1
|
Gouda M, Ganesh CB. The influence of ghrelin agonist ipamorelin acetate on the hypothalamic-pituitary-testicular axis in a cichlid fish, Oreochromis mossambicus. Anim Reprod Sci 2024; 268:107550. [PMID: 38996787 DOI: 10.1016/j.anireprosci.2024.107550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Ghrelin, a peptide found in the brain and gut, is predicted to play a significant role in the control of various physiological systems in fish. The objective of this study was to examine the impact of ipamorelin acetate (IPA), a ghrelin agonist, on the reproductive axis of the tilapia Oreochromis mossambicus. The administration of either 5 or 30 µg of IPA for 21 days led to a significant and dose-dependent rise in food intake concomitant with a significant increase in the numbers of primary spermatocytes, secondary spermatocytes, and early spermatids compared to the control group. There was a significant rise in the number of late spermatids, as well as the areas of the lobule and lumen, in fish treated with 30 µg of IPA, compared to the control group. Moreover, there was no significant difference in the percentage of gonadotropin-releasing hormone (GnRH)-immunoreactive fibres in the hypothalamus and anterior pituitary gland across different groups. However, a significant elevation in the expression of androgen receptor protein was observed in fish treated with 30 µg of IPA. Furthermore, the concentrations of luteinizing hormone (LH) and 11-ketotestosterone (11-KT) in the serum of fish treated with either 5 or 30 µg of IPA were significantly elevated in comparison to the control group. Collectively, these findings suggest that the administration of ghrelin enhances the development of germ cells during the meiosis-I phase and that this effect might be mediated via the stimulation of 11-KT and androgen receptors at the testicular level and LH at the pituitary level in the tilapia.
Collapse
Affiliation(s)
- Mallikarjun Gouda
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad 580 003, India
| | - C B Ganesh
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad 580 003, India.
| |
Collapse
|
2
|
Carrageta DF, Pereira SC, Ferreira R, Monteiro MP, Oliveira PF, Alves MG. Signatures of metabolic diseases on spermatogenesis and testicular metabolism. Nat Rev Urol 2024; 21:477-494. [PMID: 38528255 DOI: 10.1038/s41585-024-00866-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
Diets leading to caloric overload are linked to metabolic disorders and reproductive function impairment. Metabolic and hormonal abnormalities stand out as defining features of metabolic disorders, and substantially affect the functionality of the testis. Metabolic disorders induce testicular metabolic dysfunction, chronic inflammation and oxidative stress. The disruption of gastrointestinal, pancreatic, adipose tissue and testicular hormonal regulation induced by metabolic disorders can also contribute to a state of compromised fertility. In this Review, we will delve into the effects of high-fat diets and metabolic disorders on testicular metabolism and spermatogenesis, which are crucial elements for male reproductive function. Moreover, metabolic disorders have been shown to influence the epigenome of male gametes and might have a potential role in transmitting phenotype traits across generations. However, the existing evidence strongly underscores the unmet need to understand the mechanisms responsible for transgenerational paternal inheritance of male reproductive function impairment related to metabolic disorders. This knowledge could be useful for developing targeted interventions to prevent, counteract, and most of all break the perpetuation chain of male reproductive dysfunction associated with metabolic disorders across generations.
Collapse
Affiliation(s)
- David F Carrageta
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
| | - Sara C Pereira
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Mariana P Monteiro
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
| | - Pedro F Oliveira
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Marco G Alves
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Campus de Santiago Agra do Crasto, Aveiro, Portugal.
| |
Collapse
|
3
|
George BT, Jhancy M, Dube R, Kar SS, Annamma LM. The Molecular Basis of Male Infertility in Obesity: A Literature Review. Int J Mol Sci 2023; 25:179. [PMID: 38203349 PMCID: PMC10779000 DOI: 10.3390/ijms25010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The rising incidence of obesity has coincided with rising levels of poor reproductive outcomes. The molecular basis for the association of infertility in obese males is now being explained through various mechanisms. Insulin resistance, hyperglycemia, and changes in serum and gonadal concentrations of adipokines, like leptin, adiponectin, resistin, and ghrelin have been implicated as causes of male infertility in obese males. The effects of obesity and hypogonadism form a vicious cycle whereby dysregulation of the hypothalamic-pituitary-testicular axis-due to the effect of the release of multiple mediators, thus decreasing GnRH release from the hypothalamus-causes decreases in LH and FSH levels. This leads to lower levels of testosterone, which further increases adiposity because of increased lipogenesis. Cytokines such as TNF-α and interleukins, sirtuins, and other inflammatory mediators like reactive oxygen species are known to affect fertility in obese male adults. There is evidence that parental obesity can be transferred through subsequent generations to offspring through epigenetic marks. Thus, negative expressions like obesity and infertility have been linked to epigenetic marks being altered in previous generations. The interesting aspect is that these epigenetic expressions can be reverted by removing the triggering factors. These positive modifications are also transmitted to subsequent generations.
Collapse
Affiliation(s)
- Biji Thomas George
- Department of Surgery, RAK College of Medical Sciences, RAKMHSU, Ras al Khaimah P.O. Box 11172, United Arab Emirates
| | - Malay Jhancy
- Department of Pediatrics, RAK College of Medical Sciences, RAKMHSU, Ras al Khaimah P.O. Box 11172, United Arab Emirates; (M.J.); (S.S.K.)
| | - Rajani Dube
- Department of Obstetrics and Gynecology, RAK College of Medical Sciences, RAKMHSU, Ras al Khaimah P.O. Box 11172, United Arab Emirates;
| | - Subhranshu Sekhar Kar
- Department of Pediatrics, RAK College of Medical Sciences, RAKMHSU, Ras al Khaimah P.O. Box 11172, United Arab Emirates; (M.J.); (S.S.K.)
| | - Lovely Muthiah Annamma
- Department of Clinical Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
| |
Collapse
|
4
|
The Role of the Gastric Hormones Ghrelin and Nesfatin-1 in Reproduction. Int J Mol Sci 2021; 22:11059. [PMID: 34681721 PMCID: PMC8539660 DOI: 10.3390/ijms222011059&set/a 934136356+984013925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Ghrelin and nesfatin-1 are enteroendocrine peptide hormones expressed in rat X/A-like and human P/D1cells of the gastric mucosa. Besides their effect on food intake, both peptides are also implicated in various other physiological systems. One of these is the reproductive system. This present review illustrates the distribution of ghrelin and nesfatin-1 along the hypothalamus-pituitary-gonadal (HPG) axis, their modulation by reproductive hormones, and effects on reproductive functions as well as highlighting gaps in current knowledge to foster further research.
Collapse
|
5
|
Schalla MA, Stengel A. The Role of the Gastric Hormones Ghrelin and Nesfatin-1 in Reproduction. Int J Mol Sci 2021; 22:ijms222011059. [PMID: 34681721 PMCID: PMC8539660 DOI: 10.3390/ijms222011059] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/11/2022] Open
Abstract
Ghrelin and nesfatin-1 are enteroendocrine peptide hormones expressed in rat X/A-like and human P/D1cells of the gastric mucosa. Besides their effect on food intake, both peptides are also implicated in various other physiological systems. One of these is the reproductive system. This present review illustrates the distribution of ghrelin and nesfatin-1 along the hypothalamus–pituitary–gonadal (HPG) axis, their modulation by reproductive hormones, and effects on reproductive functions as well as highlighting gaps in current knowledge to foster further research.
Collapse
Affiliation(s)
- Martha A. Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 12203 Berlin, Germany;
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 12203 Berlin, Germany;
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, 72076 Tübingen, Germany
- Correspondence:
| |
Collapse
|
6
|
Pereira SC, Crisóstomo L, Sousa M, Oliveira PF, Alves MG. Metabolic diseases affect male reproduction and induce signatures in gametes that may compromise the offspring health. ENVIRONMENTAL EPIGENETICS 2020; 6:dvaa019. [PMID: 33324496 PMCID: PMC7722800 DOI: 10.1093/eep/dvaa019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/03/2020] [Accepted: 09/15/2020] [Indexed: 05/30/2023]
Abstract
The most prevalent diseases worldwide are non-communicable such as obesity and type 2 diabetes. Noteworthy, the prevalence of obesity and type 2 diabetes is expected to steadily increase in the next decades, mostly fueled by bad feeding habits, stress, and sedentarism. The reproductive function of individuals is severely affected by abnormal metabolic environments, both at mechanical and biochemical levels. Along with mechanical dysfunctions, and decreased sperm quality (promoted both directly and indirectly by metabolic abnormalities), several studies have already reported the potentially harmful effects of metabolic disorders in the genetic and epigenetic cargo of spermatozoa, and the epigenetic inheritance of molecular signatures induced by metabolic profile (paternal diet, obesity, and diabetes). The inheritance of epigenetic factors towards the development of metabolic abnormalities means that more people in reproductive age can potentially suffer from these disorders and for longer periods. In its turn, these individuals can also transmit this (epi)genetic information to future generations, creating a vicious cycle. In this review, we collect the reported harmful effects related to acquired metabolic disorders and diet in sperm parameters and male reproductive potential. Besides, we will discuss the novel findings regarding paternal epigenetic inheritance, particularly the ones induced by paternal diet rich in fats, obesity, and type 2 diabetes. We analyze the data attained with in vitro and animal models as well as in long-term transgenerational population studies. Although the findings on this topic are very recent, epigenetic inheritance of metabolic disease has a huge societal impact, which may be crucial to tackle the 'fat epidemic' efficiently.
Collapse
Affiliation(s)
- Sara C Pereira
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Luís Crisóstomo
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Mário Sousa
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Pedro F Oliveira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Marco G Alves
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
7
|
Wang Y, Cao L, Liu X. Ghrelin alleviates endoplasmic reticulum stress and inflammation-mediated reproductive dysfunction induced by stress. J Assist Reprod Genet 2019; 36:2357-2366. [PMID: 31650454 DOI: 10.1007/s10815-019-01589-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/11/2019] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Psychological stress exists widely in modern society and results in the disruption of testicular tight junctions, germ cell apoptosis, and the disorder of fertility hormones and even causes infertility. Ghrelin (GHRL), a 28-amino acid peptide secreted mainly by the stomach and pancreas, has been reported to alleviate male reproductive injury through inhibiting apoptosis. However, whether GHRL has a beneficial effect on psychological stress-induced testicular injury and the possible mechanisms remain poorly understood. METHODS Male mice were immobilized in Decapicone bags for 3 h daily for 14 days treated with or without GHRL (i.p. 100 mg/kg body weight). Body weight and testicular weight were measured. Histological alterations and apoptosis were examined by H.E. staining and TUNEL staining, respectively. The expression of endoplasmic reticulum (ER) stress markers, inflammatory cytokines, Toll-like receptor 4 (TLR4), and nuclear factor-κB (NF-κB) in the testes was investigated. RESULTS Exposure to stress caused testicular histological alterations, an elevation of the Johnsen score, and germ cell apoptosis, while GHRL partially alleviated the adverse effects. The expression of ER stress marker proteins, including GRP78, CHOP, ATF6, p-JNK, and XBP-1, was upregulated in the stress group; however, GHRL treatment significantly suppressed the activation of ER stress in the testes. GHRL also inhibited the expression of TNF-α, IL-1β, IL-6, IL-10, TLR4, and NF-κB. CONCLUSIONS GHRL alleviated testicular injury induced by ER stress and inflammation which is associated with the TLR4/NF-κB signaling pathway, and these findings may provide a novel strategy for preventing and treating reproductive dysfunction.
Collapse
Affiliation(s)
- Yueying Wang
- Department of Reproductive Medicine, Jining First People's Hospital, No. 6, Jiankang Road, Rencheng District, 272000, Jining, People's Republic of China
| | - Longqiao Cao
- Department of Reproductive Medicine, Jining First People's Hospital, No. 6, Jiankang Road, Rencheng District, 272000, Jining, People's Republic of China
| | - Xiaoran Liu
- Institute of Precision and Medicine, Jining Medical University, No. 133, Hehua Road, Rencheng District, 272067, Jining, People's Republic of China.
| |
Collapse
|
8
|
Elsayed HYA, Borroto ET, Pliego AB, Dibarrat JA, Ramirez FR, Chagoyán JCV, Salas NP, Diaz-Albiter H. Sperm Quality in Mouse After Exposure to Low Doses of TCDD. Curr Top Med Chem 2019; 19:931-943. [DOI: 10.2174/1568026619666190520090132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/05/2018] [Accepted: 03/27/2019] [Indexed: 02/07/2023]
Abstract
Background:
In the last decade, the harmful use of dioxin has been demonstrated in human
health and in the whole environment. It is well known among scientists that 2, 3, 7, 8-tetrachloro
dibenzo-p-dioxin (TCDD) is an environmental pollutant that causes endocrine disruption, which causes
male reproductive toxicity.
Objective:
The objective of the present study was to evaluate the toxicity effect of low doses of TCDD
in male CD1 mice.
Materials and Methods:
Three concentrations of TCDD (0.375, 0.75, 1.5 mg / kg) were analyzed and
the effects on spermatozoa were evaluated 10 days after oral administration of the product. As
bioindicators of TCDD toxicity, an exhaustive analysis of several spermatic parameters including
motility, vitality, count, morphology and viability, flow cytometry was used to determine the affected
sperm population by cytotoxicity and apoptosis. In addition, a morphometric analysis of testicles was
performed.
Results:
The results show that the body weight of the treated animals was reduced in medium and high
doses (0.75, 1.5 mg / kg) with respect to the control groups. In the groups treated with TCDD, the
abnormal head of the sperm increased by 52.5% more than the control group. Significant differences in
apoptosis were observed between the negative control and vehicle control, including the median dose
(0.75 mg / kg).
Conclusion:
It is concluded that at these low doses there was an impact on the quality of the mouse
sperm, adding an effect on apoptosis and cytotoxicity of sperm exposed to these doses of TCDD.
Collapse
Affiliation(s)
- Heba Yehia Anwar Elsayed
- Centro de Investigacion y Estudios Avanzados de Salud Animal, Facultad de Medicina Veterinaria y Zootecnia Universidad Autonoma del Estado de Mexico, Toluca, Mexico
| | - Esvieta Tenorio Borroto
- Centro de Investigacion y Estudios Avanzados de Salud Animal, Facultad de Medicina Veterinaria y Zootecnia Universidad Autonoma del Estado de Mexico, Toluca, Mexico
| | - Alberto Barbabosa Pliego
- Centro de Investigacion y Estudios Avanzados de Salud Animal, Facultad de Medicina Veterinaria y Zootecnia Universidad Autonoma del Estado de Mexico, Toluca, Mexico
| | - Jorge Acosta Dibarrat
- Centro de Investigacion y Estudios Avanzados de Salud Animal, Facultad de Medicina Veterinaria y Zootecnia Universidad Autonoma del Estado de Mexico, Toluca, Mexico
| | | | - Juan Carlos Vázquez Chagoyán
- Centro de Investigacion y Estudios Avanzados de Salud Animal, Facultad de Medicina Veterinaria y Zootecnia Universidad Autonoma del Estado de Mexico, Toluca, Mexico
| | - Nazario Pescador Salas
- Centro de Investigacion y Estudios Avanzados de Salud Animal, Facultad de Medicina Veterinaria y Zootecnia Universidad Autonoma del Estado de Mexico, Toluca, Mexico
| | - Hector Diaz-Albiter
- Universidad Tecnologica del Valla de Toluca, Estado de Mexico, Toluca, Mexico
| |
Collapse
|
9
|
Asadi N, Kheradmand A, Gholami M, Moradi FH. Effect of ghrelin on the biochemical and histopathology parameters and spermatogenesis cycle following experimental varicocele in rat. Andrologia 2018; 50:e13106. [DOI: 10.1111/and.13106] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/21/2018] [Accepted: 06/11/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Nematollah Asadi
- Razi Herbal Medicines Research Center; Lorestan University of Medical Sciences; Khorramabad Iran
- Animal Science Research Institute (ASRI); Jihad-e-Agriculture Ministry; Karaj Iran
| | - Arash Kheradmand
- Department of Clinical Sciences, School of Veterinary Medicine; Lorestan University; Khorramabad Iran
| | | | - Forouzan Hadipour Moradi
- Razi Herbal Medicines Research Center; Lorestan University of Medical Sciences; Khorramabad Iran
| |
Collapse
|
10
|
Cardoso AM, Alves MG, Mathur PP, Oliveira PF, Cavaco JE, Rato L. Obesogens and male fertility. Obes Rev 2017; 18:109-125. [PMID: 27776203 DOI: 10.1111/obr.12469] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/04/2016] [Accepted: 08/15/2016] [Indexed: 12/28/2022]
Abstract
In the last decades, several studies evidenced a decrease in male fertility in developed countries. Although the aetiology of this trend in male reproductive health remains a matter of debate, environmental compounds that predispose to weight gain, namely obesogens, are appointed as contributors because of their action as endocrine disruptors. Obesogens favour adipogenesis by an imbalance of metabolic processes and can be found virtually everywhere. These compounds easily accumulate in tissues with high lipid content. Obesogens change the functioning of male reproductive axis, and, consequently, the testicular physiology and metabolism that are pivotal for spermatogenesis. The disruption of these tightly regulated metabolic pathways leads to adverse reproductive outcomes. Notably, adverse effects of obesogens may also promote disturbances in the metabolic performance of the following generations, through epigenetic modifications passed by male gametes. Thus, unveiling the molecular pathways by which obesogens induce toxicity that may end up in epigenetic modifications is imperative. Otherwise, a transgenerational susceptibility to metabolic diseases may be favoured. We present an up-to-date overview of the impact of obesogens on testicular physiology, with a particular focus on testicular metabolism. We also address the effects of obesogens on male reproductive parameters and the subsequent consequences for male fertility.
Collapse
Affiliation(s)
- A M Cardoso
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Covilhã, Portugal
| | - M G Alves
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Covilhã, Portugal
| | - P P Mathur
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, India.,KIIT University, Bhubaneswar, India
| | - P F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal.,i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - J E Cavaco
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Covilhã, Portugal
| | - L Rato
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
11
|
Martins AD, Sá R, Monteiro MP, Barros A, Sousa M, Carvalho RA, Silva BM, Oliveira PF, Alves MG. Ghrelin acts as energy status sensor of male reproduction by modulating Sertoli cells glycolytic metabolism and mitochondrial bioenergetics. Mol Cell Endocrinol 2016; 434:199-209. [PMID: 27392494 DOI: 10.1016/j.mce.2016.07.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/04/2016] [Accepted: 07/04/2016] [Indexed: 02/06/2023]
Abstract
Ghrelin is a growth hormone-releasing peptide that has been suggested to interfere with spermatogenesis, though the underling mechanisms remain unknown. We studied the effect of ghrelin in human Sertoli cells (hSCs) metabolic phenotype. For that, hSCs were exposed to increasing concentrations of ghrelin (20, 100 and 500 pM) mimicking the levels reported in obese, normal weight, and severely undernourished individuals. The metabolite production/consumption was determined. The protein levels of key glycolysis-related transporters and enzymes were assessed. The lactate dehydrogenase (LDH) activity was measured. Mitochondrial complexes protein levels and mitochondria membrane potential were also measured. We showed that hSCs express the growth hormone secretagogue receptor. At the concentration present in the plasma of normal weight men, ghrelin caused a decrease of glucose consumption and mitochondrial membrane potential in hSCs, though LDH activity and lactate production remained unchanged, illustrating an alteration of glycolytic flux efficiency. Exposure of hSCs to levels of ghrelin found in the plasma of severely undernourished individuals decreased pyruvate consumption and mitochondrial complex III protein expression. All concentrations of ghrelin decreased alanine and acetate production by hSCs. Notably, the effects of ghrelin levels found in severely undernourished individuals were more pronounced in hSCs metabolic phenotype highlighting the importance of a proper eating behavior to maintain male reproductive potential. In conclusion, ghrelin acts as an energy status sensor for hSCs in a dose-dependent manner, showing an inverse association with the production of lactate, thus controlling the nutritional support of spermatogenesis.
Collapse
Affiliation(s)
- A D Martins
- Department of Microscopy, Laboratory of Cell Biology, Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, 4050-313, Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Institute of Biomedical Sciences (UMIB-ICBAS), University of Porto, 4050-313, Porto, Portugal
| | - R Sá
- Department of Microscopy, Laboratory of Cell Biology, Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, 4050-313, Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Institute of Biomedical Sciences (UMIB-ICBAS), University of Porto, 4050-313, Porto, Portugal
| | - M P Monteiro
- Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Institute of Biomedical Sciences (UMIB-ICBAS), University of Porto, 4050-313, Porto, Portugal; Department of Anatomy, Abel Salazar Institute of Biomedical Sciences, ICBAS, University of Porto, 4050-313, Porto, Portugal
| | - A Barros
- Centre for Reproductive Genetics Professor Alberto Barros, 4100-009, Porto, Portugal; Department of Genetics, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - M Sousa
- Department of Microscopy, Laboratory of Cell Biology, Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, 4050-313, Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Institute of Biomedical Sciences (UMIB-ICBAS), University of Porto, 4050-313, Porto, Portugal; Centre for Reproductive Genetics Professor Alberto Barros, 4100-009, Porto, Portugal
| | - R A Carvalho
- Department of Life Sciences, Faculty of Sciences and Technology and Center for Neurosciences and Cell Biology (CNC), University of Coimbra, 3004-504, Coimbra, Portugal
| | - B M Silva
- Health Sciences Research Centre (CICS), University of Beira Interior, 6201-506, Covilhã, Portugal
| | - P F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, 4050-313, Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Institute of Biomedical Sciences (UMIB-ICBAS), University of Porto, 4050-313, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - M G Alves
- Department of Life Sciences, Faculty of Sciences and Technology and Center for Neurosciences and Cell Biology (CNC), University of Coimbra, 3004-504, Coimbra, Portugal; Health Sciences Research Centre (CICS), University of Beira Interior, 6201-506, Covilhã, Portugal.
| |
Collapse
|
12
|
Garcia JM, Chen JA, Guillory B, Donehower LA, Smith RG, Lamb DJ. Ghrelin Prevents Cisplatin-Induced Testicular Damage by Facilitating Repair of DNA Double Strand Breaks Through Activation of p53 in Mice. Biol Reprod 2015; 93:24. [PMID: 26019260 DOI: 10.1095/biolreprod.115.129759] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 05/22/2015] [Indexed: 12/20/2022] Open
Abstract
Cisplatin administration induces DNA damage resulting in germ cell apoptosis and subsequent testicular atrophy. Although 50 percent of male cancer patients receiving cisplatin-based chemotherapy develop long-term secondary infertility, medical treatment to prevent spermatogenic failure after chemotherapy is not available. Under normal conditions, testicular p53 promotes cell cycle arrest, which allows time for DNA repair and reshuffling during meiosis. However, its role in the setting of cisplatin-induced infertility has not been studied. Ghrelin administration ameliorates the spermatogenic failure that follows cisplatin administration in mice, but the mechanisms mediating these effects have not been well established. The aim of the current study was to characterize the mechanisms of ghrelin and p53 action in the testis after cisplatin-induced testicular damage. Here we show that cisplatin induces germ cell damage through inhibition of p53-dependent DNA repair mechanisms involving gamma-H2AX and ataxia telangiectasia mutated protein kinase. As a result, testicular weight and sperm count and motility were decreased with an associated increase in sperm DNA damage. Ghrelin administration prevented these sequelae by restoring the normal expression of gamma-H2AX, ataxia telangiectasia mutated, and p53, which in turn allows repair of DNA double stranded breaks. In conclusion, these findings indicate that ghrelin has the potential to prevent or diminish infertility caused by cisplatin and other chemotherapeutic agents by restoring p53-dependent DNA repair mechanisms.
Collapse
Affiliation(s)
- Jose M Garcia
- Division of Endocrinology, Diabetes and Metabolism, MCL, Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Department of Medicine, Baylor College of Medicine, Houston, Texas Center for Reproductive Medicine, Baylor College of Medicine, Houston, Texas Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
| | - Ji-an Chen
- Division of Endocrinology, Diabetes and Metabolism, MCL, Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Department of Medicine, Baylor College of Medicine, Houston, Texas Department of Health Education, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Bobby Guillory
- Division of Endocrinology, Diabetes and Metabolism, MCL, Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Department of Medicine, Baylor College of Medicine, Houston, Texas Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
| | - Lawrence A Donehower
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Roy G Smith
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas Huffington Center on Aging, Baylor College of Medicine, Houston, Texas Department of Metabolism and Aging, The Scripps Research Institute Florida, Jupiter, Florida
| | - Dolores J Lamb
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, Texas Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas Scott Department of Urology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
13
|
Rato L, Alves MG, Cavaco JE, Oliveira PF. High-energy diets: a threat for male fertility? Obes Rev 2014; 15:996-1007. [PMID: 25346452 DOI: 10.1111/obr.12226] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/26/2014] [Accepted: 08/26/2014] [Indexed: 12/18/2022]
Abstract
Male fertility is declining in developed countries, as well as in developing countries. External factors linked to lifestyle, such as eating disorders, negatively affect spermatogenesis, both at central and gonadal levels. The overconsumption of high-energy diets (HED) alters the functioning of the male reproductive axis and consequently affects the testicular physiology, disrupting its metabolism and bioenergetic capacity. Testicular metabolism presents unique characteristics, partly because of its cellular heterogeneity and to the specific functions that each cell type plays within the testicular environment. Disruption of the tightly regulated metabolic pathways leads to adverse reproductive outcomes, such as inefficient energy supply to germ cells, sperm defects or spermatogenesis arrest. Testicular metabolic alterations induced by HED intake may also lead to mitochondrial dysfunction, which is closely associated to reactive oxygen species (ROS) overproduction and oxidative stress. ROS easily target spermatozoa DNA and lipids, contributing to decreased sperm quality. Thus, understanding the detrimental effects of HED overconsumption on the pathways underlying testicular metabolism and sperm production is imperative; otherwise, one may favour a transgenerational amplification of subfertility. Herein, we present an up-to-date overview of the effects of HED on testicular metabolism, sperm parameters and the subsequent consequences for male fertility.
Collapse
Affiliation(s)
- L Rato
- CICS - UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | | | | | | |
Collapse
|
14
|
Crujeiras AB, Casanueva FF. Obesity and the reproductive system disorders: epigenetics as a potential bridge. Hum Reprod Update 2014; 21:249-61. [DOI: 10.1093/humupd/dmu060] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
15
|
Kheradmand A, Dezfoulian O, Alirezaei M. Ghrelin is a Regulator of Cellular Apoptosis and Proliferation in the Rat Ovary. Int J Pept Res Ther 2014. [DOI: 10.1007/s10989-014-9394-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
16
|
Comninos AN, Jayasena CN, Dhillo WS. The relationship between gut and adipose hormones, and reproduction. Hum Reprod Update 2013; 20:153-74. [PMID: 24173881 DOI: 10.1093/humupd/dmt033] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Reproductive function is tightly regulated by nutritional status. Indeed, it has been well described that undernutrition or obesity can lead to subfertility or infertility in humans. The common regulatory pathways which control energy homeostasis and reproductive function have, to date, been poorly understood due to limited studies or inconclusive data. However, gut hormones and adipose tissue hormones have recently emerged as potential regulators of both energy homeostasis and reproductive function. METHODS A PubMed search was performed using keywords related to gut and adipose hormones and associated with keywords related to reproduction. RESULTS Currently available evidence that gut (ghrelin, obestatin, insulin, peptide YY, glucagon-like peptide-1, glucose-dependent insulinotropic peptide, oxyntomodulin, cholecystokinin) and adipose hormones (leptin, adiponectin, resistin, omentin, chemerin) interact with the reproductive axis is presented. The extent, site and direction of their effects on the reproductive axis are variable and also vary depending on species, sex and pubertal stage. CONCLUSIONS Gut and adipose hormones interact with the reproductive axis as well as with each other. While leptin and insulin have stimulatory effects and ghrelin has inhibitory effects on hypothalamic GnRH secretion, there is increasing evidence for their roles in other sites of the reproductive axis as well as evidence for the roles of other gut and adipose hormones in the complex interplay between nutrition and reproduction. As our understanding improves, so will our ability to identify and design novel therapeutic options for reproductive disorders and accompanying metabolic disorders.
Collapse
Affiliation(s)
- Alexander N Comninos
- Department of Investigative Medicine, Imperial College London, 6th Floor Commonwealth Building, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | | | | |
Collapse
|
17
|
Coskun ZM, Sacan O, Karatug A, Turk N, Yanardag R, Bolkent S, Bolkent S. Regulation of oxidative stress and somatostatin, cholecystokinin, apelin gene expressions by ghrelin in stomach of newborn diabetic rats. Acta Histochem 2013; 115:740-7. [PMID: 23566555 DOI: 10.1016/j.acthis.2013.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 02/22/2013] [Accepted: 02/27/2013] [Indexed: 12/16/2022]
Abstract
The aim of the study was to determine whether ghrelin treatment has a protective effect on gene expression and biochemical changes in the stomach of newborn streptozotocin (STZ) induced diabetic rats. In this study, four groups of Wistar rats were used: control, ghrelin control, diabetic and diabetic+ghrelin. The rats were sacrificed after four weeks of treatment for diabetes. The gene expressions of: somatostatin, cholecystokinin, apelin and the altered active caspase-3, active caspase-8, proliferating cell nuclear antigen, were investigated in the pyloric region of the stomach and antioxidant parameters were measured in all the stomach. Although ghrelin treatment to diabetic rats lowered the stomach lipid peroxidation levels, the stomach glutathione levels were increased. Exogenous ghrelin caused an increased activities of stomach catalase, superoxide dismutase, glutathione reductase and glutathione peroxidase in diabetic rats. Numbers of somatostatin, cholecystokinin and proliferating cell nuclear antigen immunoreactive cells decreased in the diabetic+ghrelin group compared to the diabetic group. Apelin mRNA expressions were remarkably less in the diabetic+ghrelin rats than in diabetic rats. The results may indicate that ghrelin treatment has a protective effect to some extent on the diabetic rats. This protection is possibly accomplished through the antioxidant activity of ghrelin observed in type 2 diabetes. Consequently exogenous ghrelin may be a candidate for therapeutic treatment of diabetes.
Collapse
|
18
|
Aly HAA. Aroclor 1254 induced oxidative stress and mitochondria mediated apoptosis in adult rat sperm in vitro. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:274-283. [PMID: 23686007 DOI: 10.1016/j.etap.2013.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/13/2013] [Accepted: 04/16/2013] [Indexed: 06/02/2023]
Abstract
Aroclor 1254, a commercial mixture of highly toxic environmental pollutant, is known to cause testicular toxicity. The present study was undertaken to delineate and elucidate the nature and the mechanism of action of Aroclor 1254 on rat sperm in vitro. Sperm of adult rat were incubated with 10(-9)M, 10(-8)M or 10(-7)M of Aroclor 1254 for 3h. Sperm motility was significantly decreased. Moreover, sperm viability, acrosome reaction and mitochondrial membrane potential (Δψm) were significantly decreased in a dose-related pattern. DNA integrity was significantly decreased at 10(-8)M and 10(-7)M of Aroclor 1254, while it did not show any significant change at 10(-9)M. Aroclor 1254 induced downstream events included cytochrome c release and caspase-3 activation, in a dose-related manner. ATP content was decreased while protein carbonyl content was significantly increased in a dose-related manner. The oxidative stress status was also assessed. Hydrogen peroxide (H2O2) production and lipid peroxidation (LPO) were significantly increased in a dose-related pattern. The antioxidant enzymes SOD, CAT and GPx were significantly decreased, while at a concentration of 10(-9)M of Aroclor 1254, GR activity did not show any significant change. The non-enzymatic antioxidant (GSH) was significantly decreased in a dose-dependent manner. In conclusion; our data clearly show that Aroclor 1254 induces toxicity, oxidative stress and culminating in mitochondria mediated apoptosis in rat sperm.
Collapse
Affiliation(s)
- Hamdy A A Aly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt.
| |
Collapse
|
19
|
Zhu CC, Zhang H, Zhang JS, Li Z, Zhao J, Li W, Zhang YQ. Inhibition of ghrelin signaling improves the reproductive phenotype of male ob/ob mouse. Fertil Steril 2012; 99:918-26. [PMID: 23232360 DOI: 10.1016/j.fertnstert.2012.11.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 11/12/2012] [Accepted: 11/12/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To investigate whether ghrelin signaling is involved in the pathogenesis of male factor infertility induced by leptin deficiency. DESIGN Experimental study. SETTING University academic medical center. ANIMAL(S) Ten-week-old C57BL/6J mice and ob/ob mice. INTERVENTION(S) Western blotting, (quantitative) reverse transcription-polymerase chain reaction (qRT-PCR), immunohistochemistry, and in situ end labeling of fragmented DNA. MAIN OUTCOME MEASURE(S) Expression levels of ghrelin and its functional receptor growth hormone (GH) secretagogue receptor 1a (GHS-R1α) were examined by Western blotting and immunohistochemistry. Ob/ob mice were injected IP with specific GHS-R1α antagonist, and thereafter germ cell apoptosis and steroidogenic capability were assessed by TUNEL assay, (q) RT-PCR, and radioimmunoassay. RESULT(S) Expression of GHS-R1α and its endogenous ligand ghrelin was both up-regulated in ob/ob testis. Inhibition of the ghrelin pathway restored androgen synthesis, reduced germ cell apoptosis, and thereby resulted in improved sperm production in ob/ob mice. CONCLUSION(S) Ghrelin, as an antagonistic partner of leptin in the endocrinic/paracrine circuit, may be involved in the pathogenesis of male factor infertility induced by leptin deficiency.
Collapse
Affiliation(s)
- Chu-Chao Zhu
- Department of Human Anatomy and Histology and Embryology, the Fourth Military Medical University, Xian, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
20
|
Alirezaei M, Niknam P, Jelodar G. Betaine Elevates Ovarian Antioxidant Enzyme Activities and Demonstrates Methyl Donor Effect in Non-Pregnant Rats. Int J Pept Res Ther 2012; 18:281-290. [DOI: 10.1007/s10989-012-9300-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|