1
|
Ahmad A, Tiwari RK, Saeed M, Al-Amrah H, Han I, Choi EH, Yadav DK, Ansari IA. Carvacrol instigates intrinsic and extrinsic apoptosis with abrogation of cell cycle progression in cervical cancer cells: Inhibition of Hedgehog/GLI signaling cascade. Front Chem 2023; 10:1064191. [PMID: 36712982 PMCID: PMC9874127 DOI: 10.3389/fchem.2022.1064191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/05/2022] [Indexed: 01/13/2023] Open
Abstract
Recent times have seen a strong surge in therapeutically targeting the hedgehog (HH)/GLI signaling pathway in cervical cancer. HH signaling pathway is reported to be a crucial modulator of carcinogenesis in cervical cancer and is also associated with recurrence and development of chemoresistance. Moreover, our previous reports have established that carvacrol (CAR) inhibited the proliferation of prostate cancer cells via inhibiting the Notch signaling pathway and thus, it was rational to explore its antiproliferative effects in cervical cancer cell lines. Herein, the present study aimed to investigate the anticancer and apoptotic potential of CAR on C33A cervical cancer cells and further explore the underlying mechanisms. We found that CAR significantly suppressed the growth of C33A cells, induced cell cycle arrest, and enhanced programmed cell death along with augmentation in the level of ROS, dissipated mitochondrial membrane potential, activation of caspase cascade, and eventually inhibited the HH signaling cascade. In addition, CAR treatment increased the expression of pro-apoptotic proteins (Bax, Bad, Fas-L, TRAIL, FADDR, cytochrome c) and concomitantly reduced the expression of anti-apoptotic proteins (Bcl-2 and Bcl-xL) in C33A cells. CAR mediates the activation of caspase-9 and -3 (intrinsic pathway) and caspase-8 (extrinsic pathway) accompanied by the cleavage of PARP in cervical cancer cells. Thus, CAR induced apoptosis by both the intrinsic and extrinsic apoptotic pathways. CAR efficiently inhibited the growth of cervical cancer cells via arresting the cell cycle at G0/G1 phase and modulated the gene expression of related proteins (p21, p27, cyclin D1 and CDK4). Moreover, CAR inhibited the HH/GLI signaling pathway by down regulating the expression of SMO, PTCH and GLI1 proteins in cervical carcinoma cells. With evidence of the above results, our data revealed that CAR treatment suppressed the growth of HPV-C33A cervical cancer cells and further elucidated the mechanistic insights into the functioning of CAR.
Collapse
Affiliation(s)
- Afza Ahmad
- Department of Biosciences, Integral University, Lucknow, India
| | | | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Hadba Al-Amrah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ihn Han
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul, South Korea
| | - Eun-Ha Choi
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul, South Korea,*Correspondence: Eun-Ha Choi, ; Dharmendra K. Yadav,
| | - Dharmendra K. Yadav
- Department of Pharmacy and Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, Incheon, South Korea,*Correspondence: Eun-Ha Choi, ; Dharmendra K. Yadav,
| | | |
Collapse
|
2
|
Ahmad A, Kumar Tiwari R, Mishra P, Alkhathami AG, Almeleebia TM, Alshahrani MY, Ahmad I, Amer Asiri R, Alabdullah NM, Hussien M, Saeed M, Ahmad Ansari I. Antiproliferative and apoptotic potential of Glycyrrhizin against HPV16+ Caski cervical cancer cells: A plausible association with downreguation of HPV E6 and E7 oncogenes and Notch signaling pathway. Saudi J Biol Sci 2022; 29:3264-3275. [PMID: 35844403 PMCID: PMC9280173 DOI: 10.1016/j.sjbs.2022.01.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 11/24/2022] Open
Abstract
Cervical cancer (CCa) is the second most frequent carcinoma in females and human papilloma virus (HPV) oncoproteins are regarded as one of the critical etiological agent. Despite recent advances in screening and management of CCa, still it remains the deadliest carcinoma as advanced and metastatic stages are mostly incurable. This urges for the development of newer therapeutic interventions. The current was aimed to investigate the antiproliferative and apoptotic potential of glycyrrhizin (Gly) against HPV16+ CaSki CCa cells. Our findings substantiated that Gly exerted antiproliferative effects on the CaSki cells by obstructing their proliferation rate. Gly substantially enhanced apoptosis in Caski cells in a dose-dependent manner via augmenting the generation of ROS, DNA fragmentation and disruption of the mitochondrial membrane potential. Gly mediated apoptosis in CaSki cells was found to be due to activation of caspase-8 and capsase-9 along with the modulation of pro-and anti-apoptotic gene expression. Moreover, Gly halts the progression of CaSki cells at G0/G1 phase which was found to be due to reduced expression of cyclin D1 and cyclin-dependent kinase 4 (CDK4) along with the enhanced expression of CDK inhibitor p21Cip1. Further, Gly downregulates the expression of HPV oncoproteins (E6 & E7) along with the inhibition of Notch signaling pathway. Taken together, Gly represents as a potential therapeutic modality for CCa which could rapidly be translated for clinical studies.
Collapse
|
3
|
Thayyullathil F, Cheratta AR, Alakkal A, Subburayan K, Pallichankandy S, Hannun YA, Galadari S. Acid sphingomyelinase-dependent autophagic degradation of GPX4 is critical for the execution of ferroptosis. Cell Death Dis 2021; 12:26. [PMID: 33414455 PMCID: PMC7791123 DOI: 10.1038/s41419-020-03297-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 01/29/2023]
Abstract
Ferroptosis is a type of regulated cell death characterized by ROS accumulation and devastating lipid peroxidation (LPO). The role of acid sphingomyelinase (ASM), a key enzyme in sphingolipid metabolism, in the induction of apoptosis has been studied; however, to date its role in ferroptosis is unclear. In this study, we report that ASM plays a hitherto unanticipated role in promoting ferroptosis. Mechanistically, Erastin (Era) treatment results in the activation of ASM and generation of ceramide, which are required for the Era-induced reactive oxygen species (ROS) generation and LPO. Inhibition of nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) or removal of intracellular ROS, significantly reduced Era-induced ASM activation, suggesting that NADPH oxidase-derived ROS regulated ASM-initiated redox signaling in a positive feedback manner. Moreover, ASM-mediated activation of autophagy plays a critical role in ferroptosis inducers (FINs)-induced glutathione peroxidase 4 (GPX4) degradation and ferroptosis activation. Genetic or pharmacological inhibition of ASM diminishes Era-induced features of autophagy, GPX4 degradation, LPO, and subsequent ferroptosis. Importantly, genetic activation of ASM increases ferroptosis in cancer cells induced by various FINs. Collectively, these findings reveal that ASM plays a novel role in ferroptosis that could be exploited to improve pathological conditions that link to ferroptosis.
Collapse
Affiliation(s)
- Faisal Thayyullathil
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, P. O. Box. 129188, Abu Dhabi, UAE
| | - Anees Rahman Cheratta
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, P. O. Box. 129188, Abu Dhabi, UAE
| | - Ameer Alakkal
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, P. O. Box. 129188, Abu Dhabi, UAE
| | - Karthikeyan Subburayan
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, P. O. Box. 129188, Abu Dhabi, UAE
| | - Siraj Pallichankandy
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, P. O. Box. 129188, Abu Dhabi, UAE
| | - Yusuf A Hannun
- Departments of Medicine and Biochemistry, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Sehamuddin Galadari
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, P. O. Box. 129188, Abu Dhabi, UAE.
| |
Collapse
|
4
|
Ji R, Akashi H, Drosatos K, Liao X, Jiang H, Kennel PJ, Brunjes DL, Castillero E, Zhang X, Deng LY, Homma S, George IJ, Takayama H, Naka Y, Goldberg IJ, Schulze PC. Increased de novo ceramide synthesis and accumulation in failing myocardium. JCI Insight 2017; 2:82922. [PMID: 28469091 PMCID: PMC5414571 DOI: 10.1172/jci.insight.82922] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/21/2017] [Indexed: 01/26/2023] Open
Abstract
Abnormal lipid metabolism may contribute to myocardial injury and remodeling. To determine whether accumulation of very long-chain ceramides occurs in human failing myocardium, we analyzed myocardial tissue and serum from patients with severe heart failure (HF) undergoing placement of left ventricular assist devices and controls. Lipidomic analysis revealed increased total and very long-chain ceramides in myocardium and serum of patients with advanced HF. After unloading, these changes showed partial reversibility. Following myocardial infarction (MI), serine palmitoyl transferase (SPT), the rate-limiting enzyme of the de novo pathway of ceramide synthesis, and ceramides were found increased. Blockade of SPT by the specific inhibitor myriocin reduced ceramide accumulation in ischemic cardiomyopathy and decreased C16, C24:1, and C24 ceramides. SPT inhibition also reduced ventricular remodeling, fibrosis, and macrophage content following MI. Further, genetic deletion of the SPTLC2 gene preserved cardiac function following MI. Finally, in vitro studies revealed that changes in ceramide synthesis are linked to hypoxia and inflammation. In conclusion, cardiac ceramides accumulate in the failing myocardium, and increased levels are detectable in circulation. Inhibition of de novo ceramide synthesis reduces cardiac remodeling. Thus, increased de novo ceramide synthesis contributes to progressive pathologic cardiac remodeling and dysfunction.
Collapse
Affiliation(s)
- Ruiping Ji
- Division of Cardiology, Columbia University Medical Center, New York, New York, USA
| | - Hirokazu Akashi
- Division of Cardiology, Columbia University Medical Center, New York, New York, USA
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Temple University School of Medicine, Center for Translational Medicine, Department of Pharmacology, Philadelphia, Pennsylvania, USA
| | - Xianghai Liao
- Division of Cardiology, Columbia University Medical Center, New York, New York, USA
| | - Hongfeng Jiang
- Division of Preventive Medicine and Nutrition, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Peter J. Kennel
- Division of Cardiology, Columbia University Medical Center, New York, New York, USA
| | - Danielle L. Brunjes
- Division of Cardiology, Columbia University Medical Center, New York, New York, USA
| | | | - Xiaokan Zhang
- Division of Cardiology, Columbia University Medical Center, New York, New York, USA
| | - Lily Y. Deng
- Division of Cardiology, Columbia University Medical Center, New York, New York, USA
| | - Shunichi Homma
- Division of Cardiology, Columbia University Medical Center, New York, New York, USA
| | | | - Hiroo Takayama
- Division of Cardiothoracic Surgery, Department of Surgery
| | - Yoshifumi Naka
- Division of Cardiothoracic Surgery, Department of Surgery
| | - Ira J. Goldberg
- Division of Preventive Medicine and Nutrition, Department of Medicine, Columbia University Medical Center, New York, New York, USA
- Division of Endocrinology, Diabetes and Metabolism, New York University Langone Medical Center, New York, New York, USA
| | - P. Christian Schulze
- Division of Cardiology, Columbia University Medical Center, New York, New York, USA
- Department of Internal Medicine I, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, University Hospital Jena, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
5
|
Rahman A, Thayyullathil F, Pallichankandy S, Galadari S. Hydrogen peroxide/ceramide/Akt signaling axis play a critical role in the antileukemic potential of sanguinarine. Free Radic Biol Med 2016; 96:273-89. [PMID: 27154977 DOI: 10.1016/j.freeradbiomed.2016.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/27/2016] [Accepted: 05/01/2016] [Indexed: 12/29/2022]
Abstract
Dysregulation of apoptosis is a prime hallmark of leukemia. Therefore, drugs which restore the sensitivity of leukemic cells to apoptotic stimuli are promising candidates in the treatment of leukemia. Recently, we have demonstrated that sanguinarine (SNG), a benzophenanthridine alkaloid, isolated from Sanguinaria canadensis induces ROS-dependent ERK1/2 activation and autophagic cell death in human malignant glioma cells (Pallichankandy et al., 2015; [43]). In this study, we investigated the antileukemic potential of SNG in vitro, and further examined the molecular mechanisms of SNG-induced cell death. In human leukemic cells, SNG activated apoptotic cell death pathway characterized by activation of caspase cascade, DNA fragmentation and down-regulation of anti-apoptotic proteins. Importantly, we have identified a crucial role for hydrogen peroxide (H2O2)-dependent ceramide (Cer) generation in the facilitation of SNG-induced apoptosis. Additionally, we have found that SNG inhibits Akt, a key anti-apoptotic protein kinase by dephosphorylating it at Ser(473), leading to the dephosphorylation of its downstream targets, GSK3β and mTOR. Interestingly, inhibition of Cer generation, using acid sphingomyelinase inhibitor, significantly reduced the SNG-induced Akt dephosphorylation and apoptosis, whereas, activation of Cer generation using inhibitors of acid ceramidase and glucosylceramide synthase enhanced it. Furthermore, using a group of ceramide activated protein phosphatases (CAPPs) inhibitor (calyculin A, Okadaic acid, and phosphatidic acid), the involvement of protein phosphatase 1 form of CAPP in SNG-induced Akt dephosphorylation and apoptosis was demonstrated. Altogether, these results underscore a critical role for H2O2-Cer-Akt signaling axis in the antileukemic action of SNG.
Collapse
Affiliation(s)
- Anees Rahman
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, United Arab Emirates.
| | - Faisal Thayyullathil
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, United Arab Emirates.
| | - Siraj Pallichankandy
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, United Arab Emirates.
| | - Sehamuddin Galadari
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, United Arab Emirates; Al Jalila Foundation Research Centre, P.O. Box 300100, Dubai, United Arab Emirates.
| |
Collapse
|
6
|
Abstract
Studies over the past two decades have identified ceramide as a multifunctional central molecule in the sphingolipid biosynthetic pathway. Given its diverse tumor suppressive activities, molecular understanding of ceramide action will produce fundamental insights into processes that limit tumorigenesis and may identify key molecular targets for therapeutic intervention. Ceramide can be activated by a diverse array of stresses such as heat shock, genotoxic damage, oxidative stress and anticancer drugs. Ceramide triggers a variety of tumor suppressive and anti-proliferative cellular programs such as apoptosis, autophagy, senescence, and necroptosis by activating or repressing key effector molecules. Defects in ceramide generation and metabolism in cancer contribute to tumor cell survival and resistance to chemotherapy. The potent and versatile anticancer activity profile of ceramide has motivated drug development efforts to (re-)activate ceramide in established tumors. This review focuses on our current understanding of the tumor suppressive functions of ceramide and highlights the potential downstream targets of ceramide which are involved in its tumor suppressive action.
Collapse
|
7
|
Tripathy D, Choudhary A, Banerjee UC, Singh IP, Chatterjee A. Induction of Apoptosis and Reduction of Endogenous Glutathione Level by the Ethyl-Acetate Soluble Fraction of the Methanol Extract of the Roots of Potentilla fulgens in Cancer Cells. PLoS One 2015; 10:e0135890. [PMID: 26284809 PMCID: PMC4540452 DOI: 10.1371/journal.pone.0135890] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/27/2015] [Indexed: 01/28/2023] Open
Abstract
Potentilla fulgens root traditionally used as a folk remedy in Meghalaya, India. However, systematic evaluation of its anticancer efficacy was limited. We investigated the anticancer potentials of the various extracts prepared by partitioning of the methanol extract of the root with the aim to discover major contributing factors from the most effective fractions. Methanol extract of P. fulgens roots (PRE) was prepared by maceration which was subsequently fractionated into hexane, ethyl-acetate (EA) and n-butanol soluble fractions. Various assays (clonogenic assay, Flow cytometry analysis, western blot, semiquantitative RT-PCR and the level of endogenous glutathione) were used to evaluate different parameters, such as Cell survivability, PARP-1 proteolysis, expression pattern of anti-apoptotic and γ-glutamyl-cysteine synthetase heavy subunit (GCSC) genes in both MCF-7 and U87 cancer cell lines. Since the EA-fraction showed most efficient growth inhibitory effect, it was further purified and a total of nine compounds and some monomeric and dimeric flavan-3-ols were identified and characterized. Three compounds viz., epicatechin (EC), gallic acid (GA) and ursolic acid (UA) were taken on the basis of their higher yield and 10 μg/ml of each was mixed together. The concentration used in this study for PRE, EA- and Hex-fraction was 100 μg/ml, which was higher than the IC50 value. Apoptotic cell death in the PRE, EA-fraction and EC+GA+UA treated cancer cell cultures was significantly greater than in normal cells due to suppression of anti-apoptotic protein Bcl2 following treatment. Depletion of glutathione by downregulating GCSC was also observed. Induction of apoptosis and lowering the level of glutathione are considered to be positive activity for an anticancer agent. Therefore, modulation of GSH concentration in tumor cells by PRE and its EA-fraction opened up the possibility of a new therapeutic approach because these plant products are not harmful to normal cells and may regulate the tumor cellular response to different anticancer treatments. Thus, it would be interesting to examine efficacy of these plant products or EA-fraction in human cancer treatment.
Collapse
Affiliation(s)
- Debabrata Tripathy
- Molecular Genetics Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya-793022, India
| | - Alka Choudhary
- Department of Pharmaceutical Technology Biotechnology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062, Punjab, India
| | - Uttam Chand Banerjee
- Department of Pharmaceutical Technology Biotechnology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062, Punjab, India
| | - Inder Pal Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062, Punjab, India
| | - Anupam Chatterjee
- Molecular Genetics Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya-793022, India
- * E-mail:
| |
Collapse
|
8
|
SphK1 inhibitor II (SKI-II) inhibits acute myelogenous leukemia cell growth in vitro and in vivo. Biochem Biophys Res Commun 2015; 460:903-8. [PMID: 25824043 DOI: 10.1016/j.bbrc.2015.03.114] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 03/22/2015] [Indexed: 12/21/2022]
Abstract
Previous studies have identified sphingosine kinase 1 (SphK1) as a potential drug target for treatment of acute myeloid leukemia (AML). In the current study, we investigated the potential anti-leukemic activity of a novel and specific SphK1 inhibitor, SKI-II. We demonstrated that SKI-II inhibited growth and survival of human AML cell lines (HL-60 and U937 cells). SKI-II was more efficient than two known SphK1 inhibitors SK1-I and FTY720 in inhibiting AML cells. Meanwhile, it induced dramatic apoptosis in above AML cells, and the cytotoxicity by SKI-II was almost reversed by the general caspase inhibitor z-VAD-fmk. SKI-II treatment inhibited SphK1 activation, and concomitantly increased level of sphingosine-1-phosphate (S1P) precursor ceramide in AML cells. Conversely, exogenously-added S1P protected against SKI-II-induced cytotoxicity, while cell permeable short-chain ceramide (C6) aggravated SKI-II's lethality against AML cells. Notably, SKI-II induced potent apoptotic death in primary human AML cells, but was generally safe to the human peripheral blood mononuclear cells (PBMCs) isolated from healthy donors. In vivo, SKI-II administration suppressed growth of U937 leukemic xenograft tumors in severe combined immunodeficient (SCID) mice. These results suggest that SKI-II might be further investigated as a promising anti-AML agent.
Collapse
|
9
|
Wang T, Wei J, Wang N, Ma JL, Hui PP. The glucosylceramide synthase inhibitor PDMP sensitizes pancreatic cancer cells to MEK/ERK inhibitor AZD-6244. Biochem Biophys Res Commun 2014; 456:821-6. [PMID: 25498501 DOI: 10.1016/j.bbrc.2014.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
Abstract
Here we show that d,l-Threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), a glycosphingolipid biosynthesis inhibitor, increases the sensitivity of pancreatic cancer cells to the novel MEK-ERK inhibitor AZD-6244. AZD-6244 and PDMP co-administration induced massive pancreatic cancer cell death and apoptosis, more potently than either drug alone. We discovered that AZD-6244 induced ceramide production in pancreatic cancer cells, yet the excess ceramide was metabolically removed in the long-term (24-48h). PDMP facilitated AZD-6244-induced ceramide production, and ceramide level remained elevated up to 48h. Meanwhile, exogenously-added cell-permeable short chain ceramide (C2) similarly sensitized AZD-6244's activity, the two caused substantial pancreatic cancer cell death and apoptosis. At the molecular level, PDMP and AZD-6244 co-treatment inactivated ERK1/2 and AKT-mTOR signalings simultaneously in pancreatic cancer cells, while either agent alone only affected one signaling. In summary, PDMP significantly increased the sensitivity of AZD-6244 in pancreatic cancer cells. This appears to involve a sustained ceramide production as well as concurrent block of ERK and AKT-mTOR signalings.
Collapse
Affiliation(s)
- Ting Wang
- Department of Gastroenterology, Shanghai Tongren Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Jue Wei
- Department of Gastroenterology, Shanghai Tongren Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Na Wang
- Department of Gastroenterology, Shanghai Tongren Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Jia-Li Ma
- Department of Gastroenterology, Shanghai Tongren Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Ping-Ping Hui
- Department of Gastroenterology, Shanghai Tongren Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| |
Collapse
|
10
|
Thayyullathil F, Rahman A, Pallichankandy S, Patel M, Galadari S. ROS-dependent prostate apoptosis response-4 (Par-4) up-regulation and ceramide generation are the prime signaling events associated with curcumin-induced autophagic cell death in human malignant glioma. FEBS Open Bio 2014; 4:763-76. [PMID: 25349781 PMCID: PMC4208092 DOI: 10.1016/j.fob.2014.08.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 08/15/2014] [Accepted: 08/19/2014] [Indexed: 01/25/2023] Open
Abstract
Malignant gliomas are extremely resistant to therapies that induce apoptosis. Malignant gliomas are less resistant to therapies that induce autophagy. Curcumin induces ROS-dependent induction of autophagy in malignant glioma cells. Curcumin induces up-regulation of Par-4 in human malignant glioma cells. Curcumin induces tumor suppressive lipid, ceramide in malignant glioma cells.
Malignant gliomas are extremely resistant to therapies that induce apoptosis, but are less resistant to therapies that induce autophagy. Therefore, drugs targeting autophagy are promising in the management of malignant gliomas. In this study, we investigated the anti-glioma potential of curcumin in vitro, and further examined the molecular mechanisms of curcumin-induced cell death in human malignant glioma. Here, we provide evidence that curcumin is cytotoxic against human malignant glioma cell lines, and the mechanism of cell death caused by curcumin is associated with features of autophagy. Curcumin suppresses the growth of human malignant glioma cells via ROS-dependent prostate apoptosis response-4 (Par-4) induction and ceramide generation. Extracellular supplementation of antioxidants such as glutathione and N-acetylcysteine to glioma cells abrogated the Par-4 induction, ceramide generation, and in turn, prevented curcumin-induced autophagic cell death. Moreover, tumor cells transfected with Par-4 gene sensitized the curcumin-induced autophagic cell death. Overall, this study describes a novel signaling pathway by which curcumin induces ROS-dependent Par-4 activation and ceramide generation, leading to autophagic cell death in human malignant glioma cells.
Collapse
Key Words
- AMPK, adenosine monophosphate-activated protein kinase
- Autophagy
- Ceramide
- Cur, curcumin
- Curcumin
- GSH, glutathione
- Glioma
- LKB1, liver kinase B1
- NAC, N-acetylcysteine
- PARP, poly (ADP-ribose) polymerase
- Par-4
- Par-4, prostate apoptosis response 4
- ROS
- ROS, reactive oxygen species
- mTOR, mammalian target of rapamycin
- p70S6K, p70S6 kinase
- z-VAD-fmk, N-benzyloxycarbonyl-Val-Ala-Asp fluoromethylketone
Collapse
Affiliation(s)
- Faisal Thayyullathil
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Anees Rahman
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Siraj Pallichankandy
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Mahendra Patel
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Sehamuddin Galadari
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, United Arab Emirates ; Al Jalila Foundation for Medical Education and Research, P.O. Box 300100, Dubai, United Arab Emirates
| |
Collapse
|
11
|
Thayyullathil F, Pallichankandy S, Rahman A, Kizhakkayil J, Chathoth S, Patel M, Galadari S. Caspase-3 mediated release of SAC domain containing fragment from Par-4 is necessary for the sphingosine-induced apoptosis in Jurkat cells. J Mol Signal 2013; 8:2. [PMID: 23442976 PMCID: PMC3599610 DOI: 10.1186/1750-2187-8-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 02/23/2013] [Indexed: 12/26/2022] Open
Abstract
Background Prostate apoptosis response-4 (Par-4) is a tumor-suppressor protein that selectively activates and induces apoptosis in cancer cells, but not in normal cells. The cancer specific pro-apoptotic function of Par-4 is encoded in its centrally located SAC (Selective for Apoptosis induction in Cancer cells) domain (amino acids 137–195). The SAC domain itself is capable of nuclear entry, caspase activation, inhibition of NF-κB activity, and induction of apoptosis in cancer cells. However, the precise mechanism(s) of how the SAC domain is released from Par-4, in response to apoptotic stimulation, is not well explored. Results In this study, we demonstrate for the first time that sphingosine (SPH), a member of the sphingolipid family, induces caspase-dependant cleavage of Par-4, leading to the release of SAC domain containing fragment from it. Par-4 is cleaved at the EEPD131G site on incubation with caspase-3 in vitro, and by treating cells with several anti-cancer agents. The caspase-3 mediated cleavage of Par-4 is blocked by addition of the pan-caspase inhibitor z-VAD-fmk, caspase-3 specific inhibitor Ac-DEVD-CHO, and by introduction of alanine substitution for D131 residue. Moreover, suppression of SPH-induced Akt dephosphorylation also abrogated the caspase dependant cleavage of Par-4. Conclusion Evidence provided here shows that Par-4 is cleaved by caspase-3 during SPH-induced apoptosis. Cleavage of Par-4 leads to the generation of SAC domain containing fragment which may possibly be essential and sufficient to induce or augment apoptosis in cancer cells.
Collapse
Affiliation(s)
- Faisal Thayyullathil
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P,O, Box 17666, Al Ain, Abu Dhabi, UAE.
| | | | | | | | | | | | | |
Collapse
|