1
|
Arruda GLM, Vigerelli H, Bufalo MC, Longato GB, Veloso RV, Zambelli VO, Picolo G, Cury Y, Morandini AC, Marques AC, Sciani JM. Box Jellyfish (Cnidaria, Cubozoa) Extract Increases Neuron's Connection: A Possible Neuroprotector Effect. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8855248. [PMID: 33748281 PMCID: PMC7954621 DOI: 10.1155/2021/8855248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/14/2021] [Accepted: 02/23/2021] [Indexed: 01/29/2023]
Abstract
Neurodegenerative diseases are one of the major causes of death worldwide, characterized by neurite atrophy, neuron apoptosis, and synapse loss. No effective treatment has been indicated for such diseases so far, and the search for new drugs is being increased in the last years. Animal venoms' secretion/venom can be an alternative for the discovery of new molecules, which could be the prototype for a new treatment. Here, we present the biochemical characterization and activity of the extract from the box jellyfish Chiropsalmus quadrumanus (Cq) on neurites. The Cq methanolic extract was obtained and incubated to human SH-SY5Y neurons, and neurite parameters were evaluated. The extract was tested in other cell types to check its cytotoxicity and was submitted to biochemical analysis by mass spectrometry in order to check its composition. We could verify that the Cq extract increased neurite outgrowth length and branching junctions, amplifying the contact between SH-SY5Y neurons, without affecting cell body and viability. The extract action was selective for neurons, as it did not cause any effects on other cell types, such as tumor line, nontumor line, and red blood cells. Moreover, mass spectrometry analysis revealed that there are no proteins but several low molecular mass compounds and peptides. Three peptides, characterized as cryptides, and 14 low molecular mass compounds were found to be related to cytoskeleton reorganization, cell membrane expansion, and antioxidant/neuroprotective activity, which act together to increase neuritogenesis. After this evaluation, we conclude that the Cq extract is a promising tool for neuronal connection recovery, an essential condition for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Gian Lucas M. Arruda
- Laboratório Multidisciplinar de Pesquisa, Universidade São Francisco, Bragança Paulista 12916-900, Brazil
| | - Hugo Vigerelli
- Laboratório de Genética, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Michelle C. Bufalo
- Laboratório de Dor e Sinalização, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Giovanna B. Longato
- Laboratório de Pesquisa em Farmacologia Molecular e Compostos Bioativos, Universidade São Francisco, Bragança Paulista 12916-900, Brazil
| | - Rodinei V. Veloso
- Laboratório Multidisciplinar de Pesquisa, Universidade São Francisco, Bragança Paulista 12916-900, Brazil
| | - Vanessa O. Zambelli
- Laboratório de Dor e Sinalização, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Gisele Picolo
- Laboratório de Dor e Sinalização, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Yara Cury
- Laboratório de Dor e Sinalização, Instituto Butantan, São Paulo 05503-900, Brazil
| | - André C. Morandini
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil
- Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião 11612-109, Brazil
| | - Antonio Carlos Marques
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil
| | - Juliana Mozer Sciani
- Laboratório Multidisciplinar de Pesquisa, Universidade São Francisco, Bragança Paulista 12916-900, Brazil
| |
Collapse
|
2
|
Clostridium perfringens Alpha-Toxin Induces Gm1a Clustering and Trka Phosphorylation in the Host Cell Membrane. PLoS One 2015; 10:e0120497. [PMID: 25910247 PMCID: PMC4409118 DOI: 10.1371/journal.pone.0120497] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 01/23/2015] [Indexed: 01/13/2023] Open
Abstract
Clostridium perfringens alpha-toxin elicits various immune responses such as the release of cytokines, chemokines, and superoxide via the GM1a/TrkA complex. Alpha-toxin possesses phospholipase C (PLC) hydrolytic activity that contributes to signal transduction in the pathogenesis of gas gangrene. Little is known about the relationship between lipid metabolism and TrkA activation by alpha-toxin. Using live-cell fluorescence microscopy, we monitored transbilayer movement of diacylglycerol (DAG) with the yellow fluorescent protein-tagged C1AB domain of protein kinase C-γ (EYFP-C1AB). DAG accumulated at the marginal region of the plasma membrane in alpha toxin-treated A549 cells, which also exhibited GM1a clustering and TrkA phosphorylation. Annexin V binding assays showed that alpha-toxin induced the exposure of phosphatidylserine on the outer leaflet of the plasma membrane. However, H148G, a variant toxin which binds cell membrane and has no enzymatic activity, did not induce DAG translocation, GM1a clustering, or TrkA phosphorylation. Alpha-toxin also specifically activated endogenous phospholipase Cγ-1 (PLCγ-1), a TrkA adaptor protein, via phosphorylation. U73122, an endogenous PLC inhibitor, and siRNA for PLCγ-1 inhibited the formation of DAG and release of IL-8. GM1a accumulation and TrkA phosphorylation in A549 cells treated with alpha-toxin were also inhibited by U73122. These results suggest that the flip-flop motion of hydrophobic lipids such as DAG leads to the accumulation of GM1a and TrkA. We conclude that the formation of DAG by alpha-toxin itself (first step) and activation of endogenous PLCγ-1 (second step) leads to alterations in membrane dynamics, followed by strong phosphorylation of TrkA.
Collapse
|
3
|
Uppalapati SR, Kingston JJ, Qureshi IA, Murali HS, Batra HV. In silico, in vitro and in vivo analysis of binding affinity between N and C-domains of Clostridium perfringens alpha toxin. PLoS One 2013; 8:e82024. [PMID: 24349173 PMCID: PMC3859591 DOI: 10.1371/journal.pone.0082024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/28/2013] [Indexed: 02/03/2023] Open
Abstract
Clostridium perfringens alpha toxin/phospholipase C (CP-PLC) is one of the most potent bacterial toxins known to cause soft tissue infections like gas gangrene in humans and animals. It is the first bacterial toxin demonstrated to be an enzyme with phospholipase, sphingomyelinase and lecithinase activities. The toxin is comprised of an enzymatic N-domain and a binding C-domain interconnected by a flexible linker. The N-domain alone is non-toxic to mammalian cells, but incubation with C-domain restores the toxicity, the mechanism of which is still not elucidated. The objectives of the current study were to investigate the formation of a stable N and C-domain complex, to determine possible interactions between the two domains in silico and to characterize the in vitro and in vivo correlates of the interaction. To establish the existence of a stable N and C-domain hybrid, in vitro pull down assay and dot-Far Western blotting assays were employed, where it was clearly revealed that the two domains bound to each other to form an intermediate. Using bioinformatics tools like MetaPPISP, PatchDock and FireDock, we predicted that the two domains may interact with each other through electrostatic interactions between at least six pairs of amino acids. This N and C-domains interacted with each other in 1:1 ratio and the hybrid lysed mouse erythrocytes in a slower kinetics when compared with wild type native Cp-PLC. BALB/c mice when challenged with N and C-domain hybrid demonstrated severe myonecrosis at the site of injection while no death was observed. Our results provide further insight into better understanding the mechanism for the toxicity of Cp-PLC N and C-domain mixture.
Collapse
Affiliation(s)
| | | | - Insaf Ahmed Qureshi
- Department of Biotechnology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | - Harsh Vardhan Batra
- Microbiology Division, Defence Food Research Laboratory, Mysore, Karnataka, India
| |
Collapse
|
4
|
Clostridium perfringens alpha-toxin induces the release of IL-8 through a dual pathway via TrkA in A549 cells. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1581-9. [DOI: 10.1016/j.bbadis.2012.06.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/08/2012] [Accepted: 06/12/2012] [Indexed: 12/27/2022]
|
5
|
Oda M, Kabura M, Takagishi T, Suzue A, Tominaga K, Urano S, Nagahama M, Kobayashi K, Furukawa K, Furukawa K, Sakurai J. Clostridium perfringens alpha-toxin recognizes the GM1a-TrkA complex. J Biol Chem 2012; 287:33070-9. [PMID: 22847002 DOI: 10.1074/jbc.m112.393801] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Clostridium perfringens alpha-toxin is the major virulence factor in the pathogenesis of gas gangrene. Alpha-toxin is a 43-kDa protein with two structural domains; the N-domain contains the catalytic site and coordinates the divalent metal ions, and the C-domain is a membrane-binding site. The role of the exposed loop region (72-93 residues) in the N-domain, however, has been unclear. Here we show that this loop contains a ganglioside binding motif (H … SXWY … G) that is the same motif seen in botulinum neurotoxin and directly binds to a specific conformation of the ganglioside Neu5Acα2-3(Galβ1-3GalNAcβ1-4)Galβ1-4Glcβ1Cer (GM1a) through a carbohydrate moiety. Confocal microscopy analysis using fluorescently labeled BODIPY-GM1a revealed that the toxin colocalized with GM1a and induced clustering of GM1a on the cell membranes. Alpha-toxin was only slightly toxic in β1,4-N-acetylgalactosaminyltransferase knock-out mice, which lack the a-series gangliosides that contain GM1a, but was highly toxic in α2,8-sialyltransferase knock-out mice, which lack both b-series and c-series gangliosides, similar to the control mice. Moreover, experiments with site-directed mutants indicated that Trp-84 and Tyr-85 in the exposed alpha-toxin loop play an important role in the interaction with GM1a and subsequent activation of TrkA. These results suggest that binding of alpha-toxin to GM1a facilitates the activation of the TrkA receptor and induces a signal transduction cascade that promotes the release of chemokines. Therefore, we conclude that GM1a is the primary cellular receptor for alpha-toxin, which can be a potential target for drug developed against this pathogen.
Collapse
Affiliation(s)
- Masataka Oda
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Oda M. [Molecular mechanism of bacterial sphingomyelinase C]. Nihon Saikingaku Zasshi 2011; 66:159-67. [PMID: 21952350 DOI: 10.3412/jsb.66.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Masataka Oda
- Department of Microbiology, Tokushima Bunri University, Japan
| |
Collapse
|