1
|
Cho YS, Jun JH, Kim JA, Kim HM, Chung O, Kang SG, Park JY, Kim HJ, Kim S, Kim HJ, Jang JH, Na KJ, Kim J, Park SG, Lee HY, Manica A, Mindell DP, Fuchs J, Edwards JS, Weber JA, Witt CC, Yeo JH, Kim S, Bhak J. Raptor genomes reveal evolutionary signatures of predatory and nocturnal lifestyles. Genome Biol 2019; 20:181. [PMID: 31464627 PMCID: PMC6714440 DOI: 10.1186/s13059-019-1793-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 08/13/2019] [Indexed: 01/11/2023] Open
Abstract
Background Birds of prey (raptors) are dominant apex predators in terrestrial communities, with hawks (Accipitriformes) and falcons (Falconiformes) hunting by day and owls (Strigiformes) hunting by night. Results Here, we report new genomes and transcriptomes for 20 species of birds, including 16 species of birds of prey, and high-quality reference genomes for the Eurasian eagle-owl (Bubo bubo), oriental scops owl (Otus sunia), eastern buzzard (Buteo japonicus), and common kestrel (Falco tinnunculus). Our extensive genomic analysis and comparisons with non-raptor genomes identify common molecular signatures that underpin anatomical structure and sensory, muscle, circulatory, and respiratory systems related to a predatory lifestyle. Compared with diurnal birds, owls exhibit striking adaptations to the nocturnal environment, including functional trade-offs in the sensory systems, such as loss of color vision genes and selection for enhancement of nocturnal vision and other sensory systems that are convergent with other nocturnal avian orders. Additionally, we find that a suite of genes associated with vision and circadian rhythm are differentially expressed in blood tissue between nocturnal and diurnal raptors, possibly indicating adaptive expression change during the transition to nocturnality. Conclusions Overall, raptor genomes show genomic signatures associated with the origin and maintenance of several specialized physiological and morphological features essential to be apex predators. Electronic supplementary material The online version of this article (10.1186/s13059-019-1793-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Jung A Kim
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Hak-Min Kim
- Korean Genomics Industrialization Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.,Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | | | - Seung-Gu Kang
- Animal Resources Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Jin-Young Park
- Animal Resources Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Hwa-Jung Kim
- Animal Resources Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Sunghyun Kim
- Strategic Planning Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Hee-Jong Kim
- Chungnam Wild Animal Rescue Center, Kongju National University, Yesan, Republic of Korea
| | - Jin-Ho Jang
- Chungnam Wild Animal Rescue Center, Kongju National University, Yesan, Republic of Korea
| | - Ki-Jeong Na
- College of veterinary medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Jeongho Kim
- Medical care team, Cheongju Zoo, Cheongju, Republic of Korea
| | - Seung Gu Park
- Korean Genomics Industrialization Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | | | - Andrea Manica
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - David P Mindell
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| | - Jérôme Fuchs
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Paris, France
| | - Jeremy S Edwards
- Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - Jessica A Weber
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Christopher C Witt
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Joo-Hong Yeo
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Soonok Kim
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, Republic of Korea.
| | - Jong Bhak
- Clinomics Inc, Ulsan, Republic of Korea. .,Korean Genomics Industrialization Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea. .,Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
| |
Collapse
|
2
|
Engevik KA, Hanyu H, Matthis AL, Zhang T, Frey MR, Oshima Y, Aihara E, Montrose MH. Trefoil factor 2 activation of CXCR4 requires calcium mobilization to drive epithelial repair in gastric organoids. J Physiol 2019; 597:2673-2690. [PMID: 30912855 PMCID: PMC6826237 DOI: 10.1113/jp277259] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 03/21/2019] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS Determining the signalling cascade of epithelial repair, using murine gastric organoids, allows definition of regulatory processes intrinsic to epithelial cells, at the same time as validating and dissecting the signalling cascade with more precision than is possible in vivo Following single cell damage, intracellular calcium selectively increases within cells adjacent to the damage site and is essential for promoting repair. Trefoil factor 2 (TFF2) acts via chemokine C-X-C receptor 4 and epidermal growth factor receptor signalling, including extracellular signal-regulated kinase activation, to drive calcium mobilization and promote gastric repair. Sodium hydrogen exchanger 2, although essential for repair, acts downstream of TFF2 and calcium mobilization. ABSTRACT The gastric mucosa of the stomach is continually exposed to environmental and physiological stress factors that can cause local epithelial damage. Although much is known about the complex nature of gastric wound repair, the stepwise process that characterizes epithelial restitution remains poorly defined. The present study aimed to determine the effectors that drive gastric epithelial repair using a reductionist culture model. To determine the role of trefoil factor 2 (TFF2) and intracellular calcium (Ca2+ ) mobilization in gastric restitution, gastric organoids were derived from TFF2 knockout (KO) mice and yellow Cameleon-Nano15 (fluorescent calcium reporter) transgenic mice, respectively. Inhibitors and recombinant protein were used to determine the upstream and downstream effectors of gastric restitution following photodamage (PD) to single cells within the gastric organoids. Single cell PD resulted in parallel events of dead cell exfoliation and migration of intact neighbouring cells to restore a continuous epithelium in the damage site. Under normal conditions following PD, Ca2+ levels increased within neighbour migrating cells, peaking at ∼1 min, suggesting localized Ca2+ mobilization at the site of cell protrusion/migration. TFF2 KO organoids exhibit delayed repair; however, this delay can be rescued by the addition of exogenous TFF2. Inhibition of epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK)1/2 or a TFF2 receptor, chemokine C-X-C receptor 4 (CXCR4), resulted in significant delay and dampened Ca2+ mobilization. Inhibition of sodium hydrogen exchanger 2 (NHE2) caused significant delay but did not affect Ca2+ mobilization. A similar delay was observed in NHE2 KO organoids. In TFF2 KO gastric organoids, the addition of exogenous TFF2 in the presence of EGFR or CXCR4 inhibition was unable to rescue repair. The present study demonstrates that intracellular Ca2+ mobilization occurs within gastric epithelial cells adjacent to the damage site to promote repair by mechanisms that involve TFF2 signalling via CXCR4, as well as activation of EGFR and ERK1/2. Furthermore NHE2 is shown to be important for efficient repair and to operate via a mechanism either downstream or independent of calcium mobilization.
Collapse
Affiliation(s)
- Kristen A. Engevik
- Department of Pharmacology and Systems PhysiologyUniversity of CincinnatiCincinnatiOHUSA
| | - Hikaru Hanyu
- Department of Pharmacology and Systems PhysiologyUniversity of CincinnatiCincinnatiOHUSA
| | - Andrea L. Matthis
- Department of Pharmacology and Systems PhysiologyUniversity of CincinnatiCincinnatiOHUSA
| | - Tongli Zhang
- Department of Pharmacology and Systems PhysiologyUniversity of CincinnatiCincinnatiOHUSA
| | - Mark R. Frey
- Departments of Pediatrics and Biochemistry and Molecular MedicineUniversity of Southern California Keck School of Medicine/Children's Hospital Los AngelesLos AngelesCAUSA
| | - Yusuke Oshima
- Biomedical Optics LabGraduate School of Biomedical EngineeringTohoku UniversityMiyagiJapan
| | - Eitaro Aihara
- Department of Pharmacology and Systems PhysiologyUniversity of CincinnatiCincinnatiOHUSA
| | - Marshall H. Montrose
- Department of Pharmacology and Systems PhysiologyUniversity of CincinnatiCincinnatiOHUSA
| |
Collapse
|
3
|
Duraj-Thatte AM, Praveschotinunt P, Nash TR, Ward FR, Nguyen PQ, Joshi NS. Modulating bacterial and gut mucosal interactions with engineered biofilm matrix proteins. Sci Rep 2018; 8:3475. [PMID: 29472619 PMCID: PMC5823925 DOI: 10.1038/s41598-018-21834-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 02/12/2018] [Indexed: 12/22/2022] Open
Abstract
Extracellular appendages play a significant role in mediating communication between bacteria and their host. Curli fibers are a class of bacterial fimbria that is highly amenable to engineering. We demonstrate the use of engineered curli fibers to rationally program interactions between bacteria and components of the mucosal epithelium. Commensal E. coli strains were engineered to produce recombinant curli fibers fused to the trefoil family of human cytokines. Biofilms formed from these strains bound more mucins than those producing wild-type curli fibers, and modulated mucin rheology as well. When treated with bacteria producing the curli-trefoil fusions mammalian cells behaved identically in terms of their migration behavior as when they were treated with the corresponding soluble trefoil factors. Overall, this demonstrates the potential utility of curli fibers as a scaffold for the display of bioactive domains and an untapped approach to rationally modulating host-microbe interactions using bacterial matrix proteins.
Collapse
Affiliation(s)
- Anna M Duraj-Thatte
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Pichet Praveschotinunt
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Trevor R Nash
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Frederick R Ward
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Peter Q Nguyen
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Neel S Joshi
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States. .,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States.
| |
Collapse
|
4
|
Orime K, Shirakawa J, Togashi Y, Tajima K, Inoue H, Ito Y, Sato K, Nakamura A, Aoki K, Goshima Y, Terauchi Y. Trefoil factor 2 promotes cell proliferation in pancreatic β-cells through CXCR-4-mediated ERK1/2 phosphorylation. Endocrinology 2013. [PMID: 23183167 DOI: 10.1210/en.2012-1814] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Decreased β-cell mass is a hallmark of type 2 diabetes, and therapeutic approaches to increase the pancreatic β-cell mass have been expected. In recent years, gastrointestinal incretin peptides have been shown to exert a cell-proliferative effect in pancreatic β-cells. Trefoil factor 2 (TFF2), which is predominantly expressed in the surface epithelium of the stomach, plays a role in antiapoptosis, migration, and proliferation. The TFF family is expressed in pancreatic β-cells, whereas the role of TFF2 in pancreatic β-cells has been obscure. In this study, we investigated the mechanism by which TFF2 enhances pancreatic β-cell proliferation. The effects of TFF2 on cell proliferation were evaluated in INS-1 cells, MIN6 cells, and mouse islets using an adenovirus vector containing TFF2 or a recombinant TFF2 peptide. The forced expression of TFF2 led to an increase in bromodeoxyuridine (BrdU) incorporation in both INS-1 cells and islets, without any alteration in insulin secretion. TFF2 significantly increased the mRNA expression of cyclin A2, D1, D2, D3, and E1 in islets. TFF2 peptide increased ERK1/2 phosphorylation and BrdU incorporation in MIN6 cells. A MAPK kinase inhibitor (U0126) abrogated the TFF2 peptide-mediated proliferation of MIN6 cells. A CX-chemokine receptor-4 antagonist also prevented the TFF2 peptide-mediated increase in ERK1/2 phosphorylation and BrdU incorporation in MIN6 cells. These results indicated that TFF2 is involved in β-cell proliferation at least partially via CX-chemokine receptor-4-mediated ERK1/2 phosphorylation, suggesting TFF2 may be a novel target for inducing β-cell proliferation.
Collapse
Affiliation(s)
- Kazuki Orime
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Zhang Y, Yu G, Wang Y, Xiang Y, Gao Q, Jiang P, Zhang J, Lee W, Zhang Y. Activation of protease-activated receptor (PAR) 1 by frog trefoil factor (TFF) 2 and PAR4 by human TFF2. Cell Mol Life Sci 2011; 68:3771-80. [PMID: 21461878 PMCID: PMC11115081 DOI: 10.1007/s00018-011-0678-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 02/15/2011] [Accepted: 03/22/2011] [Indexed: 12/29/2022]
Abstract
Trefoil factors (TFFs) promote epithelial cell migration to reseal superficial wounds after mucosal injury, but their receptors and the molecular mechanisms underlying this process are poorly understood. In this study, we showed that frog TFF2 activates protease-activated receptor (PAR) 1 to induce human platelet aggregation. Based on this result, we further tested the involvement of PARs in human TFF2 (hTFF2)-promoted mucosal healing. hTFF2-stimulated migration of epithelial HT-29 cells was largely inhibited by PAR4 depletion with small interfering RNAs but not by PAR1 or PAR2 depletion. The PAR4-negative epithelial cell lines AGS and LoVo were highly responsive to hTFF2 as assessed by phosphorylation of ERK1/2 and cell migration upon PAR4 expression. Our findings suggest that hTFF2 promotes cell migration via PAR4. These findings will be helpful in further investigations into the functions and molecular mechanisms of TFFs and PARs in physiology and disease.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming, Yunnan 650223 China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Guoyu Yu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming, Yunnan 650223 China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Yanjie Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming, Yunnan 650223 China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Yang Xiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming, Yunnan 650223 China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Qian Gao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming, Yunnan 650223 China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Ping Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming, Yunnan 650223 China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Jie Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming, Yunnan 650223 China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Wenhui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming, Yunnan 650223 China
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming, Yunnan 650223 China
| |
Collapse
|
6
|
Jiang Z, Lossie AC, Applegate TJ. Evolution of trefoil factor(s): genetic and spatio-temporal expression of trefoil factor 2 in the chicken (Gallus gallus domesticus). PLoS One 2011; 6:e22691. [PMID: 21829480 PMCID: PMC3146476 DOI: 10.1371/journal.pone.0022691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 06/29/2011] [Indexed: 01/28/2023] Open
Abstract
Trefoil factors are essential healing initiators participating in mucosal reconstitution and tissue morphogenesis, especially on the surfaces of the gastrointestinal tract. This family has been cloned and characterized predominantly from mammals and amphibians. Avian species ingest stone and grit to help digest food, which may expose their gut to severe physical conditions. To further the understanding of the function of the TFF gene family across species, we undertook this research to clone, sequence, and characterize the spatio-temporal expression patterns of chicken TFF2 (ChTFF2) cDNA. Bioinformatics analysis of the promoter region and deduced amino acid sequence demonstrated that ChTFF2 contained unique characteristics; specifically the chicken promoter has multiple start sites and the protein contains a series of Lys-Lys-Val repeats. Unlike mammals, where TFF2 is detected primarily in the stomach, and occasionally in the proximal duodenum, chicken TFF2 transcripts are found throughout the gastrointestinal tract, with major expression sites in the glandular and muscular stomach as well as evident expression in the colon, small intestine, cecal tonsil and crop. Temporal analysis of intestinal ChTFF2 transcripts by quantitative RT-PCR showed high levels in embryos and a trend of constant expression during embryonic and post-hatch development, with a reduction occurring around hatch. Phylogenetic analysis highlighted the conservation of TFF proteins and functional divergence of trefoil domains, which suggest a transitional role in the bird during evolution.
Collapse
Affiliation(s)
- Zhengyu Jiang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Amy C. Lossie
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Todd J. Applegate
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|