1
|
McCullough A, Huang S, Weber MM. Pathogenicity and virulence of Chlamydia trachomatis: Insights into host interactions, immune evasion, and intracellular survival. Virulence 2025; 16:2503423. [PMID: 40353442 DOI: 10.1080/21505594.2025.2503423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/22/2025] [Accepted: 05/03/2025] [Indexed: 05/14/2025] Open
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen and the leading cause of bacterial sexually transmitted infections and infectious blindness worldwide. All Chlamydia species share a unique biphasic developmental cycle, alternating between infectious elementary bodies (EBs) and replicative reticulate bodies (RBs). The pathogenesis of C. trachomatis is driven by a sophisticated arsenal of adhesins, conventional type III secretion system effector proteins, and inclusion membrane proteins that subvert host cellular processes to establish infection and promote survival. In this review, we highlight the molecular mechanisms underlying C. trachomatis infection, focusing on key stages of its developmental cycle, including adhesion, invasion, replication, and egress. We delve into its interactions with host cytoskeletal structures, immune signaling pathways, and intracellular trafficking systems, as well as its strategies for immune evasion and persistence. Understanding these mechanisms offers critical insights into C. trachomatis pathogenesis and identifies promising avenues for therapeutic and vaccine development.
Collapse
Affiliation(s)
- Alix McCullough
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Steven Huang
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Mary M Weber
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
2
|
McCullough A, Jabeena CA, Huang S, Steiert B, Faris R, Weber MM. Chlamydia trachomatis TmeA promotes pedestal-like structure formation through N-WASP and TOCA-1 interactions. mSphere 2025:e0010125. [PMID: 40231845 DOI: 10.1128/msphere.00101-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 03/16/2025] [Indexed: 04/16/2025] Open
Abstract
Chlamydia trachomatis (C.t.) is the causative agent of several human diseases, including the sexually transmitted infection chlamydia and the eye infection trachoma. As an obligate intracellular bacterial pathogen, invasion is critical for establishing infection and subsequent pathogenesis. During invasion, C.t. secretes effector proteins via its type III secretion system (T3SS), which manipulate host actin cytoskeletal regulation to promote bacterial entry. Previous studies identified the T3SS effector protein TmeA as a key factor in C.t. invasion, as it recruits and activates N-WASP. This interaction, in turn, activates the Arp2/3 complex, driving cytoskeletal rearrangements at the invasion site to drive C.t. uptake. In this study, we define the role of the N-WASP CRIB domain in mediating this interaction and demonstrate that TmeA functions as a mimic of Cdc42 as part of its established role in activating N-WASP. Additionally, we identified TOCA-1 as another host protein that directly interacts with TmeA. In other bacterial pathogens, notably an enterohemorrhagic E. coli, N-WASP and TOCA-1 are hijacked to mediate pedestal formation. Using siRNA-mediated knockdown of N-WASP and TOCA-1, followed by transmission electron microscopy, we found that both proteins are important for C.t.-mediated pedestal-like structure formation. Collectively, these findings expand our understanding of the intricacies of C.t. invasion, highlighting how TmeA-mediated interactions with N-WASP and TOCA-1 contribute to pedestal-like structure formation, which may represent an early step in C.t. infection. IMPORTANCE Chlamydia trachomatis (C.t.) is an obligate intracellular bacterial pathogen that poses a significant threat to human health, being associated with various diseases, including chlamydia-the most prevalent bacterial sexually transmitted infection-and trachoma. Although often asymptomatic, chlamydia infections can lead to severe complications, such as infertility, ectopic pregnancy, and an increased risk of cervical and ovarian cancers. As an intracellular pathogen, host cell invasion is critical for C.t. survival and pathogenesis. In this study, we provide new insights into the interactions between the C.t. invasion effector protein TmeA and the host proteins N-WASP and TOCA-1, revealing that both host proteins are involved in pedestal-like structure formation during early stages of C.t. infection. These findings deepen our understanding of the mechanisms underlying TmeA-mediated host cell invasion and highlight a key pathway contributing to C.t.-mediated pathogenesis.
Collapse
Affiliation(s)
- Alix McCullough
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - C A Jabeena
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Steve Huang
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Brianna Steiert
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Robert Faris
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Mary M Weber
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
3
|
Zimmerman TJ, Carabeo RA. Chlamydia trachomatis invasion: a duet of effectors. Biochem Soc Trans 2025; 0:BST20240800. [PMID: 40131835 DOI: 10.1042/bst20240800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025]
Abstract
Members of the genus Chlamydia require an intracellular niche for growth and replication, thus highlighting the extreme significance of its ability to invade epithelial cells-the favored host cell in vivo. Because epithelial cells are not phagocytic, the uptake of Chlamydia must be driven by the pathogen. To this end, two bacterial proteins, translocated actin-recruiting protein (TarP) and translocated membrane effector A (TmeA), identified in Chlamydia trachomatis are translocated from the infectious chlamydial elementary bodies to the host cell cytosol to facilitate extensive remodeling of the cortical actin network to produce protrusive structures designed for pathogen engulfment. Notably, both effectors act by promoting highly localized actin nucleation at sites of bacterial adhesion. However, they have non-redundant functions, with both required for optimal actin remodeling dynamics and efficient invasion. Finally, these effectors also mediate the latter stages of the invasion process, specifically by modulating host dynamin 2, a large GTPase critical to closure and scission of invaginating vesicles harboring elementary bodies. In summary, TarP and TmeA orchestrate major aspects of C. trachomatis invasion.
Collapse
Affiliation(s)
- Tyler J Zimmerman
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska 68198, U.S.A
| | - Rey A Carabeo
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska 68198, U.S.A
| |
Collapse
|
4
|
McCullough A, Jabeena CA, Steiert B, Faris R, Weber MM. Chlamydia trachomatis TmeA promotes pedestal formation through N-WASP and TOCA-1 interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621191. [PMID: 39554107 PMCID: PMC11565925 DOI: 10.1101/2024.10.31.621191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Chlamydia trachomatis (C.t.) is the causative agent of several human diseases, including the sexually transmitted infection chlamydia and eye infection trachoma. As an obligate intracellular bacterial pathogen, invasion is essential for establishing infection and subsequent pathogenesis. To facilitate invasion, C.t. secretes effector proteins through its type III secretion system (T3SS). These effectors facilitate bacterial entry by manipulating multiple pathways involved in host actin cytoskeletal regulation. Previous studies have demonstrated that the T3SS effector protein TmeA is crucial for C.t. invasion, as it recruits and activates N-WASP. This interaction leads to recruitment and activation of the Arp2/3 complex, promoting cytoskeletal rearrangements at the invasion site to facilitate C.t. uptake. In this study, we define the role of the N-WASP CRIB domain in mediating this interaction, showing that TmeA acts as a functional mimic of Cdc42 in activating N-WASP. Additionally, we identified TOCA-1 as another host protein that directly interacts with TmeA. In other bacterial pathogens, notably Enterohemorrhagic E. coli, N-WASP and TOCA-1 are hijacked to mediate pedestal formation. Using siRNA to knockdown N-WASP and TOCA-1, followed by transmission electron microscopic, we observed that both N-WASP and TOCA-1 are important for in C.t.-mediated pedestal formation. Collectively, these findings reveal a unique mechanism of TmeA-mediated invasion, where direct interactions with N-WASP and TOCA-1 facilitate pedestal formation.
Collapse
Affiliation(s)
- Alix McCullough
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - C A Jabeena
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Brianna Steiert
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Robert Faris
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Mary M Weber
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
5
|
Yang S, Zeng J, Yu J, Sun R, Tuo Y, Bai H. Insights into Chlamydia Development and Host Cells Response. Microorganisms 2024; 12:1302. [PMID: 39065071 PMCID: PMC11279054 DOI: 10.3390/microorganisms12071302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/15/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Chlamydia infections commonly afflict both humans and animals, resulting in significant morbidity and imposing a substantial socioeconomic burden worldwide. As an obligate intracellular pathogen, Chlamydia interacts with other cell organelles to obtain necessary nutrients and establishes an intracellular niche for the development of a biphasic intracellular cycle. Eventually, the host cells undergo lysis or extrusion, releasing infectious elementary bodies and facilitating the spread of infection. This review provides insights into Chlamydia development and host cell responses, summarizing the latest research on the biphasic developmental cycle, nutrient acquisition, intracellular metabolism, host cell fates following Chlamydia invasion, prevalent diseases associated with Chlamydia infection, treatment options, and vaccine prevention strategies. A comprehensive understanding of these mechanisms will contribute to a deeper comprehension of the intricate equilibrium between Chlamydia within host cells and the progression of human disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Hong Bai
- Tianjin Key Laboratory of Cellular and Molecular Immunology (The Educational Ministry of China), Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; (S.Y.); (J.Z.); (J.Y.); (R.S.); (Y.T.)
| |
Collapse
|
6
|
Bastidas RJ, Valdivia RH. The emerging complexity of Chlamydia trachomatis interactions with host cells as revealed by molecular genetic approaches. Curr Opin Microbiol 2023; 74:102330. [PMID: 37247566 PMCID: PMC10988583 DOI: 10.1016/j.mib.2023.102330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023]
Abstract
Chlamydia trachomatis (Ct) is an intracellular bacterial pathogen that relies on the activity of secreted proteins known as effectors to promote replication and avoidance of immune clearance. Understanding the contribution of Ct effectors to pathogenesis has proven to be challenging, given that these proteins often perform multiple functions during intracellular infection. Recent advances in molecular genetic analysis of Ct have provided valuable insights into the multifaceted nature of secreted effector proteins and their impact on the interaction between Ct and host cells and tissues. This review highlights significant findings from genetic analysis of Ct effector functions, shedding light on their diverse roles. We also discuss the challenges faced in this field of study and explore potential opportunities for further research.
Collapse
Affiliation(s)
- Robert J Bastidas
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Raphael H Valdivia
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
7
|
Scanlon KR, Keb G, Wolf K, Jewett TJ, Fields KA. Chlamydia trachomatis TmeB antagonizes actin polymerization via direct interference with Arp2/3 activity. Front Cell Infect Microbiol 2023; 13:1232391. [PMID: 37483386 PMCID: PMC10360934 DOI: 10.3389/fcimb.2023.1232391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen that actively promotes invasion of epithelial cells. A virulence-associated type III secretion system contributes to chlamydial entry and at least four effectors have been described that are deployed during this time. Two of these invasion-related effectors, the translocated membrane-associated effectors A and B (TmeA and TmeB), are encoded in a bi-cistronic operon. TmeA directly activates host N-WASP to stimulate Arp2/3-dependent actin polymerization. According to current working models, TmeA-mediated N-WASP activation contributes to invasion. TmeB has not been functionally characterized. Unlike a tmeA null strain, loss of tmeB does not impact invasion efficiency of C. trachomatis. Using strains deficient for multiple genes, we provide evidence that TmeA is dispensable for invasion in the absence of TmeB. Our data indicate that overabundance of TmeB interferes with invasion and that this activity requires active Arp2/3 complex. We further show that TmeB is capable of interfering with Arp2/3-mediated actin polymerization. In aggregate, these data point to opposing functions for TmeA and TmeB that manifest during the invasion process. These studies raise intriguing questions regarding the dynamic interplay between TmeA, TmeB, and branched actin polymerization during chlamydial entry.
Collapse
Affiliation(s)
- Kaylyn R. Scanlon
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Gabrielle Keb
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Katerina Wolf
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Travis J. Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Kenneth A. Fields
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States
| |
Collapse
|
8
|
Fields KA, Bodero MD, Scanlon KR, Jewett TJ, Wolf K. A Minimal Replicon Enables Efficacious, Species-Specific Gene Deletion in Chlamydia and Extension of Gene Knockout Studies to the Animal Model of Infection Using Chlamydia muridarum. Infect Immun 2022; 90:e0045322. [PMID: 36350146 PMCID: PMC9753632 DOI: 10.1128/iai.00453-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/11/2022] Open
Abstract
The genus Chlamydia consists of diverse, obligate intracellular bacteria that infect various animals, including humans. Although chlamydial species share many aspects of the typical intracellular lifestyle, such as the biphasic developmental cycle and the preference for invasion of epithelial cells, each chlamydial strain also employs sophisticated species-specific strategies that contribute to an extraordinary diversity in organ and/or tissue tropism and disease manifestation. In order to discover and understand the mechanisms underlying how these pathogens infect particular hosts and cause specific diseases, it is imperative to develop a mutagenesis approach that would be applicable to every chlamydial species. We present functional evidence that the region between Chlamydia trachomatis and Chlamydia muridarum pgp6 and pgp7, containing four 22-bp tandem repeats that are present in all chlamydial endogenous plasmids, represents the plasmid origin of replication. Furthermore, by introducing species-specific ori regions into an engineered 5.45-kb pUC19-based plasmid, we generated vectors that can be successfully transformed into and propagated under selective pressure by C. trachomatis serovars L2 and D, as well as C. muridarum. Conversely, these vectors were rapidly lost upon removal of the selective antibiotic. This conditionally replicating system was used to generate a tarP deletion mutant by fluorescence-reported allelic exchange mutagenesis in both C. trachomatis serovar D and C. muridarum. The strains were analyzed using in vitro invasion and fitness assays. The virulence of the C. muridarum strains was then assessed in a murine infection model. Our approach represents a novel and efficient strategy for targeted genetic manipulation in Chlamydia beyond C. trachomatis L2. This advance will support comparative studies of species-specific infection biology and enable studies in a well-established murine model of chlamydial pathogenesis.
Collapse
Affiliation(s)
- Kenneth A. Fields
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Maria D. Bodero
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Kaylyn R. Scanlon
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Travis J. Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Katerina Wolf
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
9
|
Alqassim SS. Functional Mimicry of Eukaryotic Actin Assembly by Pathogen Effector Proteins. Int J Mol Sci 2022; 23:ijms231911606. [PMID: 36232907 PMCID: PMC9569871 DOI: 10.3390/ijms231911606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
The actin cytoskeleton lies at the heart of many essential cellular processes. There are hundreds of proteins that cells use to control the size and shape of actin cytoskeletal networks. As such, various pathogens utilize different strategies to hijack the infected eukaryotic host actin dynamics for their benefit. These include the control of upstream signaling pathways that lead to actin assembly, control of eukaryotic actin assembly factors, encoding toxins that distort regular actin dynamics, or by encoding effectors that directly interact with and assemble actin filaments. The latter class of effectors is unique in that, quite often, they assemble actin in a straightforward manner using novel sequences, folds, and molecular mechanisms. The study of these mechanisms promises to provide major insights into the fundamental determinants of actin assembly, as well as a deeper understanding of host-pathogen interactions in general, and contribute to therapeutic development efforts targeting their respective pathogens. This review discusses mechanisms and highlights shared and unique features of actin assembly by pathogen effectors that directly bind and assemble actin, focusing on eukaryotic actin nucleator functional mimics Rickettsia Sca2 (formin mimic), Burkholderia BimA (Ena/VASP mimic), and Vibrio VopL (tandem WH2-motif mimic).
Collapse
Affiliation(s)
- Saif S Alqassim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Building 14, Dubai Health Care City, Dubai P.O. Box 505055, United Arab Emirates
| |
Collapse
|
10
|
Garvin LE, DeBoer AG, Carrell SJ, Wang X, Rockey DD. Microscopic Analysis of the Chlamydia abortus Inclusion and Its Interaction with Those Formed by Other Chlamydial Species. Infect Immun 2022; 90:e0049921. [PMID: 35099268 PMCID: PMC8929342 DOI: 10.1128/iai.00499-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/18/2022] [Indexed: 11/20/2022] Open
Abstract
The Chlamydiae are obligate intracellular pathogens that develop and multiply within a poorly characterized parasitophorous vacuole (the inclusion) during growth. Chlamydia abortus is a major pathogen of sheep and other ruminants, and its inclusion development is poorly characterized. We used immunofluorescence microscopy, quantitative culture, and qPCR to examine C. abortus inclusion development and to examine the interaction of C. abortus inclusions with those formed by other species. Antibodies used in these studies include sera from ewes from production facilities that were naturally infected with C. abortus. Multiple inclusions are often found in C. abortus-infected cells, even in populations infected at very low multiplicity of infection. Labeling of fixed cells with sera from infected sheep revealed fibrous structures that extend away from the inclusion into the cytoplasm of the host cell. C. abortus inclusions fused with C. caviae and C. psittaci inclusions in coinfected cells. Inclusions formed by C. abortus and C. caviae did not fuse with inclusions formed by C. trachomatis, C. pneumoniae, or C. pecorum. The ability of inclusions to fuse was correlated with the overall genomic relatedness between species, and with sequence similarity in the inclusion membrane protein IncA. Quantitative PCR data demonstrated that C. abortus grows at a decreased rate during coinfections with C. caviae, while C. caviae growth was unaffected. The collected data add depth to our understanding of inclusion development in this significant zoonotic veterinary pathogen.
Collapse
Affiliation(s)
- Lotisha E. Garvin
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Addison G. DeBoer
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Steven J. Carrell
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Xisheng Wang
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Daniel D. Rockey
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
11
|
Cross Talk between ARF1 and RhoA Coordinates the Formation of Cytoskeletal Scaffolds during Chlamydia Infection. mBio 2021; 12:e0239721. [PMID: 34903051 PMCID: PMC8669492 DOI: 10.1128/mbio.02397-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chlamydia trachomatis is an obligate intracellular bacterium that has developed sophisticated mechanisms to survive inside its infectious compartment, the inclusion. Notably, Chlamydia weaves an extensive network of microtubules (MTs) and actin filaments to enable interactions with host organelles and enhance its stability. Despite the global health and economic burden caused by this sexually transmitted pathogen, little is known about how actin and MT scaffolds are integrated into an increasingly complex virulence system. Previously, we established that the chlamydial effector InaC interacts with ARF1 to stabilize MTs. We now demonstrate that InaC regulates RhoA to control actin scaffolds. InaC relies on cross talk between ARF1 and RhoA to coordinate MTs and actin, where the presence of RhoA downregulates stable MT scaffolds and ARF1 activation inhibits actin scaffolds. Understanding how Chlamydia hijacks complex networks will help elucidate how this clinically significant pathogen parasitizes its host and reveal novel cellular signaling pathways.
Collapse
|
12
|
Hajra D, Nair AV, Chakravortty D. An elegant nano-injection machinery for sabotaging the host: Role of Type III secretion system in virulence of different human and animal pathogenic bacteria. Phys Life Rev 2021; 38:25-54. [PMID: 34090822 DOI: 10.1016/j.plrev.2021.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 01/22/2023]
Abstract
Various Gram-negative bacteria possess a specialized membrane-bound protein secretion system known as the Type III secretion system (T3SS), which transports the bacterial effector proteins into the host cytosol thereby helping in bacterial pathogenesis. The T3SS has a special needle-like translocon that can sense the contact with the host cell membrane and translocate effectors. The export apparatus of T3SS recognizes these effector proteins bound to chaperones and translocates them into the host cell. Once in the host cell cytoplasm, these effector proteins result in modulation of the host system and promote bacterial localization and infection. Using molecular biology, bioinformatics, genetic techniques, electron microscopic studies, and mathematical modeling, the structure and function of the T3SS and the corresponding effector proteins in various bacteria have been studied. The strategies used by different human pathogenic bacteria to modulate the host system and thereby enhance their virulence mechanism using T3SS have also been well studied. Here we review the history, evolution, and general structure of the T3SS, highlighting the details of its comparison with the flagellar export machinery. Also, this article provides mechanistic details about the common role of T3SS in subversion and manipulation of host cellular processes. Additionally, this review describes specific T3SS apparatus and the role of their specific effectors in bacterial pathogenesis by considering several human and animal pathogenic bacteria.
Collapse
Affiliation(s)
- Dipasree Hajra
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | - Abhilash Vijay Nair
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | | |
Collapse
|
13
|
Andersen SE, Bulman LM, Steiert B, Faris R, Weber MM. Got mutants? How advances in chlamydial genetics have furthered the study of effector proteins. Pathog Dis 2021; 79:ftaa078. [PMID: 33512479 PMCID: PMC7862739 DOI: 10.1093/femspd/ftaa078] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
Chlamydia trachomatis is the leading cause of infectious blindness and a sexually transmitted infection. All chlamydiae are obligate intracellular bacteria that replicate within a membrane-bound vacuole termed the inclusion. From the confines of the inclusion, the bacteria must interact with many host organelles to acquire key nutrients necessary for replication, all while promoting host cell viability and subverting host defense mechanisms. To achieve these feats, C. trachomatis delivers an arsenal of virulence factors into the eukaryotic cell via a type 3 secretion system (T3SS) that facilitates invasion, manipulation of host vesicular trafficking, subversion of host defense mechanisms and promotes bacteria egress at the conclusion of the developmental cycle. A subset of these proteins intercalate into the inclusion and are thus referred to as inclusion membrane proteins. Whereas others, referred to as conventional T3SS effectors, are released into the host cell where they localize to various eukaryotic organelles or remain in the cytosol. Here, we discuss the functions of T3SS effector proteins with a focus on how advances in chlamydial genetics have facilitated the identification and molecular characterization of these important factors.
Collapse
Affiliation(s)
- Shelby E Andersen
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Lanci M Bulman
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Brianna Steiert
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Robert Faris
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Mary M Weber
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
14
|
Pillon M, Doublet P. Myosins, an Underestimated Player in the Infectious Cycle of Pathogenic Bacteria. Int J Mol Sci 2021; 22:ijms22020615. [PMID: 33435466 PMCID: PMC7826972 DOI: 10.3390/ijms22020615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/15/2022] Open
Abstract
Myosins play a key role in many cellular processes such as cell migration, adhesion, intracellular trafficking and internalization processes, making them ideal targets for bacteria. Through selected examples, such as enteropathogenic E. coli (EPEC), Neisseria, Salmonella, Shigella, Listeria or Chlamydia, this review aims to illustrate how bacteria target and hijack host cell myosins in order to adhere to the cell, to enter the cell by triggering their internalization, to evade from the cytosolic autonomous cell defense, to promote the biogenesis of intracellular replicative niche, to disseminate in tissues by cell-to-cell spreading, to exit out the host cell, and also to evade from macrophage phagocytosis. It highlights the diversity and sophistication of the strategy evolved by bacteria to manipulate one of their privileged targets, the actin cytoskeleton.
Collapse
Affiliation(s)
- Margaux Pillon
- CIRI, Centre International de Recherche en Infectiologie, Legionella Pathogenesis Group, Université de Lyon, 69007 Lyon, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, 69007 Lyon, France
- Centre National de la Recherche Scientifique, UMR5308, 69007 Lyon, France
| | - Patricia Doublet
- CIRI, Centre International de Recherche en Infectiologie, Legionella Pathogenesis Group, Université de Lyon, 69007 Lyon, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, 69007 Lyon, France
- Centre National de la Recherche Scientifique, UMR5308, 69007 Lyon, France
- Correspondence:
| |
Collapse
|
15
|
Faris R, McCullough A, Andersen SE, Moninger TO, Weber MM. The Chlamydia trachomatis secreted effector TmeA hijacks the N-WASP-ARP2/3 actin remodeling axis to facilitate cellular invasion. PLoS Pathog 2020; 16:e1008878. [PMID: 32946535 PMCID: PMC7526919 DOI: 10.1371/journal.ppat.1008878] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/30/2020] [Accepted: 08/12/2020] [Indexed: 11/19/2022] Open
Abstract
As an obligate intracellular pathogen, host cell invasion is paramount to Chlamydia trachomatis proliferation. While the mechanistic underpinnings of this essential process remain ill-defined, it is predicted to involve delivery of prepackaged effector proteins into the host cell that trigger plasma membrane remodeling and cytoskeletal reorganization. The secreted effector proteins TmeA and TarP, have risen to prominence as putative key regulators of cellular invasion and bacterial pathogenesis. Although several studies have begun to unravel molecular details underlying the putative function of TarP, the physiological function of TmeA during host cell invasion is unknown. Here, we show that TmeA employs molecular mimicry to bind to the GTPase binding domain of N-WASP, which results in recruitment of the actin branching ARP2/3 complex to the site of chlamydial entry. Electron microscopy revealed that TmeA mutants are deficient in filopodia capture, suggesting that TmeA/N-WASP interactions ultimately modulate host cell plasma membrane remodeling events necessary for chlamydial entry. Importantly, while both TmeA and TarP are necessary for effective host cell invasion, we show that these effectors target distinct pathways that ultimately converge on activation of the ARP2/3 complex. In line with this observation, we show that a double mutant suffers from a severe entry defect nearly identical to that observed when ARP3 is chemically inhibited or knocked down. Collectively, our study highlights both TmeA and TarP as essential regulators of chlamydial invasion that modulate the ARP2/3 complex through distinct signaling platforms, resulting in plasma membrane remodeling events that are essential for pathogen uptake.
Collapse
Affiliation(s)
- Robert Faris
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Alix McCullough
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Shelby E. Andersen
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Thomas O. Moninger
- Central Microscopy Research Facility, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Mary M. Weber
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| |
Collapse
|
16
|
Gitsels A, Sanders N, Vanrompay D. Chlamydial Infection From Outside to Inside. Front Microbiol 2019; 10:2329. [PMID: 31649655 PMCID: PMC6795091 DOI: 10.3389/fmicb.2019.02329] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022] Open
Abstract
Chlamydia are obligate intracellular bacteria, characterized by a unique biphasic developmental cycle. Specific interactions with the host cell are crucial for the bacteria’s survival and amplification because of the reduced chlamydial genome. At the start of infection, pathogen-host interactions are set in place in order for Chlamydia to enter the host cell and reach the nutrient-rich peri-Golgi region. Once intracellular localization is established, interactions with organelles and pathways of the host cell enable the necessary hijacking of host-derived nutrients. Detailed information on the aforementioned processes will increase our understanding on the intracellular pathogenesis of chlamydiae and hence might lead to new strategies to battle chlamydial infection. This review summarizes how chlamydiae generate their intracellular niche in the host cell, acquire host-derived nutrients in order to enable their growth and finally exit the host cell in order to infect new cells. Moreover, the evolution in the development of molecular genetic tools, necessary for studying the chlamydial infection biology in more depth, is discussed in great detail.
Collapse
Affiliation(s)
- Arlieke Gitsels
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Niek Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Daisy Vanrompay
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
17
|
Bugalhão JN, Mota LJ. The multiple functions of the numerous Chlamydia trachomatis secreted proteins: the tip of the iceberg. MICROBIAL CELL 2019; 6:414-449. [PMID: 31528632 PMCID: PMC6717882 DOI: 10.15698/mic2019.09.691] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chlamydia trachomatis serovars are obligate intracellular bacterial pathogens mainly causing ocular and urogenital infections that affect millions of people worldwide and which can lead to blindness or sterility. They reside and multiply intracellularly within a membrane-bound vacuolar compartment, known as inclusion, and are characterized by a developmental cycle involving two morphologically and physiologically distinct chlamydial forms. Completion of the developmental cycle involves the secretion of > 70 C. trachomatis proteins that function in the host cell cytoplasm and nucleus, in the inclusion membrane and lumen, and in the extracellular milieu. These proteins can, for example, interfere with the host cell cytoskeleton, vesicular and non-vesicular transport, metabolism, and immune signalling. Generally, this promotes C. trachomatis invasion into, and escape from, host cells, the acquisition of nutrients by the chlamydiae, and evasion of cell-autonomous, humoral and cellular innate immunity. Here, we present an in-depth review on the current knowledge and outstanding questions about these C. trachomatis secreted proteins.
Collapse
Affiliation(s)
- Joana N Bugalhão
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Luís Jaime Mota
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
18
|
O'Connell CM, Brochu H, Girardi J, Harrell E, Jones A, Darville T, Seña AC, Peng X. Simultaneous profiling of sexually transmitted bacterial pathogens, microbiome, and concordant host response in cervical samples using whole transcriptome sequencing analysis. MICROBIAL CELL 2019; 6:177-183. [PMID: 30854394 PMCID: PMC6402362 DOI: 10.15698/mic2019.03.672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pelvic inflammatory disease (PID) is a female upper genital tract inflammatory disorder that arises after sexually transmitted bacterial infections (STI). Factors modulating risk for reproductive sequelae include co-infection, microbiota, host genetics and physiology. In a pilot study of cervical samples obtained from women at high risk for STIs, we examined the potential for unbiased characterization of host, pathogen and microbiome interactions using whole transcriptome sequencing analysis of ribosomal RNA-depleted total RNAs (Total RNA-Seq). Only samples from women with STI infection contained pathogen-specific sequences (3 to 38% transcriptome coverage). Simultaneously, we identified and quantified their active microbial communities. After integration with host-derived reads from the same data, we detected clustering of host transcriptional profiles that reflected microbiome differences and STI infection. Together, our study suggests that total RNA profiling will advance understanding of the interplay of pathogen, host and microbiota during natural infection and may reveal novel, outcome-relevant biomarkers.
Collapse
Affiliation(s)
- Catherine M O'Connell
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hayden Brochu
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Jenna Girardi
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Erin Harrell
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Aiden Jones
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Toni Darville
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Arlene C Seña
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Xinxia Peng
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA.,Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
19
|
CPn0572, the C. pneumoniae ortholog of TarP, reorganizes the actin cytoskeleton via a newly identified F-actin binding domain and recruitment of vinculin. PLoS One 2019; 14:e0210403. [PMID: 30629647 PMCID: PMC6328165 DOI: 10.1371/journal.pone.0210403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/21/2018] [Indexed: 11/19/2022] Open
Abstract
Chlamydia pneumoniae is one of the two major species of the Chlamydiaceae family that have a profound effect on human health. C. pneumoniae is linked to a number of severe acute and chronic diseases of the upper and lower respiratory tract including pneumonia, asthma, bronchitis and infection by the pathogen might play a role in lung cancer. Following adhesion, Chlamydiae secrete effector proteins into the host cytoplasm that modulate the actin cytoskeleton facilitating internalization and infection. Members of the conserved TarP protein family comprise such effector proteins that polymerize actin, and in the case of the C. trachomatis TarP protein, has been shown to play a critical role in pathogenesis. In a previous study, we demonstrated that, upon bacterial invasion, the C. pneumoniae TarP family member CPn0572 is secreted into the host cytoplasm and recruits and associates with actin via an actin-binding domain conserved in TarP proteins. We have now extended our analysis of CPn0572 and found that the CPn0572 actin binding and modulating capability is more complex. With the help of the fission yeast system, a second actin modulating domain was identified independent of the actin binding domain. Microscopic analysis of HEp-2 cells expressing different CPn0572 deletion variants mapped this domain to the C-terminal part of the protein as CPn0572536-755 binds F-actin in vitro and colocalizes with aberrantly thickened actin cables in vivo. Finally, microscopic and bioinformatic analysis revealed the existence of a vinculin binding sequence in CPn0572. Our findings contribute to the understanding of the function of the TarP family and underscore the existence of several actin binding domains and a vinculin binding site for host actin modulation.
Collapse
|
20
|
George Z, Omosun Y, Azenabor AA, Goldstein J, Partin J, Joseph K, Ellerson D, He Q, Eko F, McDonald MA, Reed M, Svoboda P, Stuchlik O, Pohl J, Lutter E, Bandea C, Black CM, Igietseme JU. The molecular mechanism of induction of unfolded protein response by Chlamydia. Biochem Biophys Res Commun 2019; 508:421-429. [PMID: 30503337 PMCID: PMC6343654 DOI: 10.1016/j.bbrc.2018.11.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/06/2018] [Indexed: 11/21/2022]
Abstract
The unfolded protein response (UPR) contributes to chlamydial pathogenesis, as a source of lipids and ATP during replication, and for establishing the initial anti-apoptotic state of host cell that ensures successful inclusion development. The molecular mechanism(s) of UPR induction by Chlamydia is unknown. Chlamydia use type III secretion system (T3SS) effector proteins (e.g, the Translocated Actin-Recruiting Phosphoprotein (Tarp) to stimulate host cell's cytoskeletal reorganization that facilitates invasion and inclusion development. We investigated the hypothesis that T3SS effector-mediated assembly of myosin-II complex produces activated non-muscle myosin heavy chain II (NMMHC-II), which then binds the UPR master regulator (BiP) and/or transducers to induce UPR. Our results revealed the interaction of the chlamydial effector proteins (CT228 and Tarp) with components of the myosin II complex and UPR regulator and transducer during infection. These interactions caused the activation and binding of NMMHC-II to BiP and IRE1α leading to UPR induction. In addition, specific inhibitors of myosin light chain kinase, Tarp oligomerization and myosin ATPase significantly reduced UPR activation and Chlamydia replication. Thus, Chlamydia induce UPR through T3SS effector-mediated activation of NMMHC-II components of the myosin complex to facilitate infectivity. The finding provides greater insights into chlamydial pathogenesis with the potential to identify therapeutic targets and formulations.
Collapse
Affiliation(s)
- Zenas George
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Yusuf Omosun
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA; Morehouse School of Medicine, Atlanta, GA, USA
| | | | - Jason Goldstein
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - James Partin
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Kahaliah Joseph
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Debra Ellerson
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Qing He
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA; Morehouse School of Medicine, Atlanta, GA, USA
| | - Francis Eko
- Morehouse School of Medicine, Atlanta, GA, USA
| | | | - Matthew Reed
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Pavel Svoboda
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Olga Stuchlik
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Jan Pohl
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | | | - Claudiu Bandea
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Carolyn M Black
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Joseph U Igietseme
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA; Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
21
|
Wen Y, Chen Y, Li L, Xu M, Tan Y, Li Y, Wang C, Chen Q, Kuang X, Wu Y. Localization and characterization of a putative cysteine desulfurase in Chlamydia psittaci. J Cell Biochem 2018; 120:4409-4422. [PMID: 30260037 DOI: 10.1002/jcb.27727] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 08/29/2018] [Indexed: 12/20/2022]
Abstract
Chlamydia psittaci is an obligate intracellular pathogen with a biphasic developmental life cycle. It is auxotrophic for a variety of essential metabolites and obtains amino acids from eukaryotic host cells. Chlamydia can develop inside host cells within chlamydial inclusions. A pathway secreting proteins from inclusions into the host cellular cytoplasm is the type III secretion system (T3SS). The T3SS is universal among several Gram-negative bacteria. Here, we show that CPSIT_0959 of C. psittaci is expressed midcycle and secreted into the infected cellular cytoplasm via the T3SS. Recombinant CPSIT_0959 possesses cysteine desulfurase and PLP-binding activity, which removes sulfur from cysteine to produce alanine, and helps chlamydial replication. Our study shows that CPSIT_0959 improve the infectivity of offspring elementary bodies and seems to promote the replication by its product. This phenomenon has inhibited by the PLP-dependent enzymes inhibitor. Moreover, CPSIT_0959 increased expression of Bim and tBid, and decreased the mitochondrial membrane potential of host mitochondria to induce apoptosis in the latecycle for release of offspring. These results demonstrate that CPSIT_0959 has cysteine desulfurase and PLP-binding activity and is likely to contribute to apoptosis of the infected cells via a mitochondria-mediated pathway to improve the infectivity of progeny.
Collapse
Affiliation(s)
- Yating Wen
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Yanbo Chen
- Department of Clinical Laboratory, Jiangmen Wuyi Traditional Chinese Medicine Hospital, Jiangmen, China
| | - Li Li
- Toxicology Laboratory, Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Man Xu
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Yuan Tan
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Yumeng Li
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Chuan Wang
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Qian Chen
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Xingxing Kuang
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Yimou Wu
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| |
Collapse
|
22
|
McKuen MJ, Mueller KE, Bae YS, Fields KA. Fluorescence-Reported Allelic Exchange Mutagenesis Reveals a Role for Chlamydia trachomatis TmeA in Invasion That Is Independent of Host AHNAK. Infect Immun 2017; 85:e00640-17. [PMID: 28970272 PMCID: PMC5695130 DOI: 10.1128/iai.00640-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/21/2017] [Indexed: 01/05/2023] Open
Abstract
Development of approaches to genetically manipulate Chlamydia is fostering important advances in understanding pathogenesis. Fluorescence-reported allelic exchange mutagenesis (FRAEM) now enables the complete deletion of specific genes in C. trachomatis L2. We have leveraged this technology to delete the coding sequences for a known type III effector. The evidence provided here indicates that CT694/CTL0063 is a virulence protein involved in chlamydial invasion. Based on our findings, we designate the gene product corresponding to ct694-ctl0063translocated membrane-associated effector A (TmeA). Deletion of tmeA did not impact development of intracellular chlamydiae. However, the absence of TmeA manifested as a decrease in infectivity in both tissue culture and murine infection models. The in vitro defect was reflected by impaired invasion of host cells. TmeA binds human AHNAK, and we demonstrate here that AHNAK is transiently recruited by invading chlamydiae. TmeA, however, is not required for endogenous AHNAK recruitment. TmeA also impairs AHNAK-dependent actin bundling activity. This TmeA-mediated effect likely does not explain impaired invasion displayed by the tmeA strain of Chlamydia, since AHNAK-deficient cells revealed no invasion phenotype. Overall, our data indicate the efficacy of FRAEM and reveal a role of TmeA during chlamydial invasion that manifests independently of effects on AHNAK.
Collapse
Affiliation(s)
- M J McKuen
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - K E Mueller
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Y S Bae
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - K A Fields
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
23
|
Abstract
Both actin and microtubules are major cytoskeletal elements in eukaryotic cells that participate in many cellular processes, including cell division and motility, vesicle and organelle movement, and the maintenance of cell shape. Inside its host cell, the human pathogen Chlamydia trachomatis manipulates the cytoskeleton to promote its survival and enhance its pathogenicity. In particular, Chlamydia induces the drastic rearrangement of both actin and microtubules, which is vital for its entry, inclusion structure and development, and host cell exit. As significant progress in Chlamydia genetics has greatly enhanced our understanding of how this pathogen co-opts the host cytoskeleton, we will discuss the machinery used by Chlamydia to coordinate the reorganization of actin and microtubules.
Collapse
Affiliation(s)
- Jordan Wesolowski
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Fabienne Paumet
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| |
Collapse
|
24
|
The Effector TepP Mediates Recruitment and Activation of Phosphoinositide 3-Kinase on Early Chlamydia trachomatis Vacuoles. mSphere 2017; 2:mSphere00207-17. [PMID: 28744480 PMCID: PMC5518268 DOI: 10.1128/msphere.00207-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/27/2017] [Indexed: 11/20/2022] Open
Abstract
Chlamydia trachomatis delivers multiple type 3 secreted effector proteins to host epithelial cells to manipulate cytoskeletal functions, membrane dynamics, and signaling pathways. TepP is the most abundant effector protein secreted early in infection, but its molecular function is poorly understood. In this report, we provide evidence that TepP is important for bacterial replication in cervical epithelial cells, activation of type I IFN genes, and recruitment of class I phosphoinositide 3-kinases (PI3K) and signaling adaptor protein CrkL to nascent pathogen-containing vacuoles (inclusions). We also show that TepP is a target of tyrosine phosphorylation by Src kinases but that these modifications do not appear to influence the recruitment of PI3K or CrkL. The translocation of TepP correlated with an increase in the intracellular pools of phosphoinositide-(3,4,5)-triphosphate but not the activation of the prosurvival kinase Akt, suggesting that TepP-mediated activation of PI3K is spatially restricted to early inclusions. Furthermore, we linked PI3K activity to the dampening of transcription of type I interferon (IFN)-induced genes early in infection. Overall, these findings indicate that TepP can modulate cell signaling and, potentially, membrane trafficking events by spatially restricted activation of PI3K. IMPORTANCE This article shows that Chlamydia recruits PI3K, an enzyme important for host cell survival and internal membrane functions, to the pathogens inside cells by secreting a scaffolding protein called TepP. TepP enhances Chlamydia replication and dampens the activation of immune responses.
Collapse
|
25
|
Chlamydia Hijacks ARF GTPases To Coordinate Microtubule Posttranslational Modifications and Golgi Complex Positioning. mBio 2017; 8:mBio.02280-16. [PMID: 28465429 PMCID: PMC5414008 DOI: 10.1128/mbio.02280-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The intracellular bacterium Chlamydia trachomatis develops in a parasitic compartment called the inclusion. Posttranslationally modified microtubules encase the inclusion, controlling the positioning of Golgi complex fragments around the inclusion. The molecular mechanisms by which Chlamydia coopts the host cytoskeleton and the Golgi complex to sustain its infectious compartment are unknown. Here, using a genetically modified Chlamydia strain, we discovered that both posttranslationally modified microtubules and Golgi complex positioning around the inclusion are controlled by the chlamydial inclusion protein CT813/CTL0184/InaC and host ARF GTPases. CT813 recruits ARF1 and ARF4 to the inclusion membrane, where they induce posttranslationally modified microtubules. Similarly, both ARF isoforms are required for the repositioning of Golgi complex fragments around the inclusion. We demonstrate that CT813 directly recruits ARF GTPases on the inclusion membrane and plays a pivotal role in their activation. Together, these results reveal that Chlamydia uses CT813 to hijack ARF GTPases to couple posttranslationally modified microtubules and Golgi complex repositioning at the inclusion. Chlamydia trachomatis is an important cause of morbidity and a significant economic burden in the world. However, how Chlamydia develops its intracellular compartment, the so-called inclusion, is poorly understood. Using genetically engineered Chlamydia mutants, we discovered that the effector protein CT813 recruits and activates host ADP-ribosylation factor 1 (ARF1) and ARF4 to regulate microtubules. In this context, CT813 acts as a molecular platform that induces the posttranslational modification of microtubules around the inclusion. These cages are then used to reposition the Golgi complex during infection and promote the development of the inclusion. This study provides the first evidence that ARF1 and ARF4 play critical roles in controlling posttranslationally modified microtubules around the inclusion and that Chlamydia trachomatis hijacks this novel function of ARF to reposition the Golgi complex.
Collapse
|
26
|
Parrett CJ, Lenoci RV, Nguyen B, Russell L, Jewett TJ. Targeted Disruption of Chlamydia trachomatis Invasion by in Trans Expression of Dominant Negative Tarp Effectors. Front Cell Infect Microbiol 2016; 6:84. [PMID: 27602332 PMCID: PMC4993794 DOI: 10.3389/fcimb.2016.00084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/03/2016] [Indexed: 11/13/2022] Open
Abstract
Chlamydia trachomatis invasion of eukaryotic host cells is facilitated, in part, by the type III secreted effector protein, Tarp. The role of Tarp in chlamydiae entry of host cells is supported by molecular approaches that examined recombinant Tarp or Tarp effectors expressed within heterologous systems. A major limitation in the ability to study the contribution of Tarp to chlamydial invasion of host cells was the prior absence of genetic tools for chlamydiae. Based on our knowledge of Tarp domain structure and function along with the introduction of genetic approaches in C. trachomatis, we hypothesized that Tarp function could be disrupted in vivo by the introduction of dominant negative mutant alleles. We provide evidence that transformed C. trachomatis produced epitope tagged Tarp, which was secreted into the host cell during invasion. We examined the effects of domain specific Tarp mutations on chlamydial invasion and growth and demonstrate that C. trachomatis clones harboring engineered Tarp mutants lacking either the actin binding domain or the phosphorylation domain had reduced levels of invasion into host cells. These data provide the first in vivo evidence for the critical role of Tarp in C. trachomatis pathogenesis and indicate that chlamydial invasion of host cells can be attenuated via the introduction of engineered dominant negative type three effectors.
Collapse
Affiliation(s)
- Christopher J Parrett
- Division of Immunology and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| | - Robert V Lenoci
- Division of Immunology and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| | - Brenda Nguyen
- Division of Immunology and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| | - Lauren Russell
- Division of Immunology and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| | - Travis J Jewett
- Division of Immunology and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| |
Collapse
|
27
|
Radomski N, Einenkel R, Müller A, Knittler MR. Chlamydia-host cell interaction not only from a bird's eye view: some lessons fromChlamydia psittaci. FEBS Lett 2016; 590:3920-3940. [DOI: 10.1002/1873-3468.12295] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Nadine Radomski
- Friedrich-Loeffler-Institut; Institute of Immunology; Isle of Riems Germany
| | - Rebekka Einenkel
- Friedrich-Loeffler-Institut; Institute of Immunology; Isle of Riems Germany
| | - Anne Müller
- Friedrich-Loeffler-Institut; Institute of Immunology; Isle of Riems Germany
| | - Michael R Knittler
- Friedrich-Loeffler-Institut; Institute of Immunology; Isle of Riems Germany
| |
Collapse
|
28
|
Analysis of Humoral Immune Responses to Surface and Virulence-Associated Chlamydia abortus Proteins in Ovine and Human Abortions by Use of a Newly Developed Line Immunoassay. J Clin Microbiol 2016; 54:1883-1890. [PMID: 27194684 DOI: 10.1128/jcm.00351-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/09/2016] [Indexed: 01/01/2023] Open
Abstract
The obligate intracellular bacterium Chlamydia abortus is the causative agent of enzootic abortion of ewes and poses a significant zoonotic risk for pregnant women. Using proteomic analysis and gene expression library screening in a previous project, we identified potential virulence factors and candidates for serodiagnosis, of which nine were scrutinized here with a strip immunoassay. We have shown that aborting sheep exhibited a strong antibody response to surface (MOMP, MIP, Pmp13G) and virulence-associated (CPAF, TARP, SINC) antigens. While the latter disappeared within 18 weeks following abortion in a majority of the animals, antibodies to surface proteins persisted beyond the duration of the study. In contrast, nonaborting experimentally infected sheep developed mainly antibodies to surface antigens (MOMP, MIP, Pmp13G), all of which did not persist. We were also able to detect antibodies to these surface antigens in C abortus-infected women who had undergone septic abortion, whereas a group of shepherds and veterinarians with occupational exposure to C abortus-infected sheep revealed only sporadic immune responses to the antigens selected. The most specific antigen for the serodiagnosis of human C abortus infections was Pmp13G, which showed no cross-reactivity with other chlamydiae infecting humans. We suggest that Pmp13G-based serodiagnosis accomplished by the detection of antibodies to virulence-associated antigens such as CPAF, TARP, and SINC may improve the laboratory diagnosis of human and animal C abortus infections.
Collapse
|
29
|
Nogueira AT, Pedrosa AT, Carabeo RA. Manipulation of the Host Cell Cytoskeleton by Chlamydia. Curr Top Microbiol Immunol 2016; 412:59-80. [PMID: 27197645 DOI: 10.1007/82_2016_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Chlamydiae are obligate intracellular pathogens. They undergo a biphasic developmental cycle differentiating between the infectious but metabolically quiescent elementary body and the vegetative, but non-infectious reticulate body. Chlamydia spends a significant portion of its development in the non-infectious stage, demanding an effective strategy of manipulating the host cells to ensure its intracellular survival and replication. A common target of all Chlamydia species studied so far is the host cell cytoskeleton, with past and recent findings revealing crucial roles in invasion, inclusion maintenance, nutrient acquisition, and egress. The molecular details of how Chlamydia co-opts the cytoskeleton is becoming clearer, with bacterial factors and their corresponding host cell targets identified.
Collapse
Affiliation(s)
- Ana T Nogueira
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Antonio T Pedrosa
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Rey A Carabeo
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.
| |
Collapse
|
30
|
Thwaites TR, Pedrosa AT, Peacock TP, Carabeo RA. Vinculin Interacts with the Chlamydia Effector TarP Via a Tripartite Vinculin Binding Domain to Mediate Actin Recruitment and Assembly at the Plasma Membrane. Front Cell Infect Microbiol 2015; 5:88. [PMID: 26649283 PMCID: PMC4663276 DOI: 10.3389/fcimb.2015.00088] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/16/2015] [Indexed: 12/11/2022] Open
Abstract
The mammalian protein vinculin is often a target of bacterial pathogens to subvert locally host cell actin dynamics. In Chlamydia infection, vinculin has been implicated in RNA interference screens, but the molecular basis for vinculin requirement has not been characterized. In this report, we show that vinculin was involved in the actin recruitment and F-actin assembly at the plasma membrane to facilitate invasion. Vinculin was recruited to the plasma membrane via its interaction with a specific tripartite motif within TarP that resembles the vinculin-binding domain (VBD) found in the Shigella invasion factor IpaA. The TarP-mediated plasma membrane recruitment of vinculin resulted in the localized recruitment of actin. In vitro pulldown assays for protein-protein interaction and imaging-based evaluation of recruitment to the plasma membrane demonstrated the essential role of the vinculin-binding site 1 (VBS1), and the dispensability of VBS2 and VBS3. As further support for the functionality of VBD-vinculin interaction, VBD-mediated actin recruitment required vinculin. Interestingly, while both vinculin and the focal adhesion kinase (FAK) colocalized at the sites of adhesion, the recruitment of one was independent of the other; and the actin recruitment function of the VBD/vinculin signaling axis was independent of the LD/FAK pathway.
Collapse
Affiliation(s)
- Tristan R Thwaites
- Programme in Microbiology, Institute of Medical Sciences, University of Aberdeen Aberdeen, UK ; Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London London, UK
| | - Antonio T Pedrosa
- Programme in Microbiology, Institute of Medical Sciences, University of Aberdeen Aberdeen, UK ; Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London London, UK ; School of Molecular Biosciences, Washington State University Pullman, WA, USA
| | - Thomas P Peacock
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London London, UK
| | - Rey A Carabeo
- Programme in Microbiology, Institute of Medical Sciences, University of Aberdeen Aberdeen, UK ; Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London London, UK ; School of Molecular Biosciences, Washington State University Pullman, WA, USA
| |
Collapse
|
31
|
Rusconi B, Kebbi-Beghdadi C, Greub G. Trafficking of Estrella lausannensis in human macrophages. Pathog Dis 2015; 73:ftv027. [PMID: 25857735 DOI: 10.1093/femspd/ftv027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2015] [Indexed: 11/14/2022] Open
Abstract
Estrella lausannensis is a new member of the Chlamydiales order. Like other Chlamydia-related bacteria, it is able to replicate in amoebae and in fish cell lines. A preliminary study investigating the pathogenic potential of Chlamydia-related bacteria found a correlation between antibody response to E. lausannensis and pneumonia in children. To further investigate the pathogenic potential of E. lausannensis, we determined its ability to grow in human macrophages and its intracellular trafficking. The replication in macrophages resulted in viable E. lausannensis; however, it caused a significant cytopathic effect. The intracellular trafficking of E. lausannensis was analyzed by determining the interaction of the Estrella-containing inclusions with various endocytic markers as well as host organelles. The E. lausannensis inclusion escaped the endocytic pathway rapidly avoiding maturation into phagolysosomes by preventing both EEA-1 and LAMP-1 accumulation. Compared to Waddlia chondrophila, another Chlamydia-related bacteria, the recruitment of mitochondria and endoplasmic reticulum was minimal for E. lausannensis inclusions. Estrella lausannensis appears to use a distinct source of nutrients and energy compared to other members of the Chlamydiales order. In conclusion, we hypothesize that E. lausannensis has a restricted growth in human macrophages, due to its reduced capacity to control programmed cell death.
Collapse
Affiliation(s)
- Brigida Rusconi
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, 1011, Switzerland
| | - Carole Kebbi-Beghdadi
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, 1011, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, 1011, Switzerland
| |
Collapse
|
32
|
Dai W, Li Z. Conserved type III secretion system exerts important roles in Chlamydia trachomatis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:5404-5414. [PMID: 25337183 PMCID: PMC4203154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/23/2014] [Indexed: 06/04/2023]
Abstract
Upon infection, Chlamydiae alter host cellular functions in a variety of ways. Chlamydial infection prevents host cell apoptosis, induces re-organization of the actin cytoskeleton and alters host cellular signaling mechanisms. Chlamydia is among the many pathogenic Gram-negative bacteria that employ the type III secretion system (T3SS) to overcome host defenses and exploit available resources. T3SS are used by many Gram-negative bacterial pathogens to manipulate eukaryotic host cells through the delivery of effector proteins into their cytosol and membranes. T3SS is an evolutionarily refined, virulence determinant of Gram-negative bacteria where more than 20 proteins form an apparatus, generally termed injectisome, to achieve the vectorial secretion and translocation of anti-host effector proteins. This review describes challenges and recent advances that have revealed how Chlamydia trachomatis utilizes diversification to produce a conserved T3SS that exerts an important role in Chlamydia trachomatis.
Collapse
Affiliation(s)
- Wenting Dai
- Pathogenic Biology Institute, School of Medicine, University of South China Hengyang City, Hunan Province, P. R. China
| | - Zhongyu Li
- Pathogenic Biology Institute, School of Medicine, University of South China Hengyang City, Hunan Province, P. R. China
| |
Collapse
|
33
|
Mehlitz A, Rudel T. Modulation of host signaling and cellular responses by Chlamydia. Cell Commun Signal 2013; 11:90. [PMID: 24267514 PMCID: PMC4222901 DOI: 10.1186/1478-811x-11-90] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 11/19/2013] [Indexed: 01/24/2023] Open
Abstract
Modulation of host cell signaling and cellular functions is key to intracellular survival of pathogenic bacteria. Intracellular growth has several advantages e.g. escape from the humoral immune response and access to a stable nutrient rich environment. Growth in such a preferred niche comes at the price of an ongoing competition between the bacteria and the host as well as other microbes that compete for the very same host resources. This requires specialization and constant evolution of dedicated systems for adhesion, invasion and accommodation. Interestingly, obligate intracellular bacteria of the order Chlamydiales have evolved an impressive degree of control over several important host cell functions. In this review we summarize how Chlamydia controls its host cell with a special focus on signal transduction and cellular modulation.
Collapse
Affiliation(s)
- Adrian Mehlitz
- University of Wuerzburg, Biocenter, Department of Microbiology, Am Hubland, D-97074, Wuerzburg, Germany.
| | | |
Collapse
|
34
|
Abstract
Members of the order Chlamydiales comprise a group of exquisitely evolved parasites of eukaryotic hosts that extends from single-celled amoeba to mammals. The most notable are human pathogens and include the agent of oculogenital disease Chlamydia trachomatis, the respiratory pathogen C. pneumoniae, and the zoonotic agent C. psittaci. All of these species are obligate intracellular bacteria that develop within parasitophorous vesicles termed inclusions. This demanding lifestyle necessitates orchestrated entry into nonphagocytic cells, creation of a privileged intracellular niche, and subversion of potent host defenses. All chlamydial genomes contain the coding capacity for a nonflagellar type III secretion system, and this mechanism has arisen as an essential contributor to chlamydial virulence. The emergence of tractable approaches to the genetic manipulation of chlamydiae raises the possibility of explosive progress in understanding this important contributor to chlamydial pathogenesis. This minireview considers challenges and recent advances that have revealed how chlamydiae have maintained conserved aspects of T3S while exploiting diversification to yield a system that exerts a fundamental role in the unique biology of Chlamydia species.
Collapse
|
35
|
Romano JD, Coppens I. Host Organelle Hijackers: a similar modus operandi for Toxoplasma gondii and Chlamydia trachomatis: co-infection model as a tool to investigate pathogenesis. Pathog Dis 2013; 69:72-86. [PMID: 23821471 DOI: 10.1111/2049-632x.12057] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 06/11/2013] [Accepted: 06/11/2013] [Indexed: 12/27/2022] Open
Abstract
The bacterium Chlamydia trachomatis and the protozoan parasite Toxoplasma gondii are the causative agents of chlamydiosis and toxoplasmosis in humans, respectively. Both microorganisms are obligate intracellular pathogens and notorious for extensively modifying the cytoskeletal architecture and the endomembrane system of their host cells to establish productive infections. This review highlights the similar tactics developed by these two pathogens to manipulate their host cell despite their genetic unrelatedness. Using an in vitro cell culture model whereby single fibroblasts are infected by C. trachomatis and T. gondii simultaneously, thus setting up an intracellular competition, we demonstrate that the solutions to the problem of intracellular survival deployed by the parasite and the bacterium may represent an example of convergent evolution, driven by the necessity to acquire nutrients in a hostile environment.
Collapse
Affiliation(s)
- Julia D Romano
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | | |
Collapse
|
36
|
Chlamydia trachomatis Tarp harbors distinct G and F actin binding domains that bundle actin filaments. J Bacteriol 2012. [PMID: 23204471 DOI: 10.1128/jb.01768-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
All species of Chlamydia undergo a unique developmental cycle that transitions between extracellular and intracellular environments and requires the capacity to invade new cells for dissemination. A chlamydial protein called Tarp has been shown to nucleate actin in vitro and is implicated in bacterial entry into human cells. Colocalization studies of ectopically expressed enhanced green fluorescent protein (EGFP)-Tarp indicate that actin filament recruitment is restricted to the C-terminal half of the effector protein. Actin filaments are presumably associated with Tarp via an actin binding alpha helix that is also required for actin nucleation in vitro, but this has not been investigated. Tarp orthologs from C. pneumoniae, C. muridarum, and C. caviae harbor between 1 and 4 actin binding domains located in the C-terminal half of the protein, but C. trachomatis serovar L2 has only one characterized domain. In this work, we examined the effects of domain-specific mutations on actin filament colocalization with EGFP-Tarp. We now demonstrate that actin filament colocalization with Tarp is dependent on two novel F-actin binding domains that endow the Tarp effector with actin-bundling activity. Furthermore, Tarp-mediated actin bundling did not require actin nucleation, as the ability to bundle actin filaments was observed in mutant Tarp proteins deficient in actin nucleation. These data shed molecular insight on the complex cytoskeletal rearrangements required for C. trachomatis entry into host cells.
Collapse
|