1
|
Lee J, Choi JE, Ha J, Kim Y, Lee C, Hong KW. Genetic Differences between Male and Female Pattern Hair Loss in a Korean Population. Life (Basel) 2024; 14:939. [PMID: 39202681 PMCID: PMC11355467 DOI: 10.3390/life14080939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Studies on androgenetic alopecia (AGA or patterned hair loss (PHL)) have suggested different underlying pathological mechanisms between males and females. While many genetic factors for male hair loss have been identified through genome-wide association studies (GWASs), the genetic determinants of female hair loss remain unclear. In this study, we analyzed approximately 1000 individuals (436 males and 568 females) to identify sex-specific genetic factors. We conducted three independent GWASs for the total, male-only, and female-only groups, identifying three novel loci (rs7814359, rs2163085, and rs4793158 of the TSNARE1, FZD1, and GJC1 genes, respectively). rs7814359 showed a significant genome-wide association with AGA in the combined sex group and a weak association in both the male-only and female-only groups. The single nucleotide polymorphism (SNP) rs2163085 showed a significant genome-wide association with AGA in the combined group and notable significance in females. The rs4793158 SNP showed a suggestive association with AGA in both the combined and female-only groups. TSNARE1, related to rs7814359, is involved in vesicle transport. FZD1 is a key regulator of the Wnt signaling pathway. GJC1 is a gap junction protein. The associations of FZD1 and GJC1 with female-specific AGA suggest that sex hormones, such as estrogen, may influence FPHL through these genes. These findings will contribute to our understanding of the sex-specific pathophysiology of AGA.
Collapse
Affiliation(s)
- Jihyun Lee
- Easy Hydrogen Corporation, Jeju City 63196, Republic of Korea;
| | - Ja-Eun Choi
- Institute of Advanced Technology, Theragen Health Co., Ltd., Seongnam 13493, Republic of Korea;
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Youngjoo Kim
- Department of Urology, College of Medicine, Jeju National University, Jeju City 63243, Republic of Korea;
| | - Changhyun Lee
- Chunjieh Cooperation, Jeju City 63359, Republic of Korea;
| | - Kyung-Won Hong
- Institute of Advanced Technology, Theragen Health Co., Ltd., Seongnam 13493, Republic of Korea;
| |
Collapse
|
2
|
Hayashi K, Nozaki S, Tokushima K, Tanaka F, Hirai Y. Role of syntaxin3 an apical polarity protein in poorly polarized keratinocytes: regulation of asymmetric barrier formations in the skin epidermis. Cell Tissue Res 2023; 393:523-535. [PMID: 37351635 DOI: 10.1007/s00441-023-03798-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
The skin epidermis exhibits an asymmetric structure composed of multilayered keratinocytes and those in the outer layers form two-way physical barriers, cornified cell envelope (CCE), and tight junctions (TJs). While undifferentiated keratinocytes in the basal layer continuously deliver daughter cells outward, which undergo successive differentiation with losing their polarized characteristics, they retain the expression of several polarity proteins. In the present study, we revealed that the t-SNARE protein syntaxin3, a critical element for the formation of the apical compartment in simple epithelial cells, is required to confer the ability to organize the physical barriers on "poorly polarized" keratinocytes in epidermal outer layers. HaCaT keratinocytes with genetic ablation of syntaxin3 readily succumbed to hydrogen peroxide-induced cell death. Additionally, they lost the ability to organize TJ and CCE structures, accompanied by notable downregulation of transglutaminase1 and caspase14 (a cornification regulator) expression. These syntaxin3-knockout cells appeared to restore oxidative stress tolerance and functional TJ formation ability, in response to the inducible re-expression of exogenous syntaxin3. While plausible mechanisms underlying these phenomena remain unclear, syntaxin3, an apical polarity protein in the simple epithelia, has emerged as a potentially crucial element for barrier formation in poorly polarized keratinocytes in polarized epidermal tissue.
Collapse
Affiliation(s)
- Kaho Hayashi
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, Gakuen-Uegahara, Sanda, 669-1330, Japan
| | - Sae Nozaki
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, Gakuen-Uegahara, Sanda, 669-1330, Japan
| | - Kanako Tokushima
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, Gakuen-Uegahara, Sanda, 669-1330, Japan
| | - Fumika Tanaka
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, Gakuen-Uegahara, Sanda, 669-1330, Japan
| | - Yohei Hirai
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, Gakuen-Uegahara, Sanda, 669-1330, Japan.
| |
Collapse
|
3
|
Nan J, Yang S, Zhang X, Leng T, Zhuoma J, Zhuoma R, Yuan J, Pi J, Sheng Z, Li S. Identification of candidate genes related to highland adaptation from multiple Chinese local chicken breeds by whole genome sequencing analysis. Anim Genet 2023; 54:55-67. [PMID: 36305422 DOI: 10.1111/age.13268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/30/2022] [Accepted: 09/20/2022] [Indexed: 01/07/2023]
Abstract
Understanding the genetic mechanism of highland adaptation is of great importance for breeding improvement of Tibetan chickens (TBC). Some studies of TBC have identified some candidate genes and pathways from multiple subgroups, but the related genetic mechanisms remain largely unknown. Different genetic backgrounds and the independent genetic basis of highland adaptation make it difficult to identity the selective region of highland adaptation with all TBC samples. In this study, we conducted pre-analysis in a large-scale population to select a TBC subgroup with the purest and highest level of highland-specific lineage for the further analysis. Finally, the 37 samples from a TBC subgroup and 19 Lahsa White chickens were used to represent the highland group for further analysis with 80 samples from five Chinese local lowland breeds as controls. Population structure analysis revealed that highland adaptation significantly affected population stratification in Chinese local chicken breeds. Genome-wide selection signal analysis identified 201 candidate genes associated with highland adaptation of TBC, and these genes were significantly enriched in calcium signaling, vascular smooth muscle contraction and the cellular response to oxidative stress pathways. Additionally, we identified a narrow 1.76 kb region containing an overlapping region between HBZ and an active enhancer, and our identified region showed a highly significant signal. The highland group selected the haplotype with high activity to improve the oxygen-carrying capacity, thus being adapted to a hypoxic environment. We also found that STX2 was significantly selected in the highland group, thus potentially reducing the oxidative stress caused by hypoxia, and that STX2 exhibited the opposite effects on highland adaptation and reproductive traits. Our findings advance our understanding of extreme environment adaptation of highland chickens, and provide some variants and genes beneficial to TBC genetic breeding improvement.
Collapse
Affiliation(s)
- Jiuhong Nan
- State Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sendong Yang
- State Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaojian Zhang
- State Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tianze Leng
- State Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Joan Zhuoma
- State Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,Neighborhood Committee Office, Xigaze City, China
| | - Rensang Zhuoma
- State Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,Luomai Township People's Government of Seni District, Naqu City, China
| | - Jingwei Yuan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinsong Pi
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Zheya Sheng
- State Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shijun Li
- State Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Smart Farming for Agricultural Animals, Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Hirose Y, Hirai Y. Cooperation of membrane-translocated syntaxin4 and basement membrane for dynamic mammary epithelial morphogenesis. J Cell Sci 2021; 134:273506. [PMID: 34676419 DOI: 10.1242/jcs.258905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/18/2021] [Indexed: 11/20/2022] Open
Abstract
Mammary epithelia undergo dramatic morphogenesis after puberty. During pregnancy, luminal epithelial cells in ductal trees are arranged to form well-polarized cystic structures surrounded by a myoepithelial cell layer, an active supplier of the basement membrane (BM). Here, we identified a novel regulatory mechanism involved in this process by using a reconstituted BM-based three-dimensional culture and aggregates of a model mouse cell line, EpH4, that had either been manipulated for inducible expression of the t-SNARE protein syntaxin4 in intact or signal peptide-connected forms, or that were genetically deficient in syntaxin4. We found that cells extruded syntaxin4 upon stimulation with the lactogenic hormone prolactin, which in turn accelerated the turnover of E-cadherin. In response to extracellular expression of syntaxin4, cell populations that were less affected by the BM actively migrated and integrated into the cell layer facing the BM. Concurrently, the BM-facing cells, which were simultaneously stimulated with syntaxin4 and BM, acquired unique epithelial characteristics to undergo dramatic cellular arrangement for cyst formation. These results highlight the importance of the concerted action of extracellular syntaxin4 extruded in response to the lactogenic hormone and BM components in epithelial morphogenesis.
Collapse
Affiliation(s)
- Yuina Hirose
- Department of Biomedical Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1, Gakuen, Sanda 669-1337, Japan
| | - Yohei Hirai
- Department of Biomedical Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1, Gakuen, Sanda 669-1337, Japan.,Department of Biomedical Sciences, Graduate School of Biological and Environmental Sciences, Kwansei Gakuin University, 2-1, Gakuen, Sanda 669-1337, Japan
| |
Collapse
|
5
|
Hirose Y, Shirai K, Hirai Y. Membrane-tethered syntaxin-4 locally abrogates E-cadherin function and activates Smad signals, contributing to asymmetric mammary epithelial morphogenesis. J Cell Biochem 2018; 119:7525-7539. [PMID: 29767852 DOI: 10.1002/jcb.27064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/23/2018] [Indexed: 01/09/2023]
Abstract
Spatial and temporal epithelial-mesenchymal transition (EMT) is a critical event for the generation of asymmetric epithelial architectures. We found that only restricted cell populations in the morphogenic mammary epithelia extrude syntaxin-4, a plasmalemmal t-SNARE protein, and that epithelial cell clusters with artificial heterogenic presentation of extracellular syntaxin-4 undergo asymmetric morphogenesis. A previous study revealed that inducible expression of cell surface syntaxin-4 causes EMT-like cell behaviors in the clonal mammary epithelial cells, where laminin-mediated signals were abolished so that cells readily succumb to initiate EMT. The present study added new mechanistic insight into syntaxin-4-driven EMT-like cell behaviors. Extracellular syntaxin-4 directly perturbs E-cadherin-mediated epithelial cell-cell adhesion and activates Smad signals. We found that the epithelial cells activated Smad2/3 upon induction of expression of extracellular syntaxin-4, leading to the upregulation of certain transcriptional targets of these TGF-β signaling mediators. Intriguingly, however, mRNA expression of canonical EMT initiators, such as Snail and Slug, was unchanged. In addition, E-cadherin protein was steeply decreased, yet its transcriptional expression remained constant for a couple of days. We found that extracellular syntaxin-4 directly bound to E-cadherin and sequestered β-catenin from cell-cell contact sites, perturbing intercellular adhesive property. The functional ablation of E-cadherin by syntaxin-4 was further validated by L cells with stably expressing E-cadherin, in which cells shows intercellular adhesive property solely by E-cadherin. These results underline the role of local exportation of syntaxin-4 for onset of complex epithelial morphogenesis.
Collapse
Affiliation(s)
- Yuina Hirose
- Department of Biomedical Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Kota Shirai
- Department of Biomedical Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Yohei Hirai
- Department of Biomedical Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| |
Collapse
|
6
|
Ren H, Elgner F, Himmelsbach K, Akhras S, Jiang B, Medvedev R, Ploen D, Hildt E. Identification of syntaxin 4 as an essential factor for the hepatitis C virus life cycle. Eur J Cell Biol 2017. [PMID: 28624237 DOI: 10.1016/j.ejcb.2017.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Although there is evidence that multivesicular bodies (MVBs) are involved in the release of hepatitis C virus (HCV), many aspects of HCV release are still not fully understood. The amount of α-taxilin that prevents SNARE (soluble N-ethylmaleimidesensitive factor attachment protein receptor) complex formation by binding to free syntaxin 4 is reduced in HCV-positive cells. Therefore, it was analyzed whether the t-SNARE protein syntaxin 4 which mediates vesicles fusion is involved in the HCV life cycle. HCV-positive cells possess an increased amount of syntaxin 4 protein, although the amount of syntaxin 4-specific transcripts is decreased in HCV-positive Huh7.5 cells and in HCV-infected primary human hepatocytes. In HCV-positive cells a significant longer half-life of syntaxin 4 was found that overcompensates for the decreased expression and leads to the elevated level of syntaxin 4. Overexpression of syntaxin 4 reduces the intracellular amount of infectious viral particles by facilitating viral release, while silencing of syntaxin 4 expression using specific siRNAs inhibits the release of HCV particles and so leads to an increase in the intracellular amount of infectious viral particles. This indicates that HCV uses a SNARE-dependent pathway for viral release. Confocal immunofluorescence microscopy revealed a colocalization of syntaxin 4 with a MVB-specific marker, exosomes and HCV core, which suggests a fraction of syntaxin 4 is associated with exosomes loaded with HCV. Altogether, it is assumed that syntaxin 4 is a novel essential cellular factor for the release of HCV.
Collapse
Affiliation(s)
- Huimei Ren
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Fabian Elgner
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | | | - Sami Akhras
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Bingfu Jiang
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Regina Medvedev
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Daniela Ploen
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Eberhard Hildt
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany; DZIF-German Center for Infection Research, Braunschweig, Germany.
| |
Collapse
|
7
|
Hagiwara-Chatani N, Shirai K, Kido T, Horigome T, Yasue A, Adachi N, Hirai Y. Membrane translocation of t-SNARE protein syntaxin-4 abrogates ground-state pluripotency in mouse embryonic stem cells. Sci Rep 2017; 7:39868. [PMID: 28057922 PMCID: PMC5216394 DOI: 10.1038/srep39868] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/28/2016] [Indexed: 02/08/2023] Open
Abstract
Embryonic stem (ES) and induced pluripotent stem (iPS) cells are attractive tools for regenerative medicine therapies. However, aberrant cell populations that display flattened morphology and lose ground-state pluripotency often appear spontaneously, unless glycogen synthase kinase 3β (GSK3β) and mitogen-activated protein kinase kinase (MEK1/2) are inactivated. Here, we show that membrane translocation of the t-SNARE protein syntaxin-4 possibly is involved in this phenomenon. We found that mouse ES cells cultured without GSK3β/MEK1/2 inhibitors (2i) spontaneously extrude syntaxin-4 at the cell surface and that artificial expression of cell surface syntaxin-4 induces appreciable morphological changes and mesodermal differentiation through dephosphorylation of Akt. Transcriptome analyses revealed several candidate elements responsible for this, specifically, an E-to P-cadherin switch and a marked downregulation of Zscan4 proteins, which are DNA-binding proteins essential for ES cell pluripotency. Embryonic carcinoma cell lines F9 and P19CL6, which maintain undifferentiated states independently of Zscan4 proteins, exhibited similar cellular behaviors upon stimulation with cell surface syntaxin-4. The functional ablation of E-cadherin and overexpression of P-cadherin reproduced syntaxin-4-induced cell morphology, demonstrating that the E- to P-cadherin switch executes morphological signals from cell surface syntaxin-4. Thus, spontaneous membrane translocation of syntaxin-4 emerged as a critical element for maintenance of the stem-cell niche.
Collapse
Affiliation(s)
- Natsumi Hagiwara-Chatani
- Department of Biomedical Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Kota Shirai
- Department of Biomedical Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Takumi Kido
- Department of Biomedical Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Tomoatsu Horigome
- Department of Biomedical Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Akihiro Yasue
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Health Biosciences, The University of Tokushima, Tokushima, Japan
| | - Naoki Adachi
- Department of Biomedical Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Yohei Hirai
- Department of Biomedical Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| |
Collapse
|
8
|
AlFadhli S, Al-Zufairi AAM, Nizam R, AlSaffar HA, Al-Mutairi N. De-regulation of diabetic regulatory genes in psoriasis: Deciphering the unsolved riddle. Gene 2016; 593:110-116. [PMID: 27530212 DOI: 10.1016/j.gene.2016.08.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/08/2016] [Accepted: 08/12/2016] [Indexed: 10/21/2022]
Abstract
The purpose of our study was to identify the currently lacking molecular mechanism that accounts for the co-occurrence of two seemingly disparate diseases: psoriasis and type II diabetes. We aimed to investigate a panel of 84 genes related to the diabetic regulatory network in psoriasis (Ps), psoriasis type II diabetes (Ps-T2D), type II diabetes (T2D) and healthy control (HC). We hypothesize that such attempts would provide novel diagnostic markers and/or insights into pathogenesis of the disease. A quantitative Real Time-PCR Human Diabetes RT(2) Profiler PCR Array was chosen to explore the expression profile 84 diabetic genes in study subjects. Statistical analysis was carried out using appropriate software. The analysis revealed three candidate genes GSK3B, PTPN1, STX4 that are differentially expressed in study subjects. GSK3B was highly significant in Ps-T2D (P=0.00018, FR=-26.6), followed by Ps (P=0.0028, FR=-14.5) and T2D groups (P=0.032, FR=-5.9). PTPN1 showed significant association only with PS-T2D (P=0.00027, FR=-8.5). STX4 showed significant association with both Ps (P=0.0002, FR=-20) and Ps-T2D (P=0.0016, FR=-11.2). ACE represents an additional marker that showed suggestive association with Ps (P=0.0079, FR=-9.37). Our study highlights the complex genetics of Ps-T2D and present biomarkers for the development of T2D in Ps cases.
Collapse
Affiliation(s)
- Suad AlFadhli
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Kuwait.
| | - Alaa A M Al-Zufairi
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Kuwait
| | - Rasheeba Nizam
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Kuwait
| | | | - Nawaf Al-Mutairi
- Department of Medicine, Faculty of Medicine, Kuwait University, Kuwait
| |
Collapse
|
9
|
Shirai K, Hagiwara N, Horigome T, Hirose Y, Kadono N, Hirai Y. Extracellularly Extruded Syntaxin-4 Binds to Laminin and Syndecan-1 to Regulate Mammary Epithelial Morphogenesis. J Cell Biochem 2016; 118:686-698. [PMID: 27463539 DOI: 10.1002/jcb.25661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/26/2016] [Indexed: 12/21/2022]
Abstract
Epithelial morphogenesis in the mammary gland proceeds as a consequence of complex cell behaviors including apoptotic cell death and epithelial-mesenchymal transition (EMT); the extracellular matrix (ECM) protein laminin is crucially involved. Syntaxins mediate intracellular vesicular fusion, yet certain plasmalemmal members have been shown to possess latent extracellular functions. In this study, the extracellular subpopulation of syntaxin-4, extruded in response to the induction of differentiation or apoptosis in mammary epithelial cells, was detected. Using a tetracycline-repressive transcriptional system and clonal mammary epithelial cells, SCp2, we found that the expression of cell surface syntaxin-4 elicits EMT-like cell behaviors. Intriguingly, these cells did not up-regulate key transcription factors associated with the canonical EMT such as snail, slug, or twist, and repressed translation of E-cadherin. Concurrently, the cells completely evaded the cellular aggregation/rounding triggered by a potent EMT blocker laminin-111. We found that the recombinant form of syntaxin-4 not only bound to laminin but also latched onto the glycosaminoglycan (GAG) side chains of syndecan-1, a laminin receptor that mediates epithelial morphogenesis. Thus, temporal extracellular extrusion of syntaxin-4 emerged as a novel regulatory element for laminin-induced mammary epithelial cell behaviors. J. Cell. Biochem. 118: 686-698, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kota Shirai
- Department of Biomedical Chemistry, Kwansei Gakuin University. 2-1, Gakuen, Sanda, 669-1337, Japan
| | - Natsumi Hagiwara
- Department of Biomedical Chemistry, Kwansei Gakuin University. 2-1, Gakuen, Sanda, 669-1337, Japan
| | - Tomoatsu Horigome
- Department of Biomedical Chemistry, Kwansei Gakuin University. 2-1, Gakuen, Sanda, 669-1337, Japan
| | - Yuina Hirose
- Department of Biomedical Chemistry, Kwansei Gakuin University. 2-1, Gakuen, Sanda, 669-1337, Japan
| | - Nanako Kadono
- Department of Biomedical Chemistry, Kwansei Gakuin University. 2-1, Gakuen, Sanda, 669-1337, Japan
| | - Yohei Hirai
- Department of Biomedical Chemistry, Kwansei Gakuin University. 2-1, Gakuen, Sanda, 669-1337, Japan
| |
Collapse
|
10
|
Kadono N, Hagiwara N, Tagawa T, Maekubo K, Hirai Y. Extracellularly Extruded Syntaxin-4 Is a Potent Cornification Regulator of Epidermal Keratinocytes. Mol Med 2015; 21:77-86. [PMID: 25611434 DOI: 10.2119/molmed.2014.00234] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/13/2015] [Indexed: 01/19/2023] Open
Abstract
In the skin epidermis, keratinocytes undergo anchorage-dependent cornification, which gives rise to stratified multilayers, each with a distinct differentiation feature. The active formation of the cornified cell envelope (CCE), an important element in the skin barrier, occurs in keratinocytes of the upper epidermal layers and impacts their terminal differentiation. In the present study, we identified the extracellularly extruded syntaxin-4 as a potent differentiation regulator of epidermal keratinocytes. We found that differentiation stimuli led to the acceleration of syntaxin-4 exposure at the keratinocyte cell surface and that the artificial control of extracellular syntaxin-4, either by the forced expression of several syntaxin-4 mutants with structural alterations at the putative functional core site (AIEPQK), or by using antagonistic circular peptides containing this core sequence, dramatically influenced the CCE formation, with spatial misexpression of TGase1 and involucrin. We also found that the topical application of a peptide that exerted the most prominent antagonistic activity for syntaxin-4, named ST4n1, evidently prevented the formation of the hyperplastic and hyperkeratotic epidermis generated by physical irritation in HR-1 mice skin. Collectively, these results demonstrate that extracellularly extruded syntaxin-4 is a potent regulator of CCE differentiation, and that ST4n1 has potential as a clinically applicable reagent for keratotic skin lesions.
Collapse
Affiliation(s)
- Nanako Kadono
- Department of Bioscience, Kwansei Gakuin University, Sanda, Japan.,Research Center for Intelligent Bio-Materials, Kwansei Gakuin University, Sanda, Japan
| | - Natsumi Hagiwara
- Department of Bioscience, Kwansei Gakuin University, Sanda, Japan.,Research Center for Intelligent Bio-Materials, Kwansei Gakuin University, Sanda, Japan
| | - Takashi Tagawa
- Department of Bioscience, Kwansei Gakuin University, Sanda, Japan
| | - Kenji Maekubo
- Department of Bioscience, Kwansei Gakuin University, Sanda, Japan
| | - Yohei Hirai
- Department of Bioscience, Kwansei Gakuin University, Sanda, Japan.,Research Center for Intelligent Bio-Materials, Kwansei Gakuin University, Sanda, Japan
| |
Collapse
|
11
|
Truchet S, Chat S, Ollivier-Bousquet M. Milk secretion: The role of SNARE proteins. J Mammary Gland Biol Neoplasia 2014; 19:119-30. [PMID: 24264376 DOI: 10.1007/s10911-013-9311-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/13/2013] [Indexed: 12/21/2022] Open
Abstract
During lactation, polarized mammary epithelial secretory cells (MESCs) secrete huge quantities of the nutrient molecules that make up milk, i.e. proteins, fat globules and soluble components such as lactose and minerals. Some of these nutrients are only produced by the MESCs themselves, while others are to a great extent transferred from the blood. MESCs can thus be seen as a crossroads for both the uptake and the secretion with cross-talks between intracellular compartments that enable spatial and temporal coordination of the secretion of the milk constituents. Although the physiology of lactation is well understood, the molecular mechanisms underlying the secretion of milk components remain incompletely characterized. Major milk proteins, namely caseins, are secreted by exocytosis, while the milk fat globules are released by budding, being enwrapped by the apical plasma membrane. Prolactin, which stimulates the transcription of casein genes, also induces the production of arachidonic acid, leading to accelerated casein transport and/or secretion. Because of their ability to form complexes that bridge two membranes and promote their fusion, SNARE (Soluble N-ethylmaleimide-Sensitive Factor Attachment Protein Receptor) proteins are involved in almost all intracellular trafficking steps and exocytosis. As SNAREs can bind arachidonic acid, they could be the effectors of the secretagogue effect of prolactin in MESCs. Indeed, some SNAREs have been observed between secretory vesicles and lipid droplets suggesting that these proteins could not only orchestrate the intracellular trafficking of milk components but also act as key regulators for both the coupling and coordination of milk product secretion in response to hormones.
Collapse
Affiliation(s)
- Sandrine Truchet
- INRA, UR1196 Génomique et Physiologie de la Lactation, 78352, Jouy-en-Josas Cedex, France,
| | | | | |
Collapse
|
12
|
Fujimoto S, Takase T, Kadono N, Maekubo K, Hirai Y. Krtap11-1, a hair keratin-associated protein, as a possible crucial element for the physical properties of hair shafts. J Dermatol Sci 2013; 74:39-47. [PMID: 24439038 DOI: 10.1016/j.jdermsci.2013.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND The physical properties of the hair are predominantly determined by the assembly of keratin bundles. The keratin-associated proteins (Krtaps) are thought to be involved in keratin bundle assembly, however, the functional role of the individual member still remains largely unknown. OBJECTIVE The aim of this study is to clarify the role of a unique class of Krtaps, Krtap11-1, in the development and physical properties of the hair. METHODS The expression regulation of Krtap11-1 was analyzed and its binding partners in the hair cortex were determined. Also, the effects of the forcible expression of this protein on the hair follicle development were analyzed in culture. RESULTS The expression pattern of Krtap11-1 was concentrically asymmetric in the faulty hair that develops in Foxn1nu mice. In cultured keratinocytes, the expression of Krtap11-1 transgene product was strictly regulated by the keratinization process and proteasome-dependent protein elimination. While the association with keratin as well as the cohesive self-assembly of Krtap11-1 appeared to be stabilized by disulfide cross-links, the biotinylated Krtap11-1 probe enabled the adherence to certain type I keratins in the hair cortex, including K31, 33 and 34, in the absence of disulfide formation. When embryonic upper lip rudiments were forcibly introduced with Krtap11-1, the hair follicles formed irregularly arranged globular hair keratin-clumps surrounded by multilayered epithelial cells in culture. CONCLUSION Krtap11-1 may play an important role on keratin-bundle assembly in the hair cortex and this study provides insight into the physical properties of the hair shaft.
Collapse
Affiliation(s)
- Shunsuke Fujimoto
- Department of Bioscience, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
| | - Takahisa Takase
- Department of Bioscience, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
| | - Nanako Kadono
- Department of Bioscience, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
| | - Kenji Maekubo
- Department of Bioscience, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
| | - Yohei Hirai
- Department of Bioscience, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan.
| |
Collapse
|
13
|
Extracellular syntaxin4 triggers the differentiation program in teratocarcinoma F9 cells that impacts cell adhesion properties. Cell Tissue Res 2013; 354:581-91. [DOI: 10.1007/s00441-013-1680-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 06/13/2013] [Indexed: 12/24/2022]
|
14
|
Shono M, Yoshioka R, Chatani Y, Hirai Y. Ectopic Expression of Syntaxin3 Affects Behaviors of B16 Melanoma by Controlling Actin Dynamics. Cell Struct Funct 2013; 38:97-107. [DOI: 10.1247/csf.12032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Michiko Shono
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University
| | - Ryosuke Yoshioka
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University
| | - Yoshimitsu Chatani
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University
| | - Yohei Hirai
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University
| |
Collapse
|