1
|
Khandelwal NK, Chauhan N, Sarkar P, Esquivel BD, Coccetti P, Singh A, Coste AT, Gupta M, Sanglard D, White TC, Chauvel M, d'Enfert C, Chattopadhyay A, Gaur NA, Mondal AK, Prasad R. Azole resistance in a Candida albicans mutant lacking the ABC transporter CDR6/ROA1 depends on TOR signaling. J Biol Chem 2017; 293:412-432. [PMID: 29158264 DOI: 10.1074/jbc.m117.807032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 11/17/2017] [Indexed: 12/12/2022] Open
Abstract
ATP-binding cassette (ABC) transporters help export various substrates across the cell membrane and significantly contribute to drug resistance. However, a recent study reported an unusual case in which the loss of an ABC transporter in Candida albicans, orf19.4531 (previously named ROA1), increases resistance against antifungal azoles, which was attributed to an altered membrane potential in the mutant strain. To obtain further mechanistic insights into this phenomenon, here we confirmed that the plasma membrane-localized transporter (renamed CDR6/ROA1 for consistency with C. albicans nomenclature) could efflux xenobiotics such as berberine, rhodamine 123, and paraquat. Moreover, a CDR6/ROA1 null mutant, NKKY101, displayed increased susceptibility to these xenobiotics. Interestingly, fluorescence recovery after photobleaching (FRAP) results indicated that NKKY101 mutant cells exhibited increased plasma membrane rigidity, resulting in reduced azole accumulation and contributing to azole resistance. Transcriptional profiling revealed that ribosome biogenesis genes were significantly up-regulated in the NKKY101 mutant. As ribosome biogenesis is a well-known downstream phenomenon of target of rapamycin (TOR1) signaling, we suspected a link between ribosome biogenesis and TOR1 signaling in NKKY101. Therefore, we grew NKKY101 cells on rapamycin and observed TOR1 hyperactivation, which leads to Hsp90-dependent calcineurin stabilization and thereby increased azole resistance. This in vitro finding was supported by in vivo data from a mouse model of systemic infection in which NKKY101 cells led to higher fungal load after fluconazole challenge than wild-type cells. Taken together, our study uncovers a mechanism of azole resistance in C. albicans, involving increased membrane rigidity and TOR signaling.
Collapse
Affiliation(s)
- Nitesh Kumar Khandelwal
- From the School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.,the International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India, and
| | - Neeraj Chauhan
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Parijat Sarkar
- the CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Brooke D Esquivel
- the School of Biological Sciences, Cell Biology, and Biophysics, University of Missouri, Kansas City, Missouri 64110
| | - Paola Coccetti
- the Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy.,SYSBIO, Centre of Systems Biology, 20126 Milan, Italy
| | - Ashutosh Singh
- From the School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.,the Department of Biochemistry, Lucknow University, Lucknow 226024, Uttar Pradesh, India
| | - Alix T Coste
- the Institute of Microbiology, University of Lausanne and University Hospital Center, Rue du Bugnon 48, Lausanne, CH-1011, Switzerland
| | - Meghna Gupta
- From the School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.,the Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158
| | - Dominique Sanglard
- the Institute of Microbiology, University of Lausanne and University Hospital Center, Rue du Bugnon 48, Lausanne, CH-1011, Switzerland
| | - Theodore C White
- the School of Biological Sciences, Cell Biology, and Biophysics, University of Missouri, Kansas City, Missouri 64110
| | - Murielle Chauvel
- the Département Génomes et Génétique, Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, INRA, 75015 Paris, France
| | - Christophe d'Enfert
- the Département Génomes et Génétique, Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, INRA, 75015 Paris, France
| | | | - Naseem A Gaur
- the International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India, and
| | - Alok Kumar Mondal
- From the School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajendra Prasad
- From the School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India, .,the Amity Institute of Integrative Sciences and Health, Amity University Haryana, Amity Education Valley Gurgaon-122413, India
| |
Collapse
|
2
|
Masłyk M, Janeczko M, Martyna A, Kubiński K. CX-4945: the protein kinase CK2 inhibitor and anti-cancer drug shows anti-fungal activity. Mol Cell Biochem 2017; 435:193-196. [PMID: 28501934 PMCID: PMC5632345 DOI: 10.1007/s11010-017-3068-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/05/2017] [Indexed: 01/01/2023]
Abstract
CX-4945 is a selective inhibitor of protein kinase CK2 exhibiting clinical significance. Its antitumor properties arise from the abrogation of CK2-mediated pro-survival cellular pathways. The presented data reveal the influence of CX-4945 on the growth of yeast cells showing variable potency against Saccharomyces cerevisiae deletion strains with different contents of CK2 subunits. The catalytic subunit CK2α appears to sensitize yeast to the CX-4945 action. Moreover, the compound suppresses hyphal growth and cell adhesion of Candida albicans, thereby abolishing some hallmarks of invasiveness of the pathogen. It is known that cancer patients are more prone to fungal infections. Our data unveil the dual-activity of CX-4945; when used in anti-cancer therapy, it may simultaneously prevent cancer-associated candidiasis.
Collapse
Affiliation(s)
- Maciej Masłyk
- Department of Molecular Biology, Institute of Biotechnology, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland
| | - Monika Janeczko
- Department of Molecular Biology, Institute of Biotechnology, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland
| | - Aleksandra Martyna
- Department of Molecular Biology, Institute of Biotechnology, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland
| | - Konrad Kubiński
- Department of Molecular Biology, Institute of Biotechnology, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland.
| |
Collapse
|
3
|
Shekhar-Guturja T, Gunaherath GMKB, Wijeratne EMK, Lambert JP, Averette AF, Lee SC, Kim T, Bahn YS, Tripodi F, Ammar R, Döhl K, Niewola-Staszkowska K, Schmitt L, Loewith RJ, Roth FP, Sanglard D, Andes D, Nislow C, Coccetti P, Gingras AC, Heitman J, Gunatilaka AAL, Cowen LE. Dual action antifungal small molecule modulates multidrug efflux and TOR signaling. Nat Chem Biol 2016; 12:867-75. [PMID: 27571477 PMCID: PMC5030160 DOI: 10.1038/nchembio.2165] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 06/03/2016] [Indexed: 12/26/2022]
Abstract
There is an urgent need for new strategies to treat invasive fungal infections, which are a leading cause of human mortality. Here, we establish two activities of the natural product beauvericin, which potentiates the activity of the most widely deployed class of antifungal against the leading human fungal pathogens, blocks the emergence of drug resistance, and renders antifungal-resistant pathogens responsive to treatment in mammalian infection models. Harnessing genome sequencing of beauvericin-resistant mutants, affinity purification of a biotinylated beauvericin analog, and biochemical and genetic assays reveals that beauvericin blocks multidrug efflux and inhibits the global regulator TORC1 kinase, thereby activating the protein kinase CK2 and inhibiting the molecular chaperone Hsp90. Substitutions in the multidrug transporter Pdr5 that enable beauvericin efflux impair antifungal efflux, thereby impeding resistance to the drug combination. Thus, dual targeting of multidrug efflux and TOR signaling provides a powerful, broadly effective therapeutic strategy for treating fungal infectious disease that evades resistance.
Collapse
Affiliation(s)
| | - G M Kamal B Gunaherath
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, USA
| | - E M Kithsiri Wijeratne
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, USA
| | - Jean-Philippe Lambert
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Anna F Averette
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Soo Chan Lee
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Taeyup Kim
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca and SYSBIO, Centre of Systems Biology, Milan, Italy
| | - Ron Ammar
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Katja Döhl
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | | | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Robbie J Loewith
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Frederick P Roth
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Dominique Sanglard
- Institute of Microbiology, University Hospital Lausanne and University Hospital Center, Lausanne, Switzerland
| | - David Andes
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA.,Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, USA
| | - Corey Nislow
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca and SYSBIO, Centre of Systems Biology, Milan, Italy
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - A A Leslie Gunatilaka
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, USA
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Gerbeth C, Schmidt O, Rao S, Harbauer AB, Mikropoulou D, Opalińska M, Guiard B, Pfanner N, Meisinger C. Glucose-induced regulation of protein import receptor Tom22 by cytosolic and mitochondria-bound kinases. Cell Metab 2013; 18:578-87. [PMID: 24093680 DOI: 10.1016/j.cmet.2013.09.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/29/2013] [Accepted: 08/29/2013] [Indexed: 10/26/2022]
Abstract
Most mitochondrial proteins are imported by the translocase of the outer mitochondrial membrane (TOM). Tom22 functions as central receptor and transfers preproteins to the import pore. Casein kinase 2 (CK2) constitutively phosphorylates the cytosolic precursor of Tom22 at Ser44 and Ser46 and, thus, promotes its import. It is unknown whether Tom22 is regulated under different metabolic conditions. We report that CK1, which is involved in glucose-induced signal transduction, is bound to mitochondria. CK1 phosphorylates Tom22 at Thr57 and stimulates the assembly of Tom22 and Tom20. In contrast, protein kinase A (PKA), which is also activated by the addition of glucose, phosphorylates the precursor of Tom22 at Thr76 and impairs its import. Thus, PKA functions in an opposite manner to CK1 and CK2. Our results reveal that three kinases regulate the import and assembly of Tom22, demonstrating that the central receptor is a major target for the posttranslational regulation of mitochondrial protein import.
Collapse
Affiliation(s)
- Carolin Gerbeth
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; Trinationales Graduiertenkolleg 1478, Universität Freiburg, 79104 Freiburg, Germany; Faculty of Biology, Universität Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Gerbeth C, Mikropoulou D, Meisinger C. From inventory to functional mechanisms. FEBS J 2013; 280:4933-42. [DOI: 10.1111/febs.12445] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/10/2013] [Accepted: 07/22/2013] [Indexed: 11/27/2022]
|
6
|
Protein kinase CK2 holoenzyme promotes start-specific transcription in Saccharomyces cerevisiae. EUKARYOTIC CELL 2013; 12:1271-80. [PMID: 23873864 DOI: 10.1128/ec.00117-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Saccharomyces cerevisiae, the entrance into S phase requires the activation of a specific burst of transcription, which depends on SBF (SCB binding factor, Swi4/Swi6) and MBF (MCB binding factor, Mbp1/Swi6) complexes. CK2 is a pleiotropic kinase involved in several cellular processes, including the regulation of the cell cycle. CK2 is composed of two catalytic subunits (α and α') and two regulatory subunits (β and β'), both of which are required to form the active holoenzyme. Here we investigate the function of the CK2 holoenzyme in Start-specific transcription. The ckb1Δ ckb2Δ mutant strain, bearing deletions of both genes encoding CK2 regulatory subunits, shows a delay of S-phase entrance due to a severe reduction of the expression of SBF- and MBF-dependent genes. This transcriptional defect is caused by an impaired recruitment of Swi6 and Swi4 to G1 gene promoters. Moreover, CK2 α and β' subunits interact with RNA polymerase II, whose binding to G1 promoters is positively regulated by the CK2 holoenzyme. Collectively, these findings suggest a novel role for the CK2 holoenzyme in the activation of G1 transcription.
Collapse
|
7
|
Cirulli C, Coccetti P, Alberghina L, Tripodi F. A surface-activated chemical ionization approach allows quantitative phosphorylation analysis of the cyclin-dependent kinase inhibitor Sic1 phosphorylated on Ser201. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:1527-1532. [PMID: 22638969 DOI: 10.1002/rcm.6251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RATIONALE Quantitative phosphoproteomics represents a front line for functional proteomics and hence for systems biology. Here we present a new application of the surface-activated chemical ionization (SACI) technology for quantitative phosphoproteomics analysis. The main advantages of SACI-MS technology are high sensitivity, quantitative accuracy and matrix effect reduction, which allow quantitative estimations. METHODS A SACI-MS approach was used to investigate the quantitative in vivo phosphorylation of the cyclin-dependent kinase inhibitor Sic1, a low-abundance protein of Saccharomyces cerevisiae, which is phosphorylated on Ser201 by casein kinase 2 (CK2) and compared its phosphorylation status in cells growing in two different carbon sources (glucose or ethanol). RESULTS Our relative quantification indicated that the Sic1-Ser201 phosphorylation level is about 2-fold higher in ethanol- than in glucose-growing cells, proportional to the Sic1 protein level. This finding is coherent with results of western blot analysis using anti-phospho-Ser201-specific antibody, validating the results obtained with this new SACI approach. CONCLUSIONS The findings presented in this paper indicate that the innovative LC/SACI-MS method, coupled with immunoprecipitation, is a powerful device to obtain quantitative information on the phosphorylation state of low abundance proteins.
Collapse
Affiliation(s)
- Claudia Cirulli
- Università degli Studi di Milano-Bicocca, Dipartimento di Biotecnologie e Bioscienze, Piazza della Scienza 2, 20126 Milano, Italy.
| | | | | | | |
Collapse
|
8
|
Tripodi F, Cirulli C, Reghellin V, Brambilla L, Marin O, Coccetti P. Nutritional modulation of CK2 in Saccharomyces cerevisiae: regulating the activity of a constitutive enzyme. Mol Cell Biochem 2011; 356:269-75. [PMID: 21750980 DOI: 10.1007/s11010-011-0958-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 06/24/2011] [Indexed: 02/02/2023]
Abstract
CK2 is a highly conserved protein kinase involved in different cellular processes, which shows a higher activity in actively proliferating mammalian cells and in various types of cancer and cancer cell lines. We recently demonstrated that CK2 activity is strongly influenced by growth rate in yeast cells as well. Here, we extend our previous findings and show that, in cells grown in either glucose or ethanol-supplemented media, CK2 presents no alteration in K(m) for both the ATP and the peptide substrate RRRADDSDDDDD, while a significant increase in V (max) is observed. In chemostat-grown cells, no difference of CK2 activity was observed in cells grown at the same dilution rate in media supplemented with either ethanol or glucose, excluding the contribution of carbon metabolism on CK2 activity. By using the eIF2β-derived peptide, which can be phosphorylated by the holoenzyme but not by the free catalytic subunits, we show that the holoenzyme activity requires the concurrent presence of both β and β' encoding genes. Finally, conditions of nitrogen deprivation leading to a G0-like arrest result in a decrease of total CK2 activity, but have no effect on the activity of the holoenzyme. These findings newly indicate a regulatory role of β and β' subunits of CK2 in the nutrient response.
Collapse
Affiliation(s)
- Farida Tripodi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | | | | | | | | | | |
Collapse
|
9
|
Peng Y, Wong CCL, Nakajima Y, Tyers RG, Sarkeshik AS, Yates J, Drubin DG, Barnes G. Overlapping kinetochore targets of CK2 and Aurora B kinases in mitotic regulation. Mol Biol Cell 2011; 22:2680-9. [PMID: 21633108 PMCID: PMC3145544 DOI: 10.1091/mbc.e10-11-0915] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Protein kinase CK2 is one of the most conserved kinases in eukaryotic cells and plays essential roles in diverse processes. While we know that CK2 plays a role(s) in cell division, our understanding of how CK2 regulates cell cycle progression is limited. In this study, we revealed a regulatory role for CK2 in kinetochore function. The kinetochore is a multi-protein complex that assembles on the centromere of a chromosome and functions to attach chromosomes to spindle microtubules. To faithfully segregate chromosomes and maintain genomic integrity, the kinetochore is tightly regulated by multiple mechanisms, including phosphorylation by Aurora B kinase. We found that a loss of CK2 kinase activity inhibits anaphase spindle elongation and results in chromosome missegregation. Moreover, a lack of CK2 activates the spindle assembly checkpoint. We demonstrate that CK2 associates with Mif2, the Saccharomyces cerevisiae homologue of human CENP-C, which serves as an important link between the inner and outer kinetochore. Furthermore, we show Mif2 and the inner kinetochore protein Ndc10 are phosphorylated by CK2, and this phosphorylation plays antagonistic and synergistic roles with Aurora B phosphorylation of these targets, respectively.
Collapse
Affiliation(s)
- Yutian Peng
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Regulation of Mitochondrial Protein Import by Cytosolic Kinases. Cell 2011; 144:227-39. [DOI: 10.1016/j.cell.2010.12.015] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 09/04/2010] [Accepted: 12/07/2010] [Indexed: 12/27/2022]
|