1
|
Jing Jia, Ma B, Zhao X. Fetal endothelial colony-forming cells: Possible targets for prevention of the fetal origins of adult diseases. Placenta 2024; 145:80-88. [PMID: 38100962 DOI: 10.1016/j.placenta.2023.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Endothelial colony-forming cells (ECFCs), a subset of circulating and resident endothelial progenitor cells, are capable of self-renewal and de novo vessel formation, and are known key regulators of vascular integrity and homeostasis. Numerous studies have found that exposure to hostile environment during the fetal development exerts a profound influence on the level and function of ECFCs, which may be the underlying factor linking endothelial dysfunction to cardiovascular disease of the offspring in later life. Herein, we focus on the latest findings regarding the effects of pregnancy-related disorders on the frequency and function of fetal ECFCs. Subsequently, we discuss about placental ECFCs and put forward some details that should be paid attention to in the process of ECFC isolation and culture. Overall, the information presented in this review highlight the potential of ECFCs as a future biomarker or even therapeutic targets for the pregnancy-related adverse maternal and fetal outcomes.
Collapse
Affiliation(s)
- Jing Jia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Baitao Ma
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xianlan Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Sánchez-García L, Sala R, Serna N, Álamo P, Parladé E, Alba-Castellón L, Voltà-Durán E, Sánchez-Chardi A, Unzueta U, Vázquez E, Mangues R, Villaverde A. A refined cocktailing of pro-apoptotic nanoparticles boosts anti-tumor activity. Acta Biomater 2020; 113:584-596. [PMID: 32603867 DOI: 10.1016/j.actbio.2020.06.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022]
Abstract
A functional 29 amino acid-segment of the helix α5 from the human BAX protein has been engineered for production in recombinant bacteria as self-assembling, GFP-containing fluorescent nanoparticles, which are targeted to the tumoral marker CXCR4. These nanoparticles, of around 34 nm in diameter, show a moderate tumor biodistribution and limited antitumoral effect when systemically administered to mouse models of human CXCR4+ colorectal cancer (at 300 μg dose). However, if such BAX nanoparticles are co-administered in cocktail with equivalent nanoparticulate versions of BAK and PUMA proteins at the same total protein dose (300 μg), protein biodistribution and stability in tumor is largely improved, as determined by fluorescence profiles. This fact leads to a potent and faster destruction of tumor tissues when compared to individual pro-apoptotic factors. The analysis and interpretation of the boosted effect, from both the structural and functional sides, offers clues for the design of more efficient nanomedicines and theragnostic agents in oncology based on precise cocktails of human proteins. STATEMENT OF SIGNIFICANCE: Several human pro-apoptotic peptides (namely BAK, BAX and PUMA) have been engineered as self-assembling protein nanoparticles targeted to the tumoral marker CXCR4. The systemic administration of the same final amounts of those materials as single drugs, or as combinations of two or three of them, shows disparate intensities of antitumoral effects in a mouse model of human colorectal cancer, which are boosted in the triple combination on a non-additive basis. The superiority of the combined administration of pro-apoptotic agents, acting at different levels of the apoptotic cascade, opens a plethora of possibilities for the development of effective and selective cancer therapies based on the precise cocktailing of pro-apoptotic nanoparticulate agents.
Collapse
|
3
|
Perrotta F, Perna A, Komici K, Nigro E, Mollica M, D’Agnano V, De Luca A, Guerra G. The State of Art of Regenerative Therapy in Cardiovascular Ischemic Disease: Biology, Signaling Pathways, and Epigenetics of Endothelial Progenitor Cells. Cells 2020; 9:E1886. [PMID: 32796767 PMCID: PMC7465688 DOI: 10.3390/cells9081886] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/19/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
Ischemic heart disease is currently a major cause of mortality and morbidity worldwide. Nevertheless, the actual therapeutic scenario does not target myocardial cell regeneration and consequently, the progression toward the late stage of chronic heart failure is common. Endothelial progenitor cells (EPCs) are bone marrow-derived stem cells that contribute to the homeostasis of the endothelial wall in acute and chronic ischemic disease. Calcium modulation and other molecular pathways (NOTCH, VEGFR, and CXCR4) contribute to EPC proliferation and differentiation. The present review provides a summary of EPC biology with a particular focus on the regulatory pathways of EPCs and describes promising applications for cardiovascular cell therapy.
Collapse
Affiliation(s)
- Fabio Perrotta
- Dipartimento di Medicina e Scienze della Salute “V.Tiberio”, Università del Molise, 86100 Campobasso, Italy; (A.P.); (K.K.); (G.G.)
| | - Angelica Perna
- Dipartimento di Medicina e Scienze della Salute “V.Tiberio”, Università del Molise, 86100 Campobasso, Italy; (A.P.); (K.K.); (G.G.)
| | - Klara Komici
- Dipartimento di Medicina e Scienze della Salute “V.Tiberio”, Università del Molise, 86100 Campobasso, Italy; (A.P.); (K.K.); (G.G.)
| | - Ersilia Nigro
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
- CEINGE-Biotecnologie avanzate, 80145 Naples, Italy
| | - Mariano Mollica
- Dipartimento di Scienze Mediche Traslazionali, Università della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.M.); (V.D.)
| | - Vito D’Agnano
- Dipartimento di Scienze Mediche Traslazionali, Università della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.M.); (V.D.)
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Germano Guerra
- Dipartimento di Medicina e Scienze della Salute “V.Tiberio”, Università del Molise, 86100 Campobasso, Italy; (A.P.); (K.K.); (G.G.)
| |
Collapse
|
4
|
Sun H, Zhao X, Tai Q, Xu G, Ju Y, Gao W. Endothelial colony-forming cells reduced the lung injury induced by cardiopulmonary bypass in rats. Stem Cell Res Ther 2020; 11:246. [PMID: 32586365 PMCID: PMC7318475 DOI: 10.1186/s13287-020-01722-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/28/2020] [Accepted: 05/11/2020] [Indexed: 12/03/2022] Open
Abstract
Background Cardiopulmonary bypass (CPB) results in severe lung injury via inflammation and endothelial injury. The aim of this study was to evaluate the effect of endothelial colony-forming cells (ECFCs) on lung injury in rats subjected to CPB. Methods Thirty-two rats were randomized into the sham, CPB, CPB/ECFC and CPB/ECFC/L-NIO groups. The rats in the sham group received anaesthesia, and the rats in the other groups received CPB. The rats also received PBS, ECFCs and L-NIO-pre-treated ECFCs. After 24 h of CPB, pulmonary capillary permeability, including the PaO2/FiO2 ratio, protein levels in bronchoalveolar lavage fluid (BALF) and lung tissue wet/dry weight were evaluated. The cell numbers and cytokines in BALF and peripheral blood were tested. Endothelial injury, lung histological injury and apoptosis were assessed. The oxidative stress response and apoptosis-related proteins were analysed. Results After CPB, all the data deteriorated compared with those obtained in the S group (sham vs CPB vs CPB/ECFC vs CPB/ECFC/L-NIO: histological score 1.62 ± 0.51 vs 5.37 ± 0.91 vs 3.37 ± 0.89 vs 4.37 ± 0.74; PaO2/FiO2 389 ± 12 vs 233 ± 36 vs 338 ± 28 vs 287 ± 30; wet/dry weight 3.11 ± 0.32 vs 6.71 ± 0.73 vs 4.66 ± 0.55 vs 5.52 ± 0.57; protein levels in BALF: 134 ± 22 vs 442 ± 99 vs 225 ± 41 vs 337 ± 53, all P < 0.05). Compared to the CPB treatment, ECFCs significantly improved pulmonary capillary permeability and PaO2/FiO2. Similarly, ECFCs also decreased the inflammatory cell number and pro-inflammatory factors in BALF and peripheral blood, as well as the oxidative stress response in the lung tissue. ECFCs reduced the lung histological injury score and apoptosis and regulated apoptosis-related proteins in the lung tissue. Compared with the CPB/ECFC group, all the indicators were partly reversed by the L-NIO. Conclusions ECFCs significantly reduced lung injury induced by inflammation after CPB.
Collapse
Affiliation(s)
- Haibin Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoqing Zhao
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qihang Tai
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangxiao Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingnan Ju
- Department of ICU, Tumor Hospital of Harbin Medical University, Harbin, China.
| | - Wei Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
5
|
Jia J, Ma B, Wang S, Feng L. Therapeutic Potential of Endothelial Colony Forming Cells Derived from Human Umbilical Cord Blood. Curr Stem Cell Res Ther 2020; 14:460-465. [PMID: 30767752 DOI: 10.2174/1574888x14666190214162453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/06/2019] [Accepted: 01/24/2019] [Indexed: 02/08/2023]
Abstract
Endothelial progenitor cells (EPCs) are implicated in multiple biologic processes such as vascular homeostasis, neovascularization and tissue regeneration, and tumor angiogenesis. A subtype of EPCs is referred to as endothelial colony-forming cells (ECFCs), which display robust clonal proliferative potential and can form durable and functional blood vessels in animal models. In this review, we provide a brief overview of EPCs' characteristics, classification and origins, a summary of the progress in preclinical studies with regard to the therapeutic potential of human umbilical cord blood derived ECFCs (CB-ECFCs) for ischemia repair, tissue engineering and tumor, and highlight the necessity to select high proliferative CB-ECFCs and to optimize their recovery and expansion conditions.
Collapse
Affiliation(s)
- Jing Jia
- Department of Obstetrics and Gynaecology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R., China
| | - Baitao Ma
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R., China
| | - Shaoshuai Wang
- Department of Obstetrics and Gynaecology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R., China
| | - Ling Feng
- Department of Obstetrics and Gynaecology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R., China
| |
Collapse
|
6
|
Calcium Signaling in Endothelial Colony Forming Cells in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:1013-1030. [PMID: 31646543 DOI: 10.1007/978-3-030-12457-1_40] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endothelial colony forming cells (ECFCs) represent the only known truly endothelial precursors. ECFCs are released in peripheral circulation to restore the vascular networks dismantled by an ischemic insult or to sustain the early phases of the angiogenic switch in solid tumors. A growing number of studies demonstrated that intracellular Ca2+ signaling plays a crucial role in driving ECFC proliferation, migration, homing and neovessel formation. For instance, vascular endothelial growth factor (VEGF) triggers intracellular Ca2+ oscillations and stimulates angiogenesis in healthy ECFCs, whereas stromal derived factor-1α promotes ECFC migration through a biphasic Ca2+ signal. The Ca2+ toolkit endowed to circulating ECFCs is extremely plastic and shows striking differences depending on the physiological background of the donor. For instance, inositol-1,4,5-trisphosphate-induced Ca2+ release from the endoplasmic reticulum is downregulated in tumor-derived ECFCs, while agonists-induced store-operated Ca2+ entry is up-regulated in renal cellular carcinoma and is unaltered in breast cancer and reduced in infantile hemangioma. This remodeling of the Ca2+ toolkit prevents VEGF-induced pro-angiogenic Ca2+ oscillations in tumor-derived ECFCs. An emerging theme of research is the dysregulation of the Ca2+ toolkit in primary myelofibrosis-derived ECFCs, as this myeloproliferative disorder may depend on a driver mutation in the calreticulin gene. In this chapter, I provide a comprehensive, but succinct, description on the architecture and role of the intracellular Ca2+ signaling toolkit in ECFCs derived from umbilical cord blood and from peripheral blood of healthy donors, cancer patients and subjects affected by primary myelofibrosis.
Collapse
|
7
|
Schmidt-Lucke C, Zobel T, Escher F, Tschöpe C, Lassner D, Kühl U, Gubbe K, Volk HD, Schultheiss HP. Human Parvovirus B19 (B19V) Up-regulates CXCR4 Surface Expression of Circulating Angiogenic Cells: Implications for Cardiac Ischemia in B19V Cardiomyopathy. J Infect Dis 2019; 217:456-465. [PMID: 28961998 DOI: 10.1093/infdis/jix309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/04/2017] [Indexed: 01/09/2023] Open
Abstract
Background Human parvovirus B19 (B19V) infection and damage of circulating angiogenic cells (CAC) results in dysfunctional endogenous vascular repair (DEVR) with secondary end-organ damage. Trafficking of CAC is regulated by SDF-1α and the respective receptor CXCR4. We thus tested the hypothesis of a deregulated CXCR4/SDF-1α axis in symptomatic B19V-cardiomyopathy. Methods CAC were infected in vitro with B19V and transfected with B19V-components. Read-out were: CXCR4-expression and migratory capacity at increasing doses of SDF-1α. In 31 patients with chronic B19V-cardiomyopathy compared to 20 controls read-outs were from blood: migratory capacity, CXCR4 expression on CAC, serum SDF-1α; from cardiac biopsies: SDF-1α mRNA, HIF-1α mRNA, microvascular density, resident cardiac stem cells (CSC), transcardiac gradients of CAC. Results In vitro B19V-infected CAC showed up-regulation of surface CXCR4 with increased migratory capacity further enhanced by elevated SDF-1α concentrations. Overexpression of the B19V capsid protein VP2 was associated with this effect. Chronic B19V-cardiomyopathy patients showed increased numbers of ischaemia mobilised CAC but DEVR as well as diminished numbers of CAC after transcardiac passage. Cardiac microvascular density and CSC were significantly reduced in B19V-cardiomyopathy. Conclusions We thus conclude that B19V infection has a direct VP2-mediated negative impact on trafficking of CAC in the presence of impaired cardiac regeneration.
Collapse
Affiliation(s)
- Caroline Schmidt-Lucke
- Department of Cardiology and Pneumology, Charité-University Medicine.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-University Medicine.,Medico-academic Consultings (MEDIACC)
| | - Thomas Zobel
- Department of Cardiology and Pneumology, Charité-University Medicine
| | - Felicitas Escher
- Department of Cardiology and Pneumology, Charité-University Medicine.,Institut für Kardiale Diagnostik und Therapie, Berlin
| | - Carsten Tschöpe
- Department of Cardiology and Pneumology, Charité-University Medicine.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-University Medicine
| | - Dirk Lassner
- Institut für Kardiale Diagnostik und Therapie, Berlin
| | - Uwe Kühl
- Department of Cardiology and Pneumology, Charité-University Medicine
| | - Knut Gubbe
- Institute of Transfusion Medicine and Immunohematology, German Red Cross, Plauen
| | - Hans-Dieter Volk
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-University Medicine.,Institute of Medical Immunology, Charité-University Medicine, Berlin, Germany
| | - Heinz-Peter Schultheiss
- Department of Cardiology and Pneumology, Charité-University Medicine.,Institut für Kardiale Diagnostik und Therapie, Berlin
| |
Collapse
|
8
|
Deshpande R, Kanitkar M, Kadam S, Dixit K, Chhabra H, Bellare J, Datar S, Kale VP. Matrix-entrapped cellular secretome rescues diabetes-induced EPC dysfunction and accelerates wound healing in diabetic mice. PLoS One 2018; 13:e0202510. [PMID: 30153276 PMCID: PMC6112628 DOI: 10.1371/journal.pone.0202510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 08/03/2018] [Indexed: 11/18/2022] Open
Abstract
Cellular secretory products have infinite potential, which is only recently explored for research and therapeutic applications. The present study elaborated on the formation of a unique matrix-entrapped cellular secretome (MCS), a hydrogel-like secretome produced by bone marrow-derived mononuclear cells when cultured on a three-dimensional electrospun nanofiber matrix under specific conditions. These culture conditions support the growth of a mixed population predominantly comprising of endothelial precursor cells (EPCs), along with mesenchymal stromal cells and pericytes. Interestingly, such secretome is not formed in a pure culture of EPCs on the similarly formulated matrix, suggesting that a heterotypic cell-cell interaction is essential for the formation of MCS. In addition, the specific composition of the matrix was found to be a critical necessity for the formation of MCS. Furthermore, the application of the MCS as a substrate promotes the growth of EPCs in culture. It also rescues the diabetes-induced EPC dysfunction as assessed based on the parameters, such as viability, proliferation, colony formation, cellular adhesion, chemotactic migration, and tubule formation. MCS augments the levels of eNOS-specific mRNA (Nos3) and also promotes the restoration of the SDF1/CXCR4 axis in diabetic EPCs. Notably, a topical application of MCS on diabetic wounds leads to an accelerated wound closure. Thus, the current data showed that MCS forms an excellent cell-free biomaterial in the treatment of diabetic wounds and non-healing ulcers.
Collapse
Affiliation(s)
- Rucha Deshpande
- National Centre for Cell Science, NCCS Complex, University of Pune Campus, Ganeshkhind, Pune, Maharashtra, India
- Prof. Ramkrishna More Arts, Commerce and Science College, Akurdi, Pune, Maharashtra India
| | - Meghana Kanitkar
- National Centre for Cell Science, NCCS Complex, University of Pune Campus, Ganeshkhind, Pune, Maharashtra, India
| | - Sheetal Kadam
- National Centre for Cell Science, NCCS Complex, University of Pune Campus, Ganeshkhind, Pune, Maharashtra, India
| | - Kadambari Dixit
- National Centre for Cell Science, NCCS Complex, University of Pune Campus, Ganeshkhind, Pune, Maharashtra, India
| | - Hemlata Chhabra
- Department of Chemical Engineering, Indian Institute of Technology-Bombay, Powai, Mumbai, Maharashtra, India
| | - Jayesh Bellare
- Department of Chemical Engineering, Indian Institute of Technology-Bombay, Powai, Mumbai, Maharashtra, India
| | - Savita Datar
- Prof. Ramkrishna More Arts, Commerce and Science College, Akurdi, Pune, Maharashtra India
- Department of Zoology, S.P.College, Pune, Maharashtra India
| | - Vaijayanti P. Kale
- National Centre for Cell Science, NCCS Complex, University of Pune Campus, Ganeshkhind, Pune, Maharashtra, India
| |
Collapse
|
9
|
Ju YN, Gong J, Wang XT, Zhu JL, Gao W. Endothelial Colony-forming Cells Attenuate Ventilator-induced Lung Injury in Rats with Acute Respiratory Distress Syndrome. Arch Med Res 2018; 49:172-181. [PMID: 30119979 DOI: 10.1016/j.arcmed.2018.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 08/03/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Mechanical ventilation (MV) can cause ventilator-induced lung injury (VILI). AIM OF THE STUDY This study investigated whether endothelial colony-forming cells (ECFC) could inhibit VILI in a rat model of acute respiratory distress syndrome (ARDS). METHODS Male Wistar rats received the femoral artery and venous cannulation (sham group) or were injected intravenously with 500 μg/kg lipopolysaccharide to induce ARDS. The ARDS rats were subjected to MV. Immediately after the MV, the rats were randomized and injected intravenously with vehicle (ARDS group) or ECFC (ECFC group, n = 8 per group). The oxygen index, lung wet-to-dry weight (W/D) ratios, cytokine protein levels in serum or bronchoalveolar lavage fluid (BALF), neutrophil counts, neutrophil elastase and total protein levels in BALF, histology and cell apoptosis in the lung were detected. The protein levels of endothelin-1, inducible nitric oxide synthase (iNOS), endothelial NOS, matrix metalloproteinase (MMP)-9, Bax, Bcl-2, gelsolin, cleaved caspase-3, phosphorylated NF-κBp65 and myosin light chain (MLC) in the lung were analyzed. RESULTS Compared with the ARDS group, treatment with ECFC significantly increased the oxygen index, and decreased the lung W/D ratios and injury, and the numbers of apoptotic cells in the lungs, neutrophils counts, total protein and elastase concentrations in BALF of rats. ECFC treatment significantly minimized the protein levels of pro-inflammatory cytokines in BALF and serum, but increased interleukin 10 in rats. Furthermore, ECFC treatment significantly reduced the protein levels of endothelin-1, iNOS, Bax, Gelsolin, MMP-9, cleaved caspase-3, phosphorylated NF-κBp65 and MLC, but enhanced eNOS and Bcl-2 in the lungs of rats. CONCLUSIONS Therefore, ECFC attenuated inflammation, cell apoptosis and VILI in ARDS rats.
Collapse
Affiliation(s)
- Ying-Nan Ju
- Department of Intensive Care Unit, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jing Gong
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xue-Ting Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jing-Li Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Wei Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
10
|
Kadam S, Kanitkar M, Dixit K, Deshpande R, Seshadri V, Kale V. Curcumin reverses diabetes-induced endothelial progenitor cell dysfunction by enhancing MnSOD expression and activity in vitro and in vivo. J Tissue Eng Regen Med 2018; 12:1594-1607. [DOI: 10.1002/term.2684] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 04/04/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Sheetal Kadam
- Stem Cell Lab; National Centre for Cell Science; Pune Maharashtra India
| | - Meghana Kanitkar
- Stem Cell Lab; National Centre for Cell Science; Pune Maharashtra India
| | - Kadambari Dixit
- Stem Cell Lab; National Centre for Cell Science; Pune Maharashtra India
| | - Rucha Deshpande
- Stem Cell Lab; National Centre for Cell Science; Pune Maharashtra India
| | | | - Vaijayanti Kale
- Stem Cell Lab; National Centre for Cell Science; Pune Maharashtra India
| |
Collapse
|
11
|
MicroRNA-126 Priming Enhances Functions of Endothelial Progenitor Cells under Physiological and Hypoxic Conditions and Their Therapeutic Efficacy in Cerebral Ischemic Damage. Stem Cells Int 2018; 2018:2912347. [PMID: 29760722 PMCID: PMC5924971 DOI: 10.1155/2018/2912347] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 01/09/2018] [Indexed: 02/07/2023] Open
Abstract
Endothelial progenitor cells (EPCs) have shown the potential for treating ischemic stroke (IS), while microRNA-126 (miR-126) is reported to have beneficial effects on endothelial function and angiogenesis. In this study, we investigated the effects of miR-126 overexpression on EPCs and explore the efficacy of miR-126-primed EPCs (EPCmiR-126) in treating IS. The effects of miR-126 overexpression on EPC proliferation, migratory, tube formation capacity, reactive oxygen species (ROS) production, and nitric oxide (NO) generation were determined. In in vivo study, the effects of EPCmiR-126 on the cerebral blood flow (CBF), neurological deficit score (NDS), infarct volume, cerebral microvascular density (cMVD), and angiogenesis were determined. Moreover, the levels of circulating EPCs (cEPCs) and their contained miR-126 were measured. We found (1) miR-126 overexpression promoted the proliferation, migration, and tube formation abilities of EPCs; decreased ROS; and increased NO production of EPCs via activation of PI3K/Akt/eNOS pathway; (2) EPCmiR-126 was more effective than EPCs in attenuating infarct volume and NDS and enhancing cMVD, CBF, and angiogenesis; and (3) infusion of EPCmiR-126 increased the number and the level of miR-126 in cEPCs. Our data indicate that miR-126 overexpression enhanced the function of EPCs in vitro and in vivo.
Collapse
|
12
|
Zuccolo E, Di Buduo C, Lodola F, Orecchioni S, Scarpellino G, Kheder DA, Poletto V, Guerra G, Bertolini F, Balduini A, Rosti V, Moccia F. Stromal Cell-Derived Factor-1α Promotes Endothelial Colony-Forming Cell Migration Through the Ca2+-Dependent Activation of the Extracellular Signal-Regulated Kinase 1/2 and Phosphoinositide 3-Kinase/AKT Pathways. Stem Cells Dev 2018; 27:23-34. [DOI: 10.1089/scd.2017.0114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Estella Zuccolo
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Christian Di Buduo
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Laboratory of Biochemistry, Biotechnology, and Advanced Diagnosis, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Matteo Foundation, Pavia, Italy
| | - Francesco Lodola
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Stefania Orecchioni
- Laboratory of Hematology–Oncology, European Institute of Oncology, Milan, Italy
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Dlzar Ali Kheder
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
- Department of Biology, Faculty of Science, University of Zakho, Zakho, Kurdistan-Region of Iraq
| | - Valentina Poletto
- Laboratory of Biochemistry, Biotechnology, and Advanced Diagnosis, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Matteo Foundation, Pavia, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences “Vincenzo Tiberio,” University of Molise, Campobasso, Italy
| | - Francesco Bertolini
- Laboratory of Hematology–Oncology, European Institute of Oncology, Milan, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Laboratory of Biochemistry, Biotechnology, and Advanced Diagnosis, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Matteo Foundation, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Vittorio Rosti
- Laboratory of Biochemistry, Biotechnology, and Advanced Diagnosis, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Matteo Foundation, Pavia, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| |
Collapse
|
13
|
Burger D, Viñas JL, Akbari S, Dehak H, Knoll W, Gutsol A, Carter A, Touyz RM, Allan DS, Burns KD. Human endothelial colony-forming cells protect against acute kidney injury: role of exosomes. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2309-23. [PMID: 26073035 DOI: 10.1016/j.ajpath.2015.04.010] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/20/2015] [Accepted: 04/16/2015] [Indexed: 01/16/2023]
Abstract
The administration of certain progenitor cells is protective in experimental acute kidney injury (AKI), and mechanisms may involve the release of paracrine factors. Endothelial colony-forming cells (ECFCs) are endothelial precursor cells with a high proliferative capacity and pro-angiogenic potential. We examined the effects of human umbilical cord blood-derived ECFCs and their extracellular vesicles in a mouse model of ischemic AKI and in cultured human umbilical vein endothelial cells subjected to hypoxia/reoxygenation. In mice with ischemic AKI, administration of ECFCs (i.v.) at the time of reperfusion significantly attenuated increases in plasma creatinine, tubular necrosis, macrophage infiltration, oxidative stress, and apoptosis, without cell persistence in the kidneys. In cultured human umbilical vein endothelial cells, hypoxia/reoxygenation stimulated apoptosis. This effect was inhibited by incubation with conditioned medium or exosomes (40- to 100-nm diameter) derived from ECFCs, but not by microparticles (100- to 1000-nm diameter) or vesicle-depleted conditioned medium. Administration of exosomes (i.v.) directly to mice with ischemic AKI attenuated renal injury, as assessed by plasma creatinine, tubular necrosis, and apoptosis. Taken together, these studies indicate protective effects of human cord blood-derived ECFCs in experimental AKI and suggest that ECFC-derived exosomes may mediate the protective response via inhibition of endothelial cell apoptosis.
Collapse
Affiliation(s)
- Dylan Burger
- Kidney Research Centre, Division of Nephrology, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Jose L Viñas
- Kidney Research Centre, Division of Nephrology, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Shareef Akbari
- Kidney Research Centre, Division of Nephrology, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Hajira Dehak
- Kidney Research Centre, Division of Nephrology, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - William Knoll
- Kidney Research Centre, Division of Nephrology, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Alex Gutsol
- Kidney Research Centre, Division of Nephrology, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Anthony Carter
- Kidney Research Centre, Division of Nephrology, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Rhian M Touyz
- Kidney Research Centre, Division of Nephrology, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada; Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - David S Allan
- Division of Hematology, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Kevin D Burns
- Kidney Research Centre, Division of Nephrology, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
14
|
Tada-Oikawa S, Ichihara G, Suzuki Y, Izuoka K, Wu W, Yamada Y, Mishima T, Ichihara S. Zn(II) released from zinc oxide nano/micro particles suppresses vasculogenesis in human endothelial colony-forming cells. Toxicol Rep 2015; 2:692-701. [PMID: 28962405 PMCID: PMC5598154 DOI: 10.1016/j.toxrep.2015.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 11/30/2022] Open
Abstract
Zinc oxide (ZnO) nanoparticles have been widely used in industry, cosmetics, and biomedicine. Recent studies suggested that these nanoparticles could have a major impact on the cardiovascular system. Endothelial progenitor cells (EPCs) contribute to postnatal endothelial repair and regeneration. The present study dissected the effects of ZnO nanoparticles on vasculogenesis using human endothelial colony forming cells (ECFCs), which participate in post-natal vasculogenesis. Two types of ZnO particles were used (nano and micro), in addition to zinc chloride solutions with zinc ion concentrations equal to those in ZnO nanoparticles. Twenty-four-hour exposure induced cytotoxicity in a dose-dependent manner and increased ECFCs apoptosis in all groups. The exposure also reduced the functional capacity of ECFCs on Matrix gel to form tubules, compared with the control cells. These effects were associated with downregulation of expression of vascular endothelial growth factor receptor, VEGFR2 and CXC chemokine receptor, CXCR4. The results suggest that ZnO nanoparticles suppress vasculogenesis from ECFCs through downregulation of the expression of receptors related to vasculogenesis. These effects are based the concentration of released Zn(II).
Collapse
Affiliation(s)
- Saeko Tada-Oikawa
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Tokyo Univeristy of Science, Noda, Japan
| | - Yuka Suzuki
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan
| | - Kiyora Izuoka
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan
| | - Wenting Wu
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiji Yamada
- Life Science Research Center, Mie University, Tsu, Japan
| | - Takashi Mishima
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan
| | - Sahoko Ichihara
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan
- Life Science Research Center, Mie University, Tsu, Japan
| |
Collapse
|
15
|
Smadja DM, Dorfmüller P, Guerin CL, Bieche I, Badoual C, Boscolo E, Kambouchner M, Cazes A, Mercier O, Humbert M, Gaussem P, Bischoff J, Israël-Biet D. Cooperation between human fibrocytes and endothelial colony-forming cells increases angiogenesis via the CXCR4 pathway. Thromb Haemost 2014; 112:1002-13. [PMID: 25103869 DOI: 10.1160/th13-08-0711] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 06/17/2014] [Indexed: 02/07/2023]
Abstract
Fibrotic diseases of the lung are associated with a vascular remodelling process. Fibrocytes (Fy) are a distinct population of blood-borne cells that co-express haematopoietic cell antigens and fibroblast markers, and have been shown to contribute to organ fibrosis. The purpose of this study was to determine whether fibrocytes cooperate with endothelial colony-forming cells (ECFC) to induce angiogenesis. We isolated fibrocytes from blood of patient with idiopathic pulmonary fibrosis (IPF) and characterised them by flow cytometry, quantitative reverse transcriptase PCR (RTQ-PCR), and confocal microscopy. We then investigated the angiogenic interaction between fibrocytes and cord-blood-derived ECFC, both in vitro and in an in vivo Matrigel implant model. Compared to fibroblast culture medium, fibrocyte culture medium increased ECFC proliferation and differentiation via the SDF-1/CXCR4 pathway. IPF-Fy co-implanted with human ECFC in Matrigel plugs in immunodeficient mice formed functional microvascular beds, whereas fibroblasts did not. Evaluation of implants after two weeks revealed an extensive network of erythrocyte-containing blood vessels. CXCR4 blockade significantly inhibited this blood vessel formation. The clinical relevance of these data was confirmed by strong CXCR4 expression in vessels close to fibrotic areas in biopsy specimens from patients with IPF, by comparison with control lungs. In conclusion, circulating fibrocytes might contribute to the intense remodelling of the pulmonary vasculature in patients with idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- David M Smadja
- Prof. David Smadja, Paris-Descartes University, INSERM UMR-S 1140, Hematology department, European Georges Pompidou hospital, 20 rue Leblanc, 75015 Paris, France, Tel.: +33 1 56093933, Fax: +33 1 56093393, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Colombo E, Calcaterra F, Cappelletti M, Mavilio D, Della Bella S. Comparison of Fibronectin and Collagen in Supporting the Isolation and Expansion of Endothelial Progenitor Cells from Human Adult Peripheral Blood. PLoS One 2013; 8:e66734. [PMID: 23824996 PMCID: PMC3688932 DOI: 10.1371/journal.pone.0066734] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/09/2013] [Indexed: 11/21/2022] Open
Abstract
Background Endothelial colony-forming cells (ECFCs), are circulating endothelial progenitor cells increasingly studied in various diseases because of their potential for clinical translation. Experimental procedures for their ex vivo culture still lack standardization. In particular two different extracellular matrix proteins, either fibronectin or collagen, are commonly used by different Authors for coating plastic plates, both allowing to obtain cells that have all the features of ECFCs. However, possible differences in the impact of each substrate on ECFCs have not been analysed, so far. Therefore, in this study we investigated whether fibronectin and collagen may differentially affect ECFC cultures. Methodology/Principal Findings ECFCs were isolated and cultured from peripheral blood mononuclear cells of healthy donors. The impact of fibronectin compared with collagen as the only variable of the experimental procedure was analysed separately in the phase of isolation of ECFC colonies and in the following phase of cell expansion. In the isolation phase, although similar frequencies of colonies were obtained on the two substrates, ECFC colonies appeared some days earlier when mononuclear cells were seeded on fibronectin rather than collagen. In the expansion phase, ECFCs cultured on collagen showed a longer lifespan and higher cell yields compared with ECFCs cultured on fibronectin, possibly related to the higher levels of IL-6 and IL-8 measured in their supernatants. ECFCs cultured on both substrates showed similar immunophenotype and ability for in vitro tube formation. Conclusions/Significance Overall, the results of this study indicate that, although both fibronectin and collagen efficiently sustain ECFC cultures, each of them brings some advantages within individual steps of the entire process. We suggest that colony isolation performed on fibronectin followed by cell expansion performed on collagen may represent a novel and the most efficient strategy to obtain ECFCs from adult peripheral blood samples.
Collapse
Affiliation(s)
- Elena Colombo
- Lab of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano (MI), Italy
| | - Francesca Calcaterra
- Lab of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano (MI), Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Monica Cappelletti
- Lab of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano (MI), Italy
| | - Domenico Mavilio
- Lab of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano (MI), Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Silvia Della Bella
- Lab of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano (MI), Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- * E-mail:
| |
Collapse
|
17
|
Oh BJ, Oh SH, Jin SM, Suh S, Bae JC, Park CG, Lee MS, Lee MK, Kim JH, Kim KW. Co-transplantation of bone marrow-derived endothelial progenitor cells improves revascularization and organization in islet grafts. Am J Transplant 2013; 13:1429-40. [PMID: 23601171 DOI: 10.1111/ajt.12222] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 02/13/2013] [Accepted: 02/14/2013] [Indexed: 01/25/2023]
Abstract
Bone marrow-derived early endothelial progenitor cells (BM-EPCs) are a clinical tool for enhancing revascularization. However, the therapeutic efficacy of co-transplantation of BM-EPC with islets has not been investigated. In this study, marginal mass islets were co-transplanted with or without BM-EPCs under the kidney capsules of syngeneic streptozotocin-induced diabetic mice. Using green fluorescent protein transgenic (GFP-Tg) mice as BM-EPC and islet donors or recipients, the role of EPCs in revascularization was assessed for graft morphology, vascular density and fate of EPCs by immunohistochemistry. Islet-EPC co-transplantation improved the outcome of islet transplantation as measured by glucose tolerance, serum insulin level and diabetes reversal rate, compared with transplantation of islets alone. Between groups, the morphology of islet grafts showed significant differences in size and composition of grafted endocrine tissues. Significantly more vessel density derived from donors and recipients was detected with islet-EPC co-transplantation. Abundant GFP-Tg mice-derived BM-EPCs (GFP-EPCs) were observed in or around islet grafts and incorporated into CD31-positive capillaries. Remaining GFP-EPCs expressed VEGF. In conclusion, co-transplantation of islets with BM-EPCs could improve the outcome of marginal mass islet transplantation by promoting revascularization and preserving islet morphology.
Collapse
Affiliation(s)
- B J Oh
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Rolland-Turner M, Goretti E, Bousquenaud M, Léonard F, Nicolas C, Zhang L, Maskali F, Marie PY, Devaux Y, Wagner D. Adenosine stimulates the migration of human endothelial progenitor cells. Role of CXCR4 and microRNA-150. PLoS One 2013; 8:e54135. [PMID: 23326587 PMCID: PMC3541240 DOI: 10.1371/journal.pone.0054135] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 12/10/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Administration of endothelial progenitor cells (EPC) represents a promising option to regenerate the heart after myocardial infarction, but is limited because of low recruitment and engraftment in the myocardium. Mobilization and migration of EPC are mainly controlled by stromal cell-derived factor 1α (SDF-1α) and its receptor CXCR4. We hypothesized that adenosine, a cardioprotective molecule, may improve the recruitment of EPC to the heart. METHODS EPC were obtained from peripheral blood mononuclear cells of healthy volunteers. Expression of chemokines and their receptors was evaluated using microarrays, quantitative PCR, and flow cytometry. A Boyden chamber assay was used to assess chemotaxis. Recruitment of EPC to the infarcted heart was evaluated in rats after permanent occlusion of the left anterior descending coronary artery. RESULTS Microarray analysis revealed that adenosine modulates the expression of several members of the chemokine family in EPC. Among these, CXCR4 was up-regulated by adenosine, and this result was confirmed by quantitative PCR (3-fold increase, P<0.001). CXCR4 expression at the cell surface was also increased. This effect involved the A(2B) receptor. Pretreatment of EPC with adenosine amplified their migration towards recombinant SDF-1α or conditioned medium from cardiac fibroblasts. Both effects were abolished by CXCR4 blocking antibodies. Adenosine also increased CXCR4 under ischemic conditions, and decreased miR-150 expression. Binding of miR-150 to the 3' untranslated region of CXCR4 was verified by luciferase assay. Addition of pre-miR-150 blunted the effect of adenosine on CXCR4. Administration of adenosine to rats after induction of myocardial infarction stimulated EPC recruitment to the heart and enhanced angiogenesis. CONCLUSION Adenosine increases the migration of EPC. The mechanism involves A(2B) receptor activation, decreased expression of miR-150 and increased expression of CXCR4. These results suggest that adenosine may be used to enhance the capacity of EPC to revascularize the ischemic heart.
Collapse
Affiliation(s)
- Magali Rolland-Turner
- Laboratory of Cardiovascular Research, Public Research Centre – Health (CRP – Santé), Luxembourg, Luxembourg
| | - Emeline Goretti
- Laboratory of Cardiovascular Research, Public Research Centre – Health (CRP – Santé), Luxembourg, Luxembourg
| | - Mélanie Bousquenaud
- Laboratory of Cardiovascular Research, Public Research Centre – Health (CRP – Santé), Luxembourg, Luxembourg
| | - Frédérique Léonard
- Laboratory of Cardiovascular Research, Public Research Centre – Health (CRP – Santé), Luxembourg, Luxembourg
| | - Christelle Nicolas
- Laboratory of Cardiovascular Research, Public Research Centre – Health (CRP – Santé), Luxembourg, Luxembourg
| | - Lu Zhang
- Laboratory of Cardiovascular Research, Public Research Centre – Health (CRP – Santé), Luxembourg, Luxembourg
| | - Fatiha Maskali
- Nancyclotep Experimental Imaging Platform, Vandoeuvre-les-Nancy, France
| | - Pierre-Yves Marie
- Nancyclotep Experimental Imaging Platform, Vandoeuvre-les-Nancy, France
| | - Yvan Devaux
- Laboratory of Cardiovascular Research, Public Research Centre – Health (CRP – Santé), Luxembourg, Luxembourg
| | - Daniel Wagner
- Laboratory of Cardiovascular Research, Public Research Centre – Health (CRP – Santé), Luxembourg, Luxembourg
- Division of Cardiology, Centre Hospitalier, Luxembourg, Luxembourg
| |
Collapse
|
19
|
Chen J, Chen J, Chen S, Zhang C, Zhang L, Xiao X, Das A, Zhao Y, Yuan B, Morris M, Zhao B, Chen Y. Transfusion of CXCR4-primed endothelial progenitor cells reduces cerebral ischemic damage and promotes repair in db/db diabetic mice. PLoS One 2012. [PMID: 23185548 PMCID: PMC3503762 DOI: 10.1371/journal.pone.0050105] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study investigated the role of stromal cell-derived factor-1α (SDF-1α)/CXC chemokine receptor 4 (CXCR4) axis in brain and endothelial progenitor cells (EPCs), and explored the efficacy of CXCR4 primed EPCs in treating ischemic stroke in diabetes. The db/db diabetic and db/+ mice were used in this study. Levels of plasma SDF-1α and circulating CD34+CXCR4+ cells were measured. Brain SDF-1α and CXCR4 expression were quantified at basal and after middle cerebral artery occlusion (MCAO). In in vitro study, EPCs were transfected with adenovirus carrying null (Ad-null) or CXCR4 (Ad-CXCR4) followed with high glucose (HG) treatment for 4 days. For pathway block experiments, cells were pre-incubated with PI3K inhibitor or nitric oxide synthase (NOS) inhibitor for two hours. The CXCR4 expression, function and apoptosis of EPCs were determined. The p-Akt/Akt and p-eNOS/eNOS expression in EPCs were also measured. In in vivo study, EPCs transfected with Ad-null or Ad-CXCR4 were infused into mice via tail vein. On day 2 and 7, the cerebral blood flow, neurologic deficit score, infarct volume, cerebral microvascular density, angiogenesis and neurogenesis were determined. We found: 1) The levels of plasma SDF-1α and circulating CD34+CXCR4+ cells were decreased in db/db mice; 2) The basal level of SDF-1α and MCAO-induced up-regulation of SDF-1α/CXCR4 axis were reduced in the brain of db/db mice; 3) Ad-CXCR4 transfection increased CXCR4 expression in EPCs and enhanced EPC colonic forming capacity; 4) Ad-CXCR4 transfection prevented EPCs from HG-induced dysfunction (migration and tube formation) and apoptosis via activation of PI3K/Akt/eNOS signal pathway; 4) Ad-CXCR4 transfection enhanced the efficacy of EPC infusion in attenuating infarct volume and promoting angiogenesis and neurogenesis. Our data suggest that Ad-CXCR4 primed EPCs have better therapeutic effects for ischemia stroke in diabetes than unmodified EPCs do.
Collapse
Affiliation(s)
- Ji Chen
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
- Clinical Research Center and Department of Neurology, the Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, People’s Republic of China
| | - Jianying Chen
- Clinical Research Center and Department of Neurology, the Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, People’s Republic of China
| | - Shuzhen Chen
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
| | - Cheng Zhang
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
| | - Liangqing Zhang
- Clinical Research Center and Department of Neurology, the Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, People’s Republic of China
| | - Xiang Xiao
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
| | - Avik Das
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
| | - Yuhui Zhao
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Bin Yuan
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
- Clinical Research Center and Department of Neurology, the Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, People’s Republic of China
| | - Mariana Morris
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
| | - Bin Zhao
- Clinical Research Center and Department of Neurology, the Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, People’s Republic of China
| | - Yanfang Chen
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
- Clinical Research Center and Department of Neurology, the Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, People’s Republic of China
- * E-mail:
| |
Collapse
|
20
|
Bennis Y, Sarlon-Bartoli G, Guillet B, Lucas L, Pellegrini L, Velly L, Blot-Chabaud M, Dignat-Georges F, Sabatier F, Pisano P. Priming of late endothelial progenitor cells with erythropoietin before transplantation requires the CD131 receptor subunit and enhances their angiogenic potential. J Thromb Haemost 2012; 10:1914-28. [PMID: 22738133 DOI: 10.1111/j.1538-7836.2012.04835.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Endothelial colony-forming cells (ECFCs) are promising candidates for cell therapy of ischemic diseases. Erythropoietin (EPO) is a cytokine that promotes angiogenesis after ischemic injury. EPO receptors (EPORs) classically include two EPOR subunits, but may also associate with the β-common chain (CD131) in a newly identified receptor involved in EPO cytoprotective effects. OBJECTIVE The aim was to take advantage of the proangiogenic properties of EPO to enhance ECFC graft efficiency. We postulated that priming ECFCs by adding epoietin α in culture medium prior to experiments might increase their angiogenic properties. We also explored the role of the CD131 subunit in EPO priming of ECFCs. METHODS AND RESULTS By western blotting on cord blood ECFC lysates, we showed that EPOR and CD131 expression increased significantly after EPO priming. These proteins coimmunoprecipitated and colocalized, suggesting that they are covalently bound in ECFCs. EPO at 5 IU mL(-1) significantly stimulated proliferation, wound healing, migration and tube formation of ECFCs. EPO priming also increased ECFC resistance to H2 O2-induced apoptosis and survival in vivo. Similarly, in vivo studies showed that, as compared with non-primed ECFC injection, 5 IU mL(-1) EPO-primed ECFCs, injected intravenously 24 h after hindlimb ischemia in athymic nude mice, increased the ischemic/non-ischemic ratios of hindlimb blood flow and capillary density. These effects were all prevented by CD131 small interfering RNA transfection, and involved the phosphoinositide 3-kinase-Akt pathway. CONCLUSION These results highlight the potential role of EPO-primed ECFCs for cell-based therapy in hindlimb ischemia, and underline the critical role of CD131 as an EPO coreceptor.
Collapse
Affiliation(s)
- Y Bennis
- Aix-Marseille Université, UMR INSERM1076, Faculté de Pharmacie, Marseille, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Dragoni S, Laforenza U, Bonetti E, Lodola F, Bottino C, Berra-Romani R, Carlo Bongio G, Cinelli MP, Guerra G, Pedrazzoli P, Rosti V, Tanzi F, Moccia F. Vascular endothelial growth factor stimulates endothelial colony forming cells proliferation and tubulogenesis by inducing oscillations in intracellular Ca2+ concentration. Stem Cells 2012; 29:1898-907. [PMID: 21905169 DOI: 10.1002/stem.734] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Endothelial progenitor cells (EPCs) home from the bone marrow to the site of tissue regeneration and sustain neovascularization after acute vascular injury and upon the angiogenic switch in solid tumors. Therefore, they represent a suitable tool for cell-based therapy (CBT) in regenerative medicine and provide a novel promising target in the fight against cancer. Intracellular Ca(2+) signals regulate numerous endothelial functions, such as proliferation and tubulogenesis. The growth of endothelial colony forming cells (ECFCs), which are EPCs capable of acquiring a mature endothelial phenotype, is governed by store-dependent Ca(2+) entry (SOCE). This study aimed at investigating the nature and the role of VEGF-elicited Ca(2+) signals in ECFCs. VEGF induced asynchronous Ca(2+) oscillations, whose latency, amplitude, and frequency were correlated to the growth factor dose. Removal of external Ca(2+) (0Ca(2+)) and SOCE inhibition with N-(4-[3,5-bis(trifluoromethyl)-1H-pyrazol-1-yl]phenyl)-4-methyl-1,2,3-thiadiazole-5-carboxamide (BTP-2) reduced the duration of the oscillatory signal. Blockade of phospholipase C-γ with U73122, emptying the inositol-1,4,5-trisphosphate (InsP(3))-sensitive Ca(2+) pools with cyclopiazonic acid (CPA), and inhibition of InsP(3) receptors with 2-APB prevented the Ca(2+) response to VEGF. VEGF-induced ECFC proliferation and tubulogenesis were inhibited by the Ca(2+)-chelant, BAPTA, and BTP-2. NF-κB activation by VEGF was impaired by BAPTA, BTP-2, and its selective blocker, thymoquinone. Thymoquinone, in turn, suppressed VEGF-dependent ECFC proliferation and tubulogenesis. These data indicate that VEGF-induced Ca(2+) oscillations require the interplay between InsP(3)-dependent Ca(2+) release and SOCE, and promote ECFC growth and tubulogenesis by engaging NF-κB. This novel signaling pathway might be exploited to enhance the outcome of CBT and chemotherapy.
Collapse
Affiliation(s)
- Silvia Dragoni
- Department of Physiology, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Park SH, Jeong YM, Kim JH, Chung HM, Suh W, Sung SH, Park SG, Sung JH. Activation of vasculogenic progenitor cells by ent-16α,17-dihydroxy-kauran-19-oic acid. Biol Pharm Bull 2012; 34:1801-7. [PMID: 22130234 DOI: 10.1248/bpb.34.1801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vasculogenic progenitor cells (VPCs) circulate in the blood and have the ability to differentiate into endothelial cells that make up the lining of blood vessels. Therefore, VPC transplantation is a new strategy for the treatment of ischemic diseases. Because priming/preconditioning of VPCs before transplantation enhances their regenerative potential, the present study investigated whether ent-16α,17-dihydroxy-kauran-19-oic acid (DHK) isolated from Siegesbeckia pubescens could stimulate/activate VPCs in vitro. Therefore, the effect of DHK (1-100 µM concentration) on the proliferation, migration, and tube forming of VPCs was examined in various systems, and related signaling pathways were identified. DHK treatment significantly increased the proliferation, migration, and tube formation of VPCs in a dose-dependent manner. Phosphorylation of extracellular signal-regulated kinase (ERK)1/2 and Akt was significantly increased by DHK, but chemical inhibitors against ERK1/2 (U0126) and Akt (LY294002) significantly attenuated DHK-enhanced proliferation, migration, and tube formation of VPCs. Collectively, these results indicated that DHK shows promise as a novel VPC primer/activator.
Collapse
Affiliation(s)
- So-Hyun Park
- Departmentof Applied Bioscience, CHA University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Progenitor cell mobilization and recruitment: SDF-1, CXCR4, α4-integrin, and c-kit. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 111:243-64. [PMID: 22917234 DOI: 10.1016/b978-0-12-398459-3.00011-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Progenitor cell retention and release are largely governed by the binding of stromal-cell-derived factor 1 (SDF-1) to CXC chemokine receptor 4 (CXCR4) and by α4-integrin signaling. Both of these pathways are dependent on c-kit activity: the mobilization of progenitor cells in response to either CXCR4 antagonism or α4-integrin blockade is impaired by the loss of c-kit kinase activity; and c-kit-kinase inactivation blocks the retention of CXCR4-positive progenitor cells in the bone marrow. SDF-1/CXCR4 and α4-integrin signaling are also crucial for the retention of progenitor cells in the ischemic region, which may explain, at least in part, why clinical trials of progenitor cell therapy have failed to display the efficacy observed in preclinical investigations. The lack of effectiveness is often attributed to poor retention of the transplanted cells and, to date, most of the trial protocols have mobilized cells with injections of granulocyte colony-stimulating factor (G-CSF), which activates extracellular proteases that irreversibly cleave cell-surface adhesion molecules, including α4-integrin and CXCR4. Thus, the retention of G-CSF-mobilized cells in the ischemic region may be impaired, and the mobilization of agents that reversibly disrupt SDF-1/CXCR4 binding, such as AMD3100, may improve patient response. Efforts to supplement SDF-1 levels in the ischemic region may also improve progenitor cell recruitment and the effectiveness of stem cell therapy.
Collapse
|
24
|
Merino JJ, Gutiérrez-Fernández M, Rodríguez-Frutos B, Álvarez-Grech J, Alcalde ME, Vallejo-Cremades MT, Díez-Tejedor E. CXCR4/SDF-1α-Chemokine Regulates Neurogenesis and/or Angiogenesis within the Vascular Niche of Ischemic Rats; However, does SDF-1α Play a Role in Repair? Int J Stroke 2011; 6:466-7. [DOI: 10.1111/j.1747-4949.2011.00651.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- José Joaquin Merino
- Institute de Investigatión Sanitaria (IdiPaz), “La Paz” Universitary Hospital, Autónoma University of Madrid, Madrid, Spain
- Neuroscience and Cerebrovascular Research Lab, Stroke Unit, Department of Neurology, Instituto de Investigación Sanitaria (IdiPaz), “La Paz” Universitary Hospital, Autónoma University of Madrid, Madrid, Spain
| | - María Gutiérrez-Fernández
- Neuroscience and Cerebrovascular Research Lab, Stroke Unit, Department of Neurology, Instituto de Investigación Sanitaria (IdiPaz), “La Paz” Universitary Hospital, Autónoma University of Madrid, Madrid, Spain
| | - Berta Rodríguez-Frutos
- Neuroscience and Cerebrovascular Research Lab, Stroke Unit, Department of Neurology, Instituto de Investigación Sanitaria (IdiPaz), “La Paz” Universitary Hospital, Autónoma University of Madrid, Madrid, Spain
| | - Julia Álvarez-Grech
- Neuroscience and Cerebrovascular Research Lab, Stroke Unit, Department of Neurology, Instituto de Investigación Sanitaria (IdiPaz), “La Paz” Universitary Hospital, Autónoma University of Madrid, Madrid, Spain
| | - Mercedes Expósito Alcalde
- Neuroscience and Cerebrovascular Research Lab, Stroke Unit, Department of Neurology, Instituto de Investigación Sanitaria (IdiPaz), “La Paz” Universitary Hospital, Autónoma University of Madrid, Madrid, Spain
| | - Maria Teresa Vallejo-Cremades
- Institute de Investigatión Sanitaria (IdiPaz), “La Paz” Universitary Hospital, Autónoma University of Madrid, Madrid, Spain
| | - Exuperio Díez-Tejedor
- Neuroscience and Cerebrovascular Research Lab, Stroke Unit, Department of Neurology, Instituto de Investigación Sanitaria (IdiPaz), “La Paz” Universitary Hospital, Autónoma University of Madrid, Madrid, Spain
| |
Collapse
|
25
|
Foxc2 overexpression enhances benefit of endothelial progenitor cells for inhibiting neointimal formation by promoting CXCR4-dependent homing. J Vasc Surg 2011; 53:1668-78. [PMID: 21514778 DOI: 10.1016/j.jvs.2011.01.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 01/10/2011] [Accepted: 01/16/2011] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Endothelial progenitor cells (EPCs) are capable of enhancing re-endothelialization and attenuating neointimal formation. However, inefficient homing limits the therapeutic efficacy of EPCs transplantation. CXCR4 plays a critical role in regulating EPCs homing. Here, we studied the effect of Foxc2 overexpression on CXCR4 expression and the homing capacity of EPCs as well as the EPCs-mediated therapeutic benefit after artery injury. METHODS Bone marrow-derived EPCs were transfected with Foxc2 expression vector (Foxc2-EPCs) or empty control vector (Ctrl-EPCs) and examined 48 hours later. CXCR4 expression of EPCs was detected by flow cytometry and quantitative reverse transcriptase-polymerase chain reaction. The migration of EPCs toward SDF-1α was evaluated in a transwell migration assay, and the adhesion to fibronectin was determined using a static adhesion assay. For in vivo studies, EPCs were injected intravenously into the mice subjected to carotid injury. At 3 days after green fluorescent protein (GFP)/EPCs delivery, the recruited cells to the injury sites were detected by fluorescent microscopy. Re-endothelialization and neointimal formation were, respectively, assessed by Evans blue dye at 7 days and by the morphometric analysis for neointima and media area ratio (N/M) at 28 days after EPCs transfusion. RESULTS Foxc2 overexpression significantly increased the surface expression of CXCR4 on EPCs (about 1.9-fold of Ctrl-EPCs, P < .05). Foxc2-EPCs showed an increased migration toward SDF-1α (P < .05); Foxc2 overexpression increased also the adhesion capacity of EPCs (P < .05). In vivo, the number of recruited GFP cells was significantly higher in the mice transfused with Foxc2-GFP/EPCs compared with Ctrl-GFP/EPCs (about 2-fold of Ctrl-GFP/EPCs). The degree of re-endothelialization was higher in mice transfused with Foxc2-EPCs compared with Ctrl-EPCs (90.3% ± 1.6% vs 57.2% ± 1.3%; P < .05). Foxc2-EPCs delivery resulted in a greater inhibition of neointimal hyperplasia than Ctrl-EPCs administration (N/M: 0.38 ± 0.03 vs 0.67 ± 0.05, P < .05). Preincubation with CXCR4-Ab, AMD3100, or LY294002 significantly attenuated the enhanced in vitro and in vivo effects of Foxc2-EPCs. CONCLUSIONS Our findings indicate that Foxc2 overexpression increases CXCR4 expression of EPCs and efficiently enhances the homing potential of EPCs, thereby improving EPCs-mediated therapeutic benefit after endothelial injury. Foxc2 may be a novel molecular target for improving the therapeutic efficacy of EPCs transplantation.
Collapse
|
26
|
Azuaje FJ, Wang H, Zheng H, Léonard F, Rolland-Turner M, Zhang L, Devaux Y, Wagner DR. Predictive integration of gene functional similarity and co-expression defines treatment response of endothelial progenitor cells. BMC SYSTEMS BIOLOGY 2011; 5:46. [PMID: 21447198 PMCID: PMC3080295 DOI: 10.1186/1752-0509-5-46] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 03/30/2011] [Indexed: 01/04/2023]
Abstract
Background Endothelial progenitor cells (EPCs) have been implicated in different processes crucial to vasculature repair, which may offer the basis for new therapeutic strategies in cardiovascular disease. Despite advances facilitated by functional genomics, there is a lack of systems-level understanding of treatment response mechanisms of EPCs. In this research we aimed to characterize the EPCs response to adenosine (Ado), a cardioprotective factor, based on the systems-level integration of gene expression data and prior functional knowledge. Specifically, we set out to identify novel biosignatures of Ado-treatment response in EPCs. Results The predictive integration of gene expression data and standardized functional similarity information enabled us to identify new treatment response biosignatures. Gene expression data originated from Ado-treated and -untreated EPCs samples, and functional similarity was estimated with Gene Ontology (GO)-based similarity information. These information sources enabled us to implement and evaluate an integrated prediction approach based on the concept of k-nearest neighbours learning (kNN). The method can be executed by expert- and data-driven input queries to guide the search for biologically meaningful biosignatures. The resulting integrated kNN system identified new candidate EPC biosignatures that can offer high classification performance (areas under the operating characteristic curve > 0.8). We also showed that the proposed models can outperform those discovered by standard gene expression analysis. Furthermore, we report an initial independent in vitro experimental follow-up, which provides additional evidence of the potential validity of the top biosignature. Conclusion Response to Ado treatment in EPCs can be accurately characterized with a new method based on the combination of gene co-expression data and GO-based similarity information. It also exploits the incorporation of human expert-driven queries as a strategy to guide the automated search for candidate biosignatures. The proposed biosignature improves the systems-level characterization of EPCs. The new integrative predictive modeling approach can also be applied to other phenotype characterization or biomarker discovery problems.
Collapse
Affiliation(s)
- Francisco J Azuaje
- Laboratory of Cardiovascular Research, Centre de Recherche Public-Santé, L-1150, Luxembourg.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ni G, Liu W, Huang X, Zhu S, Yue X, Chen Z, Chen M, Liu X, Xu G. Increased levels of circulating SDF-1α and CD34+ CXCR4+ cells in patients with moyamoya disease. Eur J Neurol 2011; 18:1304-9. [DOI: 10.1111/j.1468-1331.2011.03393.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Kim JH, Oh BJ, Lee HN, Park HS, Park SG, Park KS. Endothelial colony-forming cell coating of pig islets prevents xenogeneic instant blood-mediated inflammatory reaction. Cell Transplant 2011; 20:1805-15. [PMID: 21396165 DOI: 10.3727/096368911x566154] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Instant blood-mediated inflammatory reaction (IBMIR) causes rapid islet loss in islet transplantation. Endothelial colony-forming cells (ECFCs) display unique abilities to promote angiogenesis and repair vascular injury compared to those of endothelial cells (ECs), which inhibits the allogeneic and xenogeneic IBMIR. We investigated the coating of pig islets with ex vivo-expanded ECFCs as a strategy to overcome xenogeneic IBMIR. Porcine islets were cocultured with human ECFCs in a specially modified culture medium for 2 days to obtain 70-90% coverage. The coating of pig islets with human ECFCs did not affect the glucose-stimulated insulin secretion capacity or diabetes reversal rate after the transplantation of a marginal islet mass under the kidney capsules of diabetic nude mice compared to that of untreated islets. Uncoated islets, PBS control without islets, and the ECFC-coated islets were examined with an in vitro tubing loop assay using human blood. After 60 min of incubation in human blood, the ECFC-coated islets showed platelet consumption inhibition and low C3a and TAT assay results compared to those of the uncoated islets. Furthermore, there was very little macroscopic or microscopic clotting in the human ECFC-coated pig islets. The protective effect was more prominent compared to that of human EC coating of pig islets in our previous study. We investigated the changes in human-specific MCP-1, IL-8, and tissue factor (TF) levels after the coating of pig islets with human ECFCs or human ECs. The IL-8 levels after coating pig islets with ECFCs were significantly lower than those after coating pig islets with ECs, but there were no significant differences in the MCP-1 or TF levels between the ECFCs and ECs. In conclusion, the coating of pig islets with ECFCs completely prevented all components of xenogeneic IBMIR. ECFCs may be a better source of protection against xenogeneic IBMIR than are mature ECs.
Collapse
Affiliation(s)
- Jae Hyeon Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | | | | | | | | | | |
Collapse
|