany; and
| | - Anke Seifert
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany; and
| | - Aaron Babendreyer
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany; and
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps University Marburg, University Hospital Marburg, Marburg, Germany
| | - Andreas Ludwig
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany; and
| |
Collapse
|
7
|
Koenen A, Babendreyer A, Schumacher J, Pasqualon T, Schwarz N, Seifert A, Deupi X, Ludwig A, Dreymueller D. The DRF motif of CXCR6 as chemokine receptor adaptation to adhesion. PLoS One 2017; 12:e0173486. [PMID: 28267793 PMCID: PMC5340378 DOI: 10.1371/journal.pone.0173486] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/21/2017] [Indexed: 12/23/2022] Open
Abstract
The CXC-chemokine receptor 6 (CXCR6) is a class A GTP-binding protein-coupled receptor (GPCRs) that mediates adhesion of leukocytes by interacting with the transmembrane cell surface-expressed chemokine ligand 16 (CXCL16), and also regulates leukocyte migration by interacting with the soluble shed variant of CXCL16. In contrast to virtually all other chemokine receptors with chemotactic activity, CXCR6 carries a DRF motif instead of the typical DRY motif as a key element in receptor activation and G protein coupling. In this work, modeling analyses revealed that the phenylalanine F3.51 in CXCR6 might have impact on intramolecular interactions including hydrogen bonds by this possibly changing receptor function. Initial investigations with embryonic kidney HEK293 cells and further studies with monocytic THP-1 cells showed that mutation of DRF into DRY does not influence ligand binding, receptor internalization, receptor recycling, and protein kinase B (AKT) signaling. Adhesion was slightly decreased in a time-dependent manner. However, CXCL16-induced calcium signaling and migration were increased. Vice versa, when the DRY motif of the related receptor CX3CR1 was mutated into DRF the migratory response towards CX3CL1 was diminished, indicating that the presence of a DRF motif generally impairs chemotaxis in chemokine receptors. Transmembrane and soluble CXCL16 play divergent roles in homeostasis, inflammation, and cancer, which can be beneficial or detrimental. Therefore, the DRF motif of CXCR6 may display a receptor adaptation allowing adhesion and cell retention by transmembrane CXCL16 but reducing the chemotactic response to soluble CXCL16. This adaptation may avoid permanent or uncontrolled recruitment of inflammatory cells as well as cancer metastasis.
Collapse
Affiliation(s)
- Andrea Koenen
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Aaron Babendreyer
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Julian Schumacher
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Tobias Pasqualon
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Anke Seifert
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Xavier Deupi
- Laboratory of Biomolecular Research and Condensed Matter Theory Group, Paul Scherrer Institute, Villigen, Switzerland
| | - Andreas Ludwig
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Daniela Dreymueller
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
8
|
Fine Tuning Cell Migration by a Disintegrin and Metalloproteinases. Mediators Inflamm 2017; 2017:9621724. [PMID: 28260841 PMCID: PMC5316459 DOI: 10.1155/2017/9621724] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/22/2016] [Indexed: 02/07/2023] Open
Abstract
Cell migration is an instrumental process involved in organ development, tissue homeostasis, and various physiological processes and also in numerous pathologies. Both basic cell migration and migration towards chemotactic stimulus consist of changes in cell polarity and cytoskeletal rearrangement, cell detachment from, invasion through, and reattachment to their neighboring cells, and numerous interactions with the extracellular matrix. The different steps of immune cell, tissue cell, or cancer cell migration are tightly coordinated in time and place by growth factors, cytokines/chemokines, adhesion molecules, and receptors for these ligands. This review describes how a disintegrin and metalloproteinases interfere with several steps of cell migration, either by proteolytic cleavage of such molecules or by functions independent of proteolytic activity.
Collapse
|
9
|
Discovery of an enzyme and substrate selective inhibitor of ADAM10 using an exosite-binding glycosylated substrate. Sci Rep 2016; 6:11. [PMID: 28442704 PMCID: PMC5431342 DOI: 10.1038/s41598-016-0013-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/12/2016] [Indexed: 02/01/2023] Open
Abstract
ADAM10 and ADAM17 have been shown to contribute to the acquired drug resistance of HER2-positive breast cancer in response to trastuzumab. The majority of ADAM10 and ADAM17 inhibitor development has been focused on the discovery of compounds that bind the active site zinc, however, in recent years, there has been a shift from active site to secondary substrate binding site (exosite) inhibitor discovery in order to identify non-zinc-binding molecules. In the present work a glycosylated, exosite-binding substrate of ADAM10 and ADAM17 was utilized to screen 370,276 compounds from the MLPCN collection. As a result of this uHTS effort, a selective, time-dependent, non-zinc-binding inhibitor of ADAM10 with Ki = 883 nM was discovered. This compound exhibited low cell toxicity and was able to selectively inhibit shedding of known ADAM10 substrates in several cell-based models. We hypothesize that differential glycosylation of these cognate substrates is the source of selectivity of our novel inhibitor. The data indicate that this novel inhibitor can be used as an in vitro and, potentially, in vivo, probe of ADAM10 activity. Additionally, results of the present and prior studies strongly suggest that glycosylated substrate are applicable as screening agents for discovery of selective ADAM probes and therapeutics.
Collapse
|
10
|
Ostuni MA, Guellec J, Hermand P, Durand P, Combadière C, Pincet F, Deterre P. CX3CL1, a chemokine finely tuned to adhesion: critical roles of the stalk glycosylation and the membrane domain. Biol Open 2014; 3:1173-82. [PMID: 25395671 PMCID: PMC4265755 DOI: 10.1242/bio.20149845] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The multi-domain CX3CL1 transmembrane chemokine triggers leukocyte adherence without rolling and migration by presenting its chemokine domain (CD) to its receptor CX3CR1. Through the combination of functional adhesion assays with structural analysis using FRAP, we investigated the functional role of the other domains of CX3CL1, i.e., its mucin stalk, transmembrane domain, and cytosolic domain. Our results indicate that the CX3CL1 molecular structure is finely adapted to capture CX3CR1 in circulating cells and that each domain has a specific purpose: the mucin stalk is stiffened by its high glycosylation to present the CD away from the membrane, the transmembrane domain generates the permanent aggregation of an adequate amount of monomers to guarantee adhesion and prevent rolling, and the cytosolic domain ensures adhesive robustness by interacting with the cytoskeleton. We propose a model in which quasi-immobile CX3CL1 bundles are organized to quickly generate adhesive patches with sufficiently high strength to capture CX3CR1+ leukocytes but with sufficiently low strength to allow their patrolling behavior.
Collapse
Affiliation(s)
- Mariano A Ostuni
- INSERM, U 1135, Centre d'Immunologie et des Maladies Infectieuses, F-75013, Paris, France Sorbonne Universités, UPMC Université Paris 06, UMRS CR7, Centre d'Immunologie et des Maladies Infectieuses, F-75013, Paris, France CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses, F-75013, Paris, France Present address: INSERM, U 1134, Biologie Intégrée du Globule Rouge; Université Paris Diderot; Institut National de la Transfusion Sanguine, 6 rue Alexandre Cabanel, 75015, Paris, France
| | - Julie Guellec
- INSERM, U 1135, Centre d'Immunologie et des Maladies Infectieuses, F-75013, Paris, France Sorbonne Universités, UPMC Université Paris 06, UMRS CR7, Centre d'Immunologie et des Maladies Infectieuses, F-75013, Paris, France CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses, F-75013, Paris, France
| | - Patricia Hermand
- INSERM, U 1135, Centre d'Immunologie et des Maladies Infectieuses, F-75013, Paris, France Sorbonne Universités, UPMC Université Paris 06, UMRS CR7, Centre d'Immunologie et des Maladies Infectieuses, F-75013, Paris, France CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses, F-75013, Paris, France
| | - Pauline Durand
- Sorbonne Universités, UPMC Université Paris 06, UMR 94550 ENS Laboratoire de Physique Statistique, F-75005, Paris, France
| | - Christophe Combadière
- INSERM, U 1135, Centre d'Immunologie et des Maladies Infectieuses, F-75013, Paris, France Sorbonne Universités, UPMC Université Paris 06, UMRS CR7, Centre d'Immunologie et des Maladies Infectieuses, F-75013, Paris, France CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses, F-75013, Paris, France
| | - Frédéric Pincet
- Sorbonne Universités, UPMC Université Paris 06, UMR 94550 ENS Laboratoire de Physique Statistique, F-75005, Paris, France
| | - Philippe Deterre
- INSERM, U 1135, Centre d'Immunologie et des Maladies Infectieuses, F-75013, Paris, France Sorbonne Universités, UPMC Université Paris 06, UMRS CR7, Centre d'Immunologie et des Maladies Infectieuses, F-75013, Paris, France CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses, F-75013, Paris, France
| |
Collapse
|
11
|
Zieger M, Ahnelt PK, Uhrin P. CX3CL1 (fractalkine) protein expression in normal and degenerating mouse retina: in vivo studies. PLoS One 2014; 9:e106562. [PMID: 25191897 PMCID: PMC4156323 DOI: 10.1371/journal.pone.0106562] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 08/08/2014] [Indexed: 11/18/2022] Open
Abstract
We aimed to investigate fractalkine (CX3CL1) protein expression in wild type (wt) retina and its alterations during retinal degeneration in mouse model (rd10) of retinitis pigmentosa. Forms of retinal protein CX3CL1, total protein and mRNA levels of CX3CL1 were analyzed at postnatal days (P) 5, 10, 14, 22, 30, 45, and 60 by Western blotting and real-time PCR. Cellular sources of CX3CL1 were investigated by in situ hybridization histochemistry (ISH) and using transgenic (CX3CL1cherry) mice. The immunoblots revealed that in both, wt and rd10 retinas, a membrane integrated ∼100 kDa CX3CL1 form and a cleaved ∼85 kDa CX3CL1 form were present at P5. At P10, accumulation of another presumably intra-neuronal ∼95 kDa form and a decrease in the ∼85-kDa form were observed. From P14, a ∼95 kDa form became principal in wt retina, while in rd10 retinas a soluble ∼85 kDa form increased at P45 and P60. In comparison, retinas of rd10 mice had significantly lower levels of total CX3CL1 protein (from P10 onwards) and lower CX3CL1 mRNA levels (from P14), even before the onset of primary rod degeneration. ISH and mCherry reporter fluorescence showed neurons in the inner retina layers as principal sites of CX3CL1 synthesis both in wt and rd10 retinas. In conclusion, our results demonstrate that CX3CL1 has a distinctive course of expression and functional regulation in rd10 retina starting at P10. The biological activity of CX3CL1 is regulated by conversion of a membrane integrated to a soluble form during neurogenesis and in response to pathologic changes in the adult retinal milieu. Viable mature neurons in the inner retina likely exhibit a dynamic intracellular storage depot of CX3CL1.
Collapse
Affiliation(s)
- Marina Zieger
- Department of Neurophysiology and Neuropharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Ophthalmology and Gene Therapy Centre, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (MZ); (PU)
| | - Peter K. Ahnelt
- Department of Neurophysiology and Neuropharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Pavel Uhrin
- Department of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- * E-mail: (MZ); (PU)
| |
Collapse
|
12
|
The role of ADAM-mediated shedding in vascular biology. Eur J Cell Biol 2011; 91:472-85. [PMID: 22138087 DOI: 10.1016/j.ejcb.2011.09.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/08/2011] [Accepted: 09/08/2011] [Indexed: 01/14/2023] Open
Abstract
Within the vasculature the disintegrins and metalloproteinases (ADAMs) 8, 9, 10, 12, 15, 17, 19, 28 and 33 are expressed on endothelial cells, smooth muscle cells and on leukocytes. As surface-expressed proteases they mediate cleavage of vascular surface molecules at an extracellular site close to the membrane. This process is termed shedding and leads to the release of a soluble substrate ectodomain thereby critically modulating the biological function of the substrate. In the vasculature several surface molecules undergo ADAM-mediated shedding including tumour necrosis factor (TNF) α, interleukin (IL) 6 receptor α, L-selectin, vascular endothelial (VE)-cadherin, the transmembrane CX3C-chemokine ligand (CX3CL) 1, Notch, transforming growth factor (TGF) and heparin-binding epidermal growth factor (HB-EGF). These substrates play distinct roles in vascular biology by promoting inflammation, permeability changes, leukocyte recruitment, resolution of inflammation, regeneration and/or neovascularisation. Especially ADAM17 and ADAM10 are capable of cleaving many substrates with diverse function within the vasculature, whereas other ADAMs have a more restricted substrate range. Therefore, targeting ADAM17 or ADAM10 by pharmacologic inhibition or gene knockout not only attenuates the inflammatory response in animal models but also affects tissue regeneration and neovascularisation. Recent discoveries indicate that other ADAMs (e.g. ADAM8 and 9) also play important roles in vascular biology but appear to have more selective effects on vascular responses (e.g. on neovascularisation only). Although, targeting of ADAM17 and ADAM10 in inflammatory diseases is still a promising approach, temporal and spatial as well as substrate-specific inhibition approaches are required to minimise undesired side effects on vascular cells.
Collapse
|
13
|
Mortier A, Gouwy M, Van Damme J, Proost P. Effect of posttranslational processing on the in vitro and in vivo activity of chemokines. Exp Cell Res 2010; 317:642-54. [PMID: 21146523 DOI: 10.1016/j.yexcr.2010.11.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 11/25/2010] [Accepted: 11/29/2010] [Indexed: 10/18/2022]
Abstract
The CXC and CC chemokine gene clusters provide an abundant number of chemotactic factors selectively binding to shared G protein-coupled receptors (GPCR). Hence, chemokines function in a complex network to mediate migration of the various leukocyte subsets, expressing specific GPCRs during the immune response. Further fine-tuning of the chemokine system is reached through specific posttranslational modifications of the mature proteins. Indeed, enzymatic processing of chemokines during an early phase of inflammation leads to activation of precursor molecules or cleavage into even more active or receptor specific chemokine isoforms. At a further stage, proteolytic processing leads to loss of GPCR signaling, thereby providing natural chemokine receptor antagonists. Finally, further NH(2)-terminal cleavage results in complete inactivation to dampen the inflammatory response. During inflammatory responses, the two chemokines which exist in a membrane-bound form may be released by proteases from the cellular surface. In addition to proteolytic processing, citrullination and glycosylation of chemokines is also important for their biological activity. In particular, citrullination of arginine residues seems to reduce the inflammatory activity of chemokines in vivo. This goes along with other positive and negative regulatory mechanisms for leukocyte migration, such as chemokine synergy and scavenging by decoy receptors.
Collapse
Affiliation(s)
- Anneleen Mortier
- Laboratory of Molecular Immunology, Rega Institute, K.U. Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
14
|
Schwarz N, Pruessmeyer J, Hess FM, Dreymueller D, Pantaler E, Koelsch A, Windoffer R, Voss M, Sarabi A, Weber C, Sechi AS, Uhlig S, Ludwig A. Requirements for leukocyte transmigration via the transmembrane chemokine CX3CL1. Cell Mol Life Sci 2010; 67:4233-48. [PMID: 20559678 PMCID: PMC11115548 DOI: 10.1007/s00018-010-0433-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 05/28/2010] [Accepted: 06/04/2010] [Indexed: 01/21/2023]
Abstract
The surface-expressed transmembrane CX3C chemokine ligand 1 (CX3CL1/fractalkine) induces firm adhesion of leukocytes expressing its receptor CX3CR1. After shedding by the disintegrins and metalloproteinases (ADAM) 10 and 17, CX3CL1 also acts as soluble leukocyte chemoattractant. Here, we demonstrate that transmembrane CX3CL1 expressed on both endothelial and epithelial cells induces leukocyte transmigration. To investigate the underlying mechanism, we generated CX3CR1 variants lacking the intracellular aspartate-arginine-tyrosine (DRY) motif or the intracellular C-terminus which led to a defect in intracellular calcium response and impaired ligand uptake, respectively. While both variants effectively mediated firm cell adhesion, they failed to induce transmigration and rather mediated retention of leukocytes on the CX3CL1-expressing cell layer. Targeting of ADAM10 led to increased adhesion but reduced transmigration in response to transmembrane CX3CL1, while transmigration towards soluble CX3CL1 was not affected. Thus, transmembrane CX3CL1 mediates leukocyte transmigration via the DRY motif and C-terminus of CX3CR1 and the activity of ADAM10.
Collapse
Affiliation(s)
- Nicole Schwarz
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Jessica Pruessmeyer
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
- Interdisciplinary Center for Clinical Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Franz M. Hess
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Daniela Dreymueller
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
- Interdisciplinary Center for Clinical Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Elena Pantaler
- Institute of Physiology, RWTH Aachen University, 52074 Aachen, Germany
| | - Anne Koelsch
- Institute for Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Reinhard Windoffer
- Institute for Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Matthias Voss
- Institute for Immunology, Christian-Albrechts University, 24118 Kiel, Germany
| | - Alisina Sarabi
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Christian Weber
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Antonio S. Sechi
- Institute for Biomedical Engineering–Cell Biology, RWTH Aachen University, 52074 Aachen, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Andreas Ludwig
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
- Interdisciplinary Center for Clinical Research, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|