1
|
Gottumukkala SB, Palanisamy A. Non-small cell lung cancer map and analysis: exploring interconnected oncogenic signal integrators. Mamm Genome 2025:10.1007/s00335-025-10110-6. [PMID: 39939487 DOI: 10.1007/s00335-025-10110-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/29/2025] [Indexed: 02/14/2025]
Abstract
Non-Small Cell lung cancer (NSCLC) is known for its fast progression, metastatic potency, and a leading cause of mortality globally. At diagnosis, approximately 30-40% of NSCLC patients already present with metastasis. Epithelial to mesenchymal transition (EMT) is a developmental program implicated in cancer progression and metastasis. Transforming Growth Factor-β (TGFβ) and its signalling plays a prominent role in orchestrating the process of EMT and cancer metastasis. In present study, a comprehensive molecular interaction map of TGFβ induced EMT in NSCLC was developed through an extensive literature survey. The map encompasses 394 species interconnected through 554 reactions, representing the relationship and complex interplay between TGFβ induced SMAD dependent and independent signalling pathways (PI3K/Akt, Wnt, EGFR, JAK/STAT, p38 MAPK, NOTCH, Hypoxia). The map, built using Cell Designer and compliant with SBGN and SBML standards, was subsequently translated into a logical modelling framework using CaSQ and dynamically analysed with Cell Collective. These analyses illustrated the complex regulatory dynamics, capturing the known experimental outcomes of TGFβ induced EMT in NSCLC including the co-existence of hybrid EM phenotype during transition. Hybrid EM phenotype is known to contribute for the phenotypic plasticity during metastasis. Network-based analysis identified the crucial network level properties and hub regulators, while the transcriptome-based analysis cross validated the prognostic significance and clinical relevance of key regulators. Overall, the map developed and the subsequent analyses offer deeper understanding of the complex regulatory network governing the process of EMT in NSCLC.
Collapse
Affiliation(s)
- Sai Bhavani Gottumukkala
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India
| | - Anbumathi Palanisamy
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India.
| |
Collapse
|
2
|
Sun HN, Ren CX, Lee DH, Wang WH, Guo XY, Hao YY, Wang XM, Zhang HN, Xiao WQ, Li N, Cong J, Han YH, Kwon T. PRDX1 negatively regulates bleomycin-induced pulmonary fibrosis via inhibiting the epithelial-mesenchymal transition and lung fibroblast proliferation in vitro and in vivo. Cell Mol Biol Lett 2023; 28:48. [PMID: 37268886 DOI: 10.1186/s11658-023-00460-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/12/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Pulmonary fibrosis is a major category of end-stage changes in lung diseases, characterized by lung epithelial cell damage, proliferation of fibroblasts, and accumulation of extracellular matrix. Peroxiredoxin 1 (PRDX1), a member of the peroxiredoxin protein family, participates in the regulation of the levels of reactive oxygen species in cells and various other physiological activities, as well as the occurrence and development of diseases by functioning as a chaperonin. METHODS Experimental methods including MTT assay, morphological observation of fibrosis, wound healing assay, fluorescence microscopy, flow cytometry, ELISA, western blot, transcriptome sequencing, and histopathological analysis were used in this study. RESULTS PRDX1 knockdown increased ROS levels in lung epithelial cells and promoted epithelial-mesenchymal transition (EMT) through the PI3K/Akt and JNK/Smad signalling pathways. PRDX1 knockout significantly increased TGF-β secretion, ROS production, and cell migration in primary lung fibroblasts. PRDX1 deficiency also increased cell proliferation, cell cycle circulation, and fibrosis progression through the PI3K/Akt and JNK/Smad signalling pathways. BLM treatment induced more severe pulmonary fibrosis in PRDX1-knockout mice, mainly through the PI3K/Akt and JNK/Smad signalling pathways. CONCLUSIONS Our findings strongly suggest that PRDX1 is a key molecule in BLM-induced lung fibrosis progression and acts through modulating EMT and lung fibroblast proliferation; therefore, it may be a therapeutic target for the treatment of BLM-induced lung fibrosis.
Collapse
Affiliation(s)
- Hu-Nan Sun
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Xingyang Road #2, Daqing, 163319, Heilongjiang, China.
| | - Chen-Xi Ren
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Xingyang Road #2, Daqing, 163319, Heilongjiang, China
| | - Dong Hun Lee
- Department of Biological Sciences, Research Center of Ecomimetics, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, Republic of Korea
| | - Wei-Hao Wang
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Xiao-Yu Guo
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Xingyang Road #2, Daqing, 163319, Heilongjiang, China
| | - Ying-Ying Hao
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Xingyang Road #2, Daqing, 163319, Heilongjiang, China
| | - Xiao-Ming Wang
- Yabian Academy of Agricultural Science, Longjing, Jilin, 1334000, China
| | - Hui-Na Zhang
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Xingyang Road #2, Daqing, 163319, Heilongjiang, China
| | - Wan-Qiu Xiao
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Xingyang Road #2, Daqing, 163319, Heilongjiang, China
| | - Nan Li
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Xingyang Road #2, Daqing, 163319, Heilongjiang, China
| | - Jie Cong
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Xingyang Road #2, Daqing, 163319, Heilongjiang, China
| | - Ying-Hao Han
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Xingyang Road #2, Daqing, 163319, Heilongjiang, China.
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 351-33 Neongme-Gil, Ibam-Myeon, Jeongeup-Si, Jeonbuk, 56216, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
3
|
Liu Y, Wang P, Hu W, Chen D. New insights into the roles of peroxiredoxins in cancer. Biomed Pharmacother 2023; 164:114896. [PMID: 37210897 DOI: 10.1016/j.biopha.2023.114896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023] Open
Abstract
Oxidative stress is one of the hallmarks of cancer. Tumorigenesis and progression are accompanied by elevated reactive oxygen species (ROS) levels and adaptive elevation of antioxidant expression levels. Peroxiredoxins (PRDXs) are among the most important antioxidants and are widely distributed in a variety of cancers. PRDXs are involved in the regulation of a variety of tumor cell phenotypes, such as invasion, migration, epithelial-mesenchymal transition (EMT) and stemness. PRDXs are also associated with tumor cell resistance to cell death, such as apoptosis and ferroptosis. In addition, PRDXs are involved in the transduction of hypoxic signals in the TME and in the regulation of the function of other cellular components of the TME, such as cancer-associated fibroblasts (CAFs), natural killer (NK) cells and macrophages. This implies that PRDXs are promising targets for cancer treatment. Of course, further studies are needed to realize the clinical application of targeting PRDXs. In this review, we highlight the role of PRDXs in cancer, summarizing the basic features of PRDXs, their association with tumorigenesis, their expression and function in cancer, and their relationship with cancer therapeutic resistance.
Collapse
Affiliation(s)
- Yan Liu
- First Department of Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China
| | - Pu Wang
- Department of Emergency, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China
| | - Weina Hu
- Department of General Practice, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China.
| | - Da Chen
- Department of Emergency, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China.
| |
Collapse
|
4
|
Thapa P, Jiang H, Ding N, Hao Y, Alshahrani A, Wei Q. The Role of Peroxiredoxins in Cancer Development. BIOLOGY 2023; 12:666. [PMID: 37237480 PMCID: PMC10215932 DOI: 10.3390/biology12050666] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
Peroxiredoxins (Prxs) are antioxidant enzymes with ubiquitous expression in human tissues. Prxs are expressed in archaea, bacteria, and eukaryota, often in multiple isoforms. Because of their abundant expression in different cellular organelles and extraordinary sensitivity to H2O2, Prxs are among the first defenses against oxidative stress. Prxs undergo reversible oxidation to disulfides, and some family members perform chaperone or phospholipase functions upon further oxidation. Prxs are upregulated in cancer cells. Research has suggested that Prxs can function as tumor promoters in various cancers. The major objective of this review is to summarize novel findings regarding the roles of Prxs in common cancer types. Prxs have been shown to influence differentiation of inflammatory cells and fibroblasts, remodeling of extracellular matrix, and regulation of stemness. Since aggressive cancer cells have higher intracellular levels of ROS that they can utilize to proliferate and metastasize compared to normal cells, it is critical that we understand the regulation and functions of primary antioxidants such as Prxs. These small but mighty proteins could prove to be key for improving cancer therapeutics and patient survival.
Collapse
Affiliation(s)
- Pratik Thapa
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, 1095 Veterans Dr, Lexington, KY 40508, USA
| | - Hong Jiang
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, 1095 Veterans Dr, Lexington, KY 40508, USA
| | - Na Ding
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, 1095 Veterans Dr, Lexington, KY 40508, USA
| | - Yanning Hao
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, 1095 Veterans Dr, Lexington, KY 40508, USA
| | - Aziza Alshahrani
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, 1095 Veterans Dr, Lexington, KY 40508, USA
| | - Qiou Wei
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, 1095 Veterans Dr, Lexington, KY 40508, USA
- Markey Cancer Center, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536, USA
| |
Collapse
|
5
|
Effects of Antioxidant Gene Overexpression on Stress Resistance and Malignization In Vitro and In Vivo: A Review. Antioxidants (Basel) 2022; 11:antiox11122316. [PMID: 36552527 PMCID: PMC9774954 DOI: 10.3390/antiox11122316] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Reactive oxygen species (ROS) are normal products of a number of biochemical reactions and are important signaling molecules. However, at the same time, they are toxic to cells and have to be strictly regulated by their antioxidant systems. The etiology and pathogenesis of many diseases are associated with increased ROS levels, and many external stress factors directly or indirectly cause oxidative stress in cells. Within this context, the overexpression of genes encoding the proteins in antioxidant systems seems to have become a viable approach to decrease the oxidative stress caused by pathological conditions and to increase cellular stress resistance. However, such manipulations unavoidably lead to side effects, the most dangerous of which is an increased probability of healthy tissue malignization or increased tumor aggression. The aims of the present review were to collect and systematize the results of studies devoted to the effects resulting from the overexpression of antioxidant system genes on stress resistance and carcinogenesis in vitro and in vivo. In most cases, the overexpression of these genes was shown to increase cell and organism resistances to factors that induce oxidative and genotoxic stress but to also have different effects on cancer initiation and promotion. The last fact greatly limits perspectives of such manipulations in practice. The overexpression of GPX3 and SOD3 encoding secreted proteins seems to be the "safest" among the genes that can increase cell resistance to oxidative stress. High efficiency and safety potential can also be found for SOD2 overexpression in combinations with GPX1 or CAT and for similar combinations that lead to no significant changes in H2O2 levels. Accumulation, systematization, and the integral analysis of data on antioxidant gene overexpression effects can help to develop approaches for practical uses in biomedical and agricultural areas. Additionally, a number of factors such as genetic and functional context, cell and tissue type, differences in the function of transcripts of one and the same gene, regulatory interactions, and additional functions should be taken into account.
Collapse
|
6
|
Seong JB, Kim B, Kim S, Kim MH, Park YH, Lee Y, Lee HJ, Hong CW, Lee DS. Macrophage peroxiredoxin 5 deficiency promotes lung cancer progression via ROS-dependent M2-like polarization. Free Radic Biol Med 2021; 176:322-334. [PMID: 34637923 DOI: 10.1016/j.freeradbiomed.2021.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/24/2022]
Abstract
Strategies for cancer treatment have traditionally focused on suppressing cancer cell behavior, but many recent studies have demonstrated that regulating the tumor microenvironment (TME) can also inhibit disease progression. Macrophages are major TME components, and the direction of phenotype polarization is known to regulate tumor behavior, with M2-like polarization promoting progression. It is also known that reactive oxygen species (ROS) in macrophages drive M2 polarization, and M2 polarization promote lung cancer progression. Lung cancer patients with lower expression of the antioxidant enzyme peroxiredoxin 5 (Prx5) demonstrate poorer survival. This study revealed that Prx5 deficiency in macrophages induced M2 macrophage polarization by lung cancer. We report that injection of lung cancer cells produced larger tumors in Prx5-deficit mice than wild-type mice independent of cancer cell Prx5 expression. Through co-culture with lung cancer cell lines, Prx5-deficient macrophages exhibited M2 polarization, and reduced expression levels of the M1-associated inflammatory factors iNOS, TNFα, and Il-1β. Moreover, these Prx5-deficient macrophages promoted the proliferation and migration of co-cultured lung cancer cells. Conversely, suppression of ROS generation by N-acetyl cysteine (NAC) inhibited the M2-like polarization of Prx5-deficient macrophages, increased expression levels of inflammatory factors, inhibited the proliferation and migration of co-cultured lung cancer cells, and suppressed tumor growth in mice. These findings suggest that blocking the M2 polarization of macrophages may promote lung cancer regression.
Collapse
Affiliation(s)
- Jung Bae Seong
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea; College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea; National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Bokyung Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea; College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Soyoon Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea; College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Mi Hye Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea; College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Young-Ho Park
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Youngjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Hong Jun Lee
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea; Research Institute eBiogen Inc., Seoul, Republic of Korea
| | - Chang-Won Hong
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea; College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
7
|
Gurung S, Greening DW, Rai A, Poh QH, Evans J, Salamonsen LA. The proteomes of endometrial stromal cell-derived extracellular vesicles following a decidualizing stimulus define the cells' potential for decidualization success. Mol Hum Reprod 2021; 27:6370708. [PMID: 34524461 DOI: 10.1093/molehr/gaab057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
Adequate endometrial stromal cell (ESC) decidualization is vital for endometrial health. Given the importance of extracellular vesicles (EVs) in intercellular communication, we investigated how their protein landscape is reprogrammed and dysregulated during decidual response. Small EVs (sEVs) from human ESC-conditioned media at Day-2 and -14 following decidual stimuli were grouped as well- (WD) or poorly decidualized (PD) based on their prolactin secretion and subjected to mass spectrometry-based quantitative proteomics. On Day 2, in PD- versus WD-ESC-sEVs, 17 sEV- proteins were down-regulated (C5, C6; complement/coagulation cascades, and SERPING1, HRG; platelet degranulation and fibrinolysis) and 39 up-regulated (FLNA, COL1A1; focal adhesion, ENO1, PKM; glycolysis/gluconeogenesis, and RAP1B, MSN; leukocyte transendothelial migration). On Day 14, in PD- versus WD-ESC-sEVs, FLNA was down-regulated while 21 proteins were up-regulated involved in complement/coagulation cascades (C3, C6), platelet degranulation (SERPINA4, ITIH4), B-cell receptor signalling and innate immune response (immunoglobulins). Changes from Days 2 to 14 suggested a subsequent response in PD-ESC-sEVs with 89 differentially expressed proteins mostly involved in complement and coagulation cascades (C3, C6, C5), but no change in WD-ESC-sEVs ESC. Poor decidualization was also associated with loss of crucial sEV-proteins for cell adhesion and invasion (ITGA5, PFN1), glycolysis (ALDOA, PGK1) and cytoskeletal reorganization (VCL, RAC1). Overall, this study indicates varied ESC response even prior to decidualization and provides insight into sEVs-proteomes as a benchmark of well-decidualized ESC. It shows distinct variation in sEV-protein composition depending on the ESC decidual response that is critical for embryo implantation, enabling and limiting trophoblast invasion during placentation and sensing a healthy embryo.
Collapse
Affiliation(s)
- Shanti Gurung
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash Health, Monash University, Victoria, Australia
| | - David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia.,Central Clinical School, Faulty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Alin Rai
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Central Clinical School, Faulty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Qi Hui Poh
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Jemma Evans
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Lois A Salamonsen
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Medicine, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| |
Collapse
|
8
|
Sun HN, Ren CX, Gong YX, Xie DP, Kwon T. Regulatory function of peroxiredoxin I on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung cancer development. Oncol Lett 2021; 21:465. [PMID: 33907575 PMCID: PMC8063228 DOI: 10.3892/ol.2021.12726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022] Open
Abstract
Smoking is a major cause of lung cancer, and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is one of the most important carcinogens in cigarette smoke. NNK modulates the expression of peroxiredoxin (Prdx) I in lung cancer. Prdx1 is upregulated in lung squamous cell carcinoma and lung adenocarcinoma, and considered a potential biomarker for lung cancer. The current article reviewed the role and regulatory mechanisms of Prdx1 in NNK-induced lung cancer cells. Prdx1 protects erythrocytes and DNA from NNK-induced oxidative damage, prevents malignant transformation of cells and promotes cytotoxicity of natural killer cells, hence suppressing tumor formation. In addition, Prdx1 has the ability to prevent NNK-induced lung tumor metabolic activity and generation of large amount of reactive oxygen species (ROS) and ROS-induced apoptosis, thus promoting tumor cell survival. In contrast to this, Prdx1, together with NNK, can promote the epithelial-mesenchymal transition and migration of lung tumor cells. The signaling pathways associated with NNK and Prdx1 in lung cancer cells have been discussed in present review; however, numerous potential pathways are yet to be studied. To develop novel methods for treating NNK-induced lung cancer, and improve the survival rate of patients with lung cancer, further research is needed to understand the complete mechanism associated with NNK.
Collapse
Affiliation(s)
- Hu-Nan Sun
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Chen-Xi Ren
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Yi-Xi Gong
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Dan-Ping Xie
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Jeonbuk 56216, Republic of Korea
| |
Collapse
|
9
|
Kim EJ, Kim YJ, Lee HI, Jeong SH, Nam HJ, Cho JH. Upregulation of Peroxiredoxin-2 in Well-Differentiated Pancreatic Neuroendocrine Tumors and Its Utility as a Biomarker for Predicting the Response to Everolimus. Antioxidants (Basel) 2020; 9:antiox9111104. [PMID: 33182509 PMCID: PMC7696978 DOI: 10.3390/antiox9111104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 01/12/2023] Open
Abstract
Pancreatic neuroendocrine neoplasms (pNENs) account for 2–3% of pancreatic malignancies. Peroxiredoxins (Prdxs), which are major cellular antioxidants, are involved in multiple oncogenic signaling pathways. We investigated the role of peroxiredoxin-2 in QGP-1 human pNEN cell line and patient-derived pNEN tissue. To validate the cancer stem cell-like cell characteristics of QGP-1 cells in spheroid culture, in vitro analyses and xenografting were performed. Furthermore, immunohistochemical staining was conducted to verify the overexpression of Prdx2 in pNEN tissue. Prdx2 expression was high at the mRNA and protein levels in QGP-1 cells. Prdx2 was also overexpressed in patient-derived pNEN tissue. Silencing of Prdx2 using siRNA induced overexpression and phosphorylation of ERK and AKT in QGP-1. Cell proliferation was increased by treating QGP-1 cells with siPrdx2, and the IC50 of everolimus increased suggesting resistance to everolimus. Interestingly, QGP-1 spheroid cells, which exhibited cancer stem cell-like features, exhibited lower expression of Prdx2 and mTOR. The results suggest that Prdx2 expression level and its activity may be a potential predictive biomarker for therapeutic response or resistance to everolimus in pNEN.
Collapse
Affiliation(s)
- Eui Joo Kim
- Division of Gastroenterology, Department of Internal Medicine, Gil Medical Center, College of Medicine Gachon University, Incheon 21565, Korea; (E.J.K.); (Y.J.K.); (H.J.N.)
| | - Yoon Jae Kim
- Division of Gastroenterology, Department of Internal Medicine, Gil Medical Center, College of Medicine Gachon University, Incheon 21565, Korea; (E.J.K.); (Y.J.K.); (H.J.N.)
| | - Hye In Lee
- Division of Gastroenterology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Seok-Hoo Jeong
- Division of Gastroenterology, Department of Internal Medicine, Catholic Kwandong University International St. Mary’s Hospital, Incheon 22711, Korea;
| | - Hyo Jung Nam
- Division of Gastroenterology, Department of Internal Medicine, Gil Medical Center, College of Medicine Gachon University, Incheon 21565, Korea; (E.J.K.); (Y.J.K.); (H.J.N.)
| | - Jae Hee Cho
- Division of Gastroenterology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea;
- Correspondence: ; Tel.: +82-2-2019-3310
| |
Collapse
|
10
|
Xiao H, Yang T, Yan L, Feng J, Huang B, Jiang Y. PRDX1 is a Tumor Suppressor for Nasopharyngeal Carcinoma by Inhibiting PI3K/AKT/TRAF1 Signaling. Onco Targets Ther 2020; 13:9123-9133. [PMID: 32982301 PMCID: PMC7501964 DOI: 10.2147/ott.s252286] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/15/2020] [Indexed: 02/05/2023] Open
Abstract
Background Peroxiredoxin 1 (PRDX1) has been identified as a dual regulator of tumorigenesis. However, its expression, clinical significance, and biological function in nasopharyngeal carcinoma (NPC) remain unknown. This study aimed to explore the role and underlying mechanisms of PRDX1 in NPC. Materials and Methods The expression of PRDX1 in NPC tissues was evaluated by immunohistochemistry, and the relationships between the expression of PRDX1 and clinical features and prognosis of NPC patients were analyzed. The effects of PRDX1 on NPC cell proliferation, migration, invasion, and epithelial-to-mesenchymal transition (EMT) were examined. A tumor-bearing model of nude mouse was established to verify the function of PRDX1 in vivo. Results PRDX1 expression level was negatively associated with recurrence and metastasis of NPC. PRDX1 knockdown promoted NPC cell proliferation, migration, invasion and EMT in vitro, and enhanced tumor growth in vivo, while PRDX1 overexpression had opposite effects. Furthermore, transcriptome analysis showed that PRDX1 inhibited the activation of PI3K/AKT/TRAF1 signaling in NPC cells. Conclusion PRDX1 inhibits NPC by inhibiting the activation of PI3K/AKT/TRAF1 signaling. PRDX1 is a tumor suppressor in human NPC and may be a prognostic biomarker for NPC patients.
Collapse
Affiliation(s)
- Hongmei Xiao
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.,Oncology Department, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
| | - Taoyu Yang
- Department of Invasive Technology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511500, People's Republic of China
| | - Lingli Yan
- Department of Immunology, Medical University, Zunyi 563000, Guizhou, People's Republic of China
| | - Jihong Feng
- Department of Oncology, Taizhou City People's Hospital, Taizhou 318000, People's Republic of China
| | - Boyan Huang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518000, People's Republic of China
| | - Yu Jiang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
11
|
Han YH, Zhang YQ, Jin MH, Jin YH, Qiu MY, Li WL, He C, Yu LY, Hyun JW, Lee J, Yoon DY, Sun HN, Kwon T. Peroxiredoxin I deficiency increases keratinocyte apoptosis in a skin tumor model via the ROS-p38 MAPK pathway. Biochem Biophys Res Commun 2020; 529:635-641. [PMID: 32736685 DOI: 10.1016/j.bbrc.2020.06.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023]
Abstract
Keratinocyte hyperproliferation is an essential link in skin cancer pathogenesis. Peroxiredoxin I (Prx I) is known to regulate cancer cell proliferation, differentiation, and apoptosis, but its role in skin cancer remains unclear. This study aimed to elucidate the role and mechanism of Prx I in skin cancer pathogenesis. Dimethylbenz[a]anthracene (DMBA) and 12-O-tetradecanoyl-phorbol-13-acetate (TPA) were used to create a skin tumor model of the initiation/promotion stage of cancer. The role of Prx I in H2O2-induced keratinocyte apoptosis was also investigated. After DMBA/TPA treatment, Prx I deficiency was significantly associated with less skin tumors, lower Bcl-2 expression, and higher p-p38 and cleaved caspase-3 expressions in Prx I knockout tumors than in wild-type controls. H2O2 stimulation caused more cellular apoptosis in Prx I knockdown HaCaT cells than in normal HaCaT cells. The signaling study revealed that Bcl-2, p-p38, and cleaved caspase-3 expressions were consistent with the results in the tumors. In conclusion, the deletion of Prx I triggered the DMBA/TPA-induced skin tumor formation in vivo and in vitro by regulating the reactive oxygen species (ROS)-p38 mitogen-activated protein kinase (MAPK) pathway. These findings provide a theoretical basis for treating skin cancer.
Collapse
Affiliation(s)
- Ying-Hao Han
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Yong-Qing Zhang
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Mei-Hua Jin
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Ying-Hua Jin
- Library and Information Center, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Mei-Yu Qiu
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Wei-Long Li
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Chao He
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Li-Yun Yu
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Jin Won Hyun
- Department of Biochemistry, School of Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jiyon Lee
- Department of Bioscience and Biotechnology, Research Institute of Bioactive-Metabolome Network, Konkuk University, Seoul, 05029, Republic of Korea; Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, 56216, Republic of Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Research Institute of Bioactive-Metabolome Network, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hu-Nan Sun
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, 56216, Republic of Korea.
| |
Collapse
|
12
|
Chen Q, Li J, Yang X, Ma J, Gong F, Liu Y. Prdx1 promotes the loss of primary cilia in esophageal squamous cell carcinoma. BMC Cancer 2020; 20:372. [PMID: 32357862 PMCID: PMC7195802 DOI: 10.1186/s12885-020-06898-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/23/2020] [Indexed: 12/16/2022] Open
Abstract
Background Loss of primary cilia is frequently observed in tumor cells, suggesting that the absence of this organelle may promote tumorigenesis through aberrant signal transduction, the inability to exit the cell cycle, and promotion of tumor cell invasion. Primary cilia loss also occurs in esophageal squamous cell carcinoma (ESCC) cells, but the molecular mechanisms that explain how ESCC cells lose primary cilia remain poorly understood. Methods Inhibiting the expression of Prdx1 in the ESCC cells to detect the up-regulated genes related to cilium regeneration and down-regulated genes related to cilium disassembly by Gene chip. And, mice and cell experiments were carried to confirm the role of the HEF1-Aurora A-HDAC6 signaling axis in ESCC. Results In this study, we found that silencing Peroxiredoxin 1 (Prdx1) restores primary cilia formation, and over-expressing Prdx1 induces primary cilia loss in ESCC cells. We also showed that the expression of Prdx1 regulates the action of the HEF1-Aurora A-HDAC6 signaling axis to promote the disassembly of primary cilia, and suppression of Prdx1 results in decreased tumor formation and tumor mass volume in vivo. Conclusions These results suggest that Prdx1 is a novel regulator of primary cilia formation in ESCC cells.
Collapse
Affiliation(s)
- Qiongzhen Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Jinmeng Li
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Xiaoning Yang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Junfeng Ma
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Fanghua Gong
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China.
| | - Yu Liu
- The first affiliated hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
13
|
Chen L, Huang C, Yang X, Zhang Q, Chen F. Prognostic roles of mRNA expression of peroxiredoxins in lung cancer. Onco Targets Ther 2018; 11:8381-8388. [PMID: 30568461 PMCID: PMC6267628 DOI: 10.2147/ott.s181314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background The peroxiredoxin (PRDX) protein family is involved in cancer cell invasion and metastasis, but its prognostic value in lung cancer remain elusive. Methods In this report, we accessed the overall survival (OS) of each individual PRDX mRNA expression through the Kaplan–Meier plotter (KM plotter) database, in which updated gene expression data and survival information include a total of 1,926 lung cancer patients. Results Our results indicated that PRDX1 and PRDX2 mRNA expressions were associated with improved OS in all lung cancer patients especially in lung adenocarcinoma patients, whereas PRDX5 and PRDX6 mRNA expressions were associated with poor OS in all lung cancer patients. In addition, the prognostic value of PRDXs in the different clinicopathological features according to smoking status, pathological grades, clinical stages, and chemotherapeutic treatment of lung cancer patients was further assessed in the KM plotter database by the multivariate cox regression analysis. Conclusion Our finding will elucidate the prognostic role of PRDXs in lung cancer and might promote development of PRDX-targeted inhibitors for the treatment of lung cancer.
Collapse
Affiliation(s)
- Liangyuan Chen
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, People's Republic of China, .,Department of Clinical Laboratory, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, People's Republic of China,
| | - Chunli Huang
- Department of Clinical Laboratory, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, People's Republic of China,
| | - Xiaojun Yang
- Department of Transfusion Medicine, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, People's Republic of China
| | - Qiuqin Zhang
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, People's Republic of China,
| | - Falin Chen
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, People's Republic of China, .,Department of Clinical Laboratory, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, People's Republic of China,
| |
Collapse
|
14
|
Zheng MJ, Wang J, Wang HM, Gao LL, Li X, Zhang WC, Gou R, Guo Q, Nie X, Liu JJ, Lin B. Decreased expression of peroxiredoxin1 inhibits proliferation, invasion, and metastasis of ovarian cancer cell. Onco Targets Ther 2018; 11:7745-7761. [PMID: 30464523 PMCID: PMC6223347 DOI: 10.2147/ott.s175009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Aim The aim of this study was to explore the expression of peroxiredoxin1 (PRDX1) in epithelial ovarian cancer, analyze the relationship between PRDX1 and clinicopathologic parameters of patients with ovarian cancer, including their prognosis, and describe changes and the mechanisms involved in malignant biologic behavior of ovarian cancer cells when PRDX1 expression is inhibited. Methods The expression of PRDX1 was detected immunohistochemically in 15 samples of normal ovarian tissue, 21 benign, 11 borderline, and 101 malignant epithelial ovarian tumors. Changes in ovarian cancer cell proliferation, invasion, and metastasis before and after inhibiting PRDX1 expression were assessed by cell function assay. Additionally, gene set enrichment analysis (GSEA) of PRDX1 was performed by the Cancer Genome Atlas database. A protein- protein interaction network was then constructed and a pathway function analysis of the genes in the network was conducted. Results PRDX1 expression was mainly localized to the cytoplasm, as well as the nucleus of cells. The expression rate of PRDX1 in epithelial ovarian malignant tissues (96.04%) was significantly higher than that in borderline (72.72%) and benign (57.14%) epithelial ovarian tumors, and normal ovarian tissue (20%; all P<0.05). Cox multivariate regression analysis indicated that advanced clinical stage, low tissue differentiation, and high expression of PRDX1 were independent risk factors affecting the prognosis of epithelial ovarian cancer (all P<0.05). Cell function assay verified that the decreased expression of PRDX1 inhibited ovarian cancer cell proliferation, invasion, and metastasis. GSEA analysis indicated that PRDX1 was significantly related to the Wnt signaling pathway. Western blot analysis confirmed that PRDX1 could regulate the expression of β-catenin in the Wnt pathway. Conclusion Decreased expression of PRDX1 can attenuate cell proliferation, invasion, and metastasis of ovarian cancer cells. The expression of PRDX1 is related to the prognosis of patients with ovarian cancer and can therefore be used as a biomarker.
Collapse
Affiliation(s)
- Ming-Jun Zheng
- Department of Gynaecology and Obstetrics, Shengjing Hospital Affiliated to China Medical University, Heping District, Shenyang 110004, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| | - Jing Wang
- Department of Gynaecology and Obstetrics, Shengjing Hospital Affiliated to China Medical University, Heping District, Shenyang 110004, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| | - Hui-Min Wang
- Department of Gynaecology and Obstetrics, Shengjing Hospital Affiliated to China Medical University, Heping District, Shenyang 110004, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| | - Ling-Ling Gao
- Department of Gynaecology and Obstetrics, Shengjing Hospital Affiliated to China Medical University, Heping District, Shenyang 110004, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| | - Xiao Li
- Department of Gynaecology and Obstetrics, Shengjing Hospital Affiliated to China Medical University, Heping District, Shenyang 110004, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| | - Wen-Chao Zhang
- Department of Gynaecology and Obstetrics, Shengjing Hospital Affiliated to China Medical University, Heping District, Shenyang 110004, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| | - Rui Gou
- Department of Gynaecology and Obstetrics, Shengjing Hospital Affiliated to China Medical University, Heping District, Shenyang 110004, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| | - Qian Guo
- Department of Gynaecology and Obstetrics, Shengjing Hospital Affiliated to China Medical University, Heping District, Shenyang 110004, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| | - Xin Nie
- Department of Gynaecology and Obstetrics, Shengjing Hospital Affiliated to China Medical University, Heping District, Shenyang 110004, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| | - Juan-Juan Liu
- Department of Gynaecology and Obstetrics, Shengjing Hospital Affiliated to China Medical University, Heping District, Shenyang 110004, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| | - Bei Lin
- Department of Gynaecology and Obstetrics, Shengjing Hospital Affiliated to China Medical University, Heping District, Shenyang 110004, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| |
Collapse
|
15
|
Abstract
SIGNIFICANCE Peroxiredoxins (Prxs), a family of thiol-associated peroxidases, are purported to play a major role in sensing and managing hydrogen peroxide concentrations and transducing peroxide-derived signals. Recent Advances: Prxs can act as detoxifying factors and impart effects to cells that can be either sparing or suicidal. Advances have been made to address the qualitative changes in Prx function in response to quantitative changes in the signal level and to understand how Prx activity could be affected by their own substrates. Here we rationalize the basis for both positive and negative effects on signaling pathways and cell physiology, summarizing data from model organisms, including invertebrates. CRITICAL ISSUES Resolving the relationship between the promiscuous behavior of reactive oxygen species and the specificity of Prxs toward different targets in redox-sensitive signaling pathways is a key area of research. Attempts to understand Prx function and underlying mechanisms were conducted in vitro or in vivo under nonphysiological conditions, leaving the physiological relevance yet to be defined. Other issues: Why despite the high degree of homology and similarities in subcellular and tissue distribution between Prxs do they display differential effects on signaling? How is the specificity of post-translational protein modifications determined? Other than chaperone-like activity, how do hyperoxidized Prxs function? FUTURE DIRECTIONS Genetic models with mutated catalytic and resolving cysteines should be further exploited to dissect the functional significance of individual Prxs in their different states together with their alternative reducing partners. Such an analysis may then be extended to help identify Prx-specific targets.
Collapse
Affiliation(s)
- Svetlana N Radyuk
- Department of Biological Sciences, Southern Methodist University , Dallas, Texas
| | - William C Orr
- Department of Biological Sciences, Southern Methodist University , Dallas, Texas
| |
Collapse
|
16
|
Yu W, Wu J, Ning ZL, Liu QY, Quan RL. High Expression of Peroxiredoxin 1 Is Associated with Epithelial-Mesenchymal Transition Marker and Poor Prognosis in Gastric Cancer. Med Sci Monit 2018; 24:2259-2270. [PMID: 29656298 PMCID: PMC5917825 DOI: 10.12659/msm.908722] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Recent studies show that peroxiredoxin 1 (Prdx1) contributes to the progression and poor prognosis of carcinoma through multiple mechanisms. However, there is little information on its expression and prognostic value in gastric cancer. This study investigated the expression of Prdx1 in gastric cancer, along with evaluating its clinical-pathological and prognostic importance. Material/Methods A total of 189 pairs of gastric cancer and paracarcinomatous tissues were assessed for Prdx1 expression and its association with clinical characteristics. The molecular mechanism was further investigated through in vitro experimentation. Results The mRNA and protein levels of Prdx1 in the GC tissues were higher than in the peri-tumor tissues. We also found that high Prdx1 expression was positively correlated with the lymph node invasion and poor prognosis. It also served as an autonomous prognostic factor for patients with gastric cancer. Moreover, Prdx1 regulates the invasion and metastasis of GC cell lines through inhibiting E-Ca expression. Conclusions Prdx1 can promote epithelial-mesenchymal transition and gastric cancer progression. Therefore, it might be a therapeutic target and prognostic indicator for gastric cancer patients.
Collapse
Affiliation(s)
- Wei Yu
- Department of Gastrointestinal Surgery, Anhui Provincial Cancer Hospital, Hefei, Anhui, China (mainland)
| | - Jing Wu
- Department of Pathology, Anhui Provincial Cancer Hospital, Hefei, Anhui, China (mainland)
| | - Zhong-Liang Ning
- Department of Gastrointestinal Surgery, Anhui Provincial Cancer Hospital, Hefei, Anhui, China (mainland)
| | - Qiao-Yu Liu
- Department of Gastrointestinal Surgery, Anhui Provincial Cancer Hospital, Hefei, Anhui, China (mainland)
| | - Rui-Liang Quan
- Department of Gastrointestinal Surgery, Anhui Provincial Cancer Hospital, Hefei, Anhui, China (mainland)
| |
Collapse
|
17
|
Li HX, Sun XY, Yang SM, Wang Q, Wang ZY. Peroxiredoxin 1 promoted tumor metastasis and angiogenesis in colorectal cancer. Pathol Res Pract 2018; 214:655-660. [PMID: 29673884 DOI: 10.1016/j.prp.2018.03.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/17/2018] [Accepted: 03/31/2018] [Indexed: 12/18/2022]
Abstract
Peroxiredoxin1 (Prdx1) is a member of the PrdxS family, and it regulates cellular signaling and differentiation. The role of Prdx1in colorectal cancer (CRC) remains unclear. In this study, we investigated the relevance of Prdx1 in the metastasis and angiogenesis of CRC. The expression of Prdx1 in 60 cases human CRC tissues was detected through immunohistochemistry. The tumors that highly expressed Prdx1 (42/60) exhibited higher tumor grade and lymph node metastasis than those with low expression of Prdx1 (18/60) (p < 0.05). Kaplan-Meier survival analysis showed that the survival time of thePrdx1-positive group was shorter than that of thePrdx1-negative group (p = 0.046).Moreover, a statistically significant correlation was observed between the Prdx1 expression and microvessel density (p = 0.004). Transwell migration assay revealed that Prdx1 was down-regulated in the CRC cell line HCT116, thereby suppressing the invasion and migration capacities of tumor cells, whereas Prdx1was up-regulated in HT29 cells, thereby increasing the invasion and migration capacities of tumor cells. The tube formation capacity of human umbilical vein endothelial cells cultured in 3D medium was increased after conditioned medium from overexpressed Prdx1cancer cells was added relative to that when down-regulated Prdx1 cell medium was added (p < 0.05). In addition, up-regulated Prdx1 increased the protein expression of MMP2, MMP9, and VEGFA. These data suggested that Prdx1 expression predicted poor prognosis by regulating the tumor metastasis and angiogenesis of CRC. Therefore, Prdx1 may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Huan-Xi Li
- Department of Minimally Invasive Surgery, Tianjin Nankai Hospital, Tianjin, 300100, PR China.
| | - Xiang-Yu Sun
- Department of Minimally Invasive Surgery, Tianjin Nankai Hospital, Tianjin, 300100, PR China
| | - Shi-Ming Yang
- Department of Gastrointestinal Surgery of Tianjin Nankai Hospital, Tianjin, 300100, PR China
| | - Qing Wang
- Department of Minimally Invasive Surgery, Tianjin Nankai Hospital, Tianjin, 300100, PR China
| | - Zhen-Yu Wang
- Department of Minimally Invasive Surgery, Tianjin Nankai Hospital, Tianjin, 300100, PR China
| |
Collapse
|
18
|
Fang Y, He J, Janssen HLA, Wu J, Dong L, Shen XZ. Peroxiredoxin 1, restraining cell migration and invasion, is involved in hepatocellular carcinoma recurrence. J Dig Dis 2018; 19:155-169. [PMID: 29377617 DOI: 10.1111/1751-2980.12580] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/15/2018] [Accepted: 01/23/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) is a high-burden disease. Peroxiredoxin 1 (PRDX1) is a member of the peroxiredoxin family of antioxidant enzymes. The aim of this study was to assess the value of PRDX1 for predicting HCC recurrence after curative resection and to explore the role of PRDX1 in HCC cell migration and invasion. METHODS Data of patients with HCC who had undergone complete resection between 2002 and 2006 were collected. Immunohistochemical detection of PRDX1 in HCC tissue and adjacent non-cancerous tissue was conducted. Kaplan-Meier survival estimate and log-rank test were used to assess the relationship between PRDX1 expression and prognostic significance. HCC cell migration and invasion together with the interaction between PRDX1 and ubiquitin C-terminal hydrolase 37 (UCH37) were studied in vitro. RESULTS PRDX1 was expressed at lower levels in HCC tissues than in adjacent non-cancerous tissues, and PRDX1 was found to be an independent risk factor for disease-free survival and overall survival. PRDX1 restrained cell migration and invasion in vitro. PRDX1 was found to interact with UCH37 to affect HCC cell migration and invasion. CONCLUSION PRDX1 restrains cell migration and invasion in HCC cell lines and that may be involved in a UCH37-relevant pathway, suggesting that PRDX1 may be a new marker for HCC recurrence after surgery.
Collapse
Affiliation(s)
- Ying Fang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Juan He
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Harry L A Janssen
- Francis Family Liver Clinic, University of Toronto & University Health Network, Toronto, Canada
| | - Jian Wu
- Key Laboratory of Medical Molecule Virology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ling Dong
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xi Zhong Shen
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Hampton MB, Vick KA, Skoko JJ, Neumann CA. Peroxiredoxin Involvement in the Initiation and Progression of Human Cancer. Antioxid Redox Signal 2018; 28:591-608. [PMID: 29237274 PMCID: PMC9836708 DOI: 10.1089/ars.2017.7422] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
SIGNIFICANCE It has been proposed that cancer cells are heavily dependent on their antioxidant defenses for survival and growth. Peroxiredoxins are a family of abundant thiol-dependent peroxidases that break down hydrogen peroxide, and they have a central role in the maintenance and response of cells to alterations in redox homeostasis. As such, they are potential targets for disrupting tumor growth. Recent Advances: Genetic disruption of peroxiredoxin expression in mice leads to an increased incidence of neoplastic disease, consistent with a role for peroxiredoxins in protecting genomic integrity. In contrast, many human tumors display increased levels of peroxiredoxin expression, suggesting that strengthened antioxidant defenses provide a survival advantage for tumor progression. Peroxiredoxin inhibitors are being developed and explored as therapeutic agents in different cancer models. CRITICAL ISSUES It is important to complement peroxiredoxin knockout and expression studies with an improved understanding of the biological function of the peroxiredoxins. Although current results can be interpreted within the context that peroxiredoxins scavenge hydroperoxides, some peroxiredoxin family members appear to have more complex roles in regulating the response of cells to oxidative stress through protein interactions with constituents of other signaling pathways. FUTURE DIRECTIONS Further mechanistic information is required for understanding the role of oxidative stress in cancer, the function of peroxiredoxins in normal versus cancer cells, and for the design and testing of specific peroxiredoxin inhibitors that display selectivity to malignant cells. Antioxid. Redox Signal. 28, 591-608.
Collapse
Affiliation(s)
- Mark B Hampton
- 1 Department of Pathology, Centre for Free Radical Research, University of Otago , Christchurch, Christchurch, New Zealand
| | - Kate A Vick
- 1 Department of Pathology, Centre for Free Radical Research, University of Otago , Christchurch, Christchurch, New Zealand
| | - John J Skoko
- 2 Womens Cancer Research Center, University of Pittsburgh Cancer Center , Pittsburgh, Pennsylvania.,3 Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Carola A Neumann
- 2 Womens Cancer Research Center, University of Pittsburgh Cancer Center , Pittsburgh, Pennsylvania.,3 Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
20
|
Niu W, Zhang M, Chen H, Wang C, Shi N, Jing X, Ge L, Chen T, Tang X. Peroxiredoxin 1 promotes invasion and migration by regulating epithelial-to-mesenchymal transition during oral carcinogenesis. Oncotarget 2018; 7:47042-47051. [PMID: 27259998 PMCID: PMC5216922 DOI: 10.18632/oncotarget.9705] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 05/20/2016] [Indexed: 01/22/2023] Open
Abstract
Tobacco smoking is the major risk factor for oral squamous cell carcinoma (OSCC). Previously, we found that nicotine up-regulates peroxiredoxin 1 (Prx1), an important antioxidant enzyme, and nuclear factor kappa B (NFκB) in OSCC cells. However, the molecular mechanism of Prx1 in oral carcinogenesis remains obscure. To improve our understanding of the functional role of Prx1 during the cascade of tobacco-associated oral carcinogenesis, we characterized Prx1, NFκB, and epithelial-to-mesenchymal transition (EMT) markers including E-cadherin, vimentin and Snail in 30 primary oral tumors (15 from smokers with OSCC and 15 from non-smokers with OSCC) and 10 normal oral mucosa specimens from healthy individuals. The expression levels of Prx1, nuclear NFκB, vimentin and Snail were higher in the tumors from smokers with OSCC than in those from non-smokers with OSCC or the healthy controls. The expression levels of E-cadherin showed an opposite trend. Prx1 silencing suppressed the nicotine-induced EMT, cell invasion and migration in SCC15 cells in vitro. Furthermore, Prx1 activated the NFκB pathway in SCC15 cells. Prx1 might therefore play an oncogenic role in tobacco-related OSCC and thus serve as a target for chemopreventive and therapeutic interventions.
Collapse
Affiliation(s)
- Wenwen Niu
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Dongcheng District, Beijing, China
| | - Min Zhang
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Dongcheng District, Beijing, China
| | - Hui Chen
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Dongcheng District, Beijing, China
| | - Chunxiao Wang
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Dongcheng District, Beijing, China
| | - Ni Shi
- Division of Medical Oncology, Department of Internal Medicine, The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Xinying Jing
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Dongcheng District, Beijing, China
| | - Lihua Ge
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Dongcheng District, Beijing, China
| | - Tong Chen
- Division of Medical Oncology, Department of Internal Medicine, The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Xiaofei Tang
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Dongcheng District, Beijing, China
| |
Collapse
|
21
|
Gong F, Wang J, Li J. Isolation and characterization of peroxiredoxin 1 gene of Dunaliella salina. Gene 2017; 635:39-45. [DOI: 10.1016/j.gene.2017.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/05/2017] [Accepted: 09/08/2017] [Indexed: 10/18/2022]
|
22
|
Chen X, Lan K, Liu Q, Yang X, Wang H. Sulfiredoxin may promote metastasis and invasion of cervical squamous cell carcinoma by epithelial-mesenchymal transition. Tumour Biol 2017; 39:1010428317695942. [PMID: 28351308 DOI: 10.1177/1010428317695942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Sulfiredoxin (Srx), a novel oxidative stress-induced antioxidant protein, has been reported to be expressed in several human tumour tissues. However, the expression and functions of Srx in cervical squamous cell carcinoma remain unknown. Here, we proved that expression of Srx was upregulated in cervical tissues as revealed by immunohistochemistry, and revealed a close correlation between the protein's expression and the expression level of one core epithelial-mesenchymal transition marker, E-cadherin. We demonstrated that Srx was overexpressed in cervical squamous cell carcinoma and its expression level was closely correlated with lymph node metastasis and invasion of cervical squamous cell carcinoma. Meanwhile, Srx expression was negatively correlated with E-cadherin expression. The remission time (tumour-free status after surgery) of the Srx strong staining group was significantly shorter than that of the Srx weak staining group. We silenced Srx by short hairpin RNA in HeLa and SiHa cells. Diminished Srx expression upregulated E-cadherin expression. The cell invasion and migration activity in the ShSrx group were obviously decreased in HeLa and SiHa cells. Moreover, Srx regulated the expression of the other marker of epithelial-mesenchymal transition, vimentin. In conclusion, the study suggested that Srx was highly expressed in cervical squamous cell carcinoma and may promote invasion and metastasis of cervical squamous cell carcinoma via regulating epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Kangyun Lan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Qin Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xue Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Hui Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
23
|
Nicolussi A, D'Inzeo S, Capalbo C, Giannini G, Coppa A. The role of peroxiredoxins in cancer. Mol Clin Oncol 2017; 6:139-153. [PMID: 28357082 PMCID: PMC5351761 DOI: 10.3892/mco.2017.1129] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/17/2016] [Indexed: 12/11/2022] Open
Abstract
Peroxiredoxins (PRDXs) are a ubiquitously expressed family of small (22–27 kDa) non-seleno peroxidases that catalyze the peroxide reduction of H2O2, organic hydroperoxides and peroxynitrite. They are highly involved in the control of various physiological functions, including cell growth, differentiation, apoptosis, embryonic development, lipid metabolism, the immune response, as well as cellular homeostasis. Although the protective role of PRDXs in cardiovascular and neurological diseases is well established, their role in cancer remains controversial. Increasing evidence suggests the involvement of PRDXs in carcinogenesis and in the development of drug resistance. Numerous types of cancer cells, in fact, are characterized by an increase in reactive oxygen species (ROS) production, and often exhibit an altered redox environment compared with normal cells. The present review focuses on the complex association between oxidant balance and cancer, and it provides a brief account of the involvement of PRDXs in tumorigenesis and in the development of chemoresistance.
Collapse
Affiliation(s)
- Arianna Nicolussi
- Department of Experimental Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| | - Sonia D'Inzeo
- Department of Experimental Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| | - Carlo Capalbo
- Department of Molecular Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| | - Anna Coppa
- Department of Experimental Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| |
Collapse
|
24
|
Zhu Z, Zheng X, Li D, Wang T, Xu R, Piao H, Liu K. Prx1 promotes the proliferation and migration of vascular smooth muscle cells in a TLR4-dependent manner. Mol Med Rep 2016; 15:345-351. [DOI: 10.3892/mmr.2016.5987] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 08/02/2016] [Indexed: 11/06/2022] Open
|
25
|
Ding C, Fan X, Wu G. Peroxiredoxin 1 - an antioxidant enzyme in cancer. J Cell Mol Med 2016; 21:193-202. [PMID: 27653015 PMCID: PMC5192802 DOI: 10.1111/jcmm.12955] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/17/2016] [Indexed: 12/11/2022] Open
Abstract
Peroxiredoxins (PRDXs), a ubiquitous family of redox‐regulating proteins, are reported of potential to eliminate various reactive oxygen species (ROS). As a major member of the antioxidant enzymes, PRDX1 can become easily over‐oxidized on its catalytically active cysteine induced by a variety of stimuli in vitro and in vivo. In nucleus, oligomeric PRDX1 directly associates with p53 or transcription factors such as c‐Myc, NF‐κB and AR, and thus affects their bioactivities upon gene regulation, which in turn induces or suppresses cell death. Additionally, PRDX1 in cytoplasm has anti‐apoptotic potential through direct or indirect interactions with several ROS‐dependent (redox regulation) effectors, including ASK1, p66Shc, GSTpi/JNK and c‐Abl kinase. PRDX1 is proven to be a versatile molecule regulating cell growth, differentiation and apoptosis. Recent studies have found that PRDX1 and/or PRDX1‐regulated ROS‐dependent signalling pathways play an important role in the progression and metastasis of human tumours, particularly in breast, oesophageal and lung cancers. In this paper, we review the structure, effector functions of PRDX1, its role in cancer and the pivotal role of ROS in anticancer treatment.
Collapse
Affiliation(s)
- Chenbo Ding
- Medical School of Southeast University, Nanjing, China
| | - Xiaobo Fan
- Medical School of Southeast University, Nanjing, China
| | - Guoqiu Wu
- Medical School of Southeast University, Nanjing, China.,Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
26
|
Kong FF, Zhu YL, Yuan HH, Wang JY, Zhao M, Gong XD, Liu F, Zhang WY, Wang CR, Jiang B. FOXM1 regulated by ERK pathway mediates TGF-β1-induced EMT in NSCLC. Oncol Res 2015; 22:29-37. [PMID: 25700356 PMCID: PMC7592790 DOI: 10.3727/096504014x14078436004987] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
FOXM1, a member of the Forkhead transcriptional family, plays an important role in the EMT process, and transforming growth factor-β1 (TGF-β1) has been identified as the most potent factor that can independently induce EMT in various types of cancer cells. Here we examine the important role of FOXM1 in TGF-β1-induced EMT and investigate the mechanism underlying the relationship between TGF-β1 and FOXM1. Lentivirus-mediated transfection was used to stably upregulate the expression of FOXM1, and a small interfering RNA (siRNA) was introduced to silence the expression of FOXM1. Transwell and wound-healing assays were then performed to assess the invasion and motility potential of non-small cell lung cancer (NSCLC) cells. The NSCLC cell lines exhibited EMT characteristics, including an elongated fibroblastoid shape, induced expression of EMT marker proteins, and increased migratory and invasive potential after induction with TGF-β1. The overexpression of FOXM1 enhanced TGF-β1-induced EMT in NSCLC cells. Knockdown of FOXM1 reversed TGF-β1-induced EMT in NSCLC cell lines but had no effect on the phosphorylation level of ERK. Additionally, U0126, an ERK signaling inhibitor, exerted a reversible effect on TGF-β1-induced EMT and inhibited FOXM1 expression. FOXM1 regulated by the ERK pathway can mediate TGF-β1-induced EMT in NSCLC and is a potential target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Fei-Fei Kong
- Department of Oncology, Shanghai 3rd Peoples Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - You-Long Zhu
- Department of General Surgery, Shanghai 3rd Peoples Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Hai-Hua Yuan
- Department of Oncology, Shanghai 3rd Peoples Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Jiong-Yi Wang
- Department of Oncology, Shanghai 3rd Peoples Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Mei Zhao
- Department of Oncology, Shanghai 3rd Peoples Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Xiao-Di Gong
- Department of Oncology, Shanghai 3rd Peoples Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Feng Liu
- Department of Oncology, Shanghai 3rd Peoples Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Wen-Ying Zhang
- Department of Oncology, Shanghai 3rd Peoples Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Cong-Rong Wang
- Metabolic Disease Bio-Bank, Shanghai Jiao Tong University Affiliated Sixth Peoples Hospital, Shanghai Diabetes Institute,Shanghai Key Laboratory of Diabetes MellitusShanghaiChina
| | - Bin Jiang
- Department of Oncology, Shanghai 3rd Peoples Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
27
|
Sun YL, Cai JQ, Liu F, Bi XY, Zhou LP, Zhao XH. Aberrant expression of peroxiredoxin 1 and its clinical implications in liver cancer. World J Gastroenterol 2015; 21:10840-10852. [PMID: 26478675 PMCID: PMC4600585 DOI: 10.3748/wjg.v21.i38.10840] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/02/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression characteristics of peroxiredoxin 1 (PRDX1) mRNA and protein in liver cancer cell lines and tissues.
METHODS: The RNA sequencing data from 374 patients with liver cancer were obtained from The Cancer Genome Atlas. The expression and clinical characteristics of PRDX1 mRNA were analyzed in this dataset. The Kaplan-Meier and Cox regression survival analysis was performed to determine the relationship between PRDX1 levels and patient survival. Subcellular fractionation and Western blotting were used to demonstrate the expression of PRDX1 protein in six liver cancer cell lines and 29 paired fresh tissue specimens. After bioinformatics prediction, a putative post-translational modification form of PRDX1 was observed using immunofluorescence under confocal microscopy and immunoprecipitation analysis in liver cancer cells.
RESULTS: The mRNA of PRDX1 gene was upregulated about 1.3-fold in tumor tissue compared with the adjacent non-tumor control (P = 0.005). Its abundance was significantly higher in men than women (P < 0.001). High levels of PRDX1 mRNA were associated with a shorter overall survival time (P = 0.04) but not with recurrence-free survival. The Cox regression analysis demonstrated that patients with high PRDX1 mRNA showed about 1.9-fold increase of risk for death (P = 0.03). In liver cancer cells, PRDX1 protein was strongly expressed with multiple different bands. PRDX1 in the cytosol fraction existed near the theoretical molecular weight, whereas two higher molecular weight bands were present in the membrane/organelle and nuclear fractions. Importantly, the theoretical PRDX1 band was increased, whereas the high molecular weight form was decreased in tumor tissues. Subsequent experiments revealed that the high molecular weight bands of PRDX1 might result from the post-translational modification by small ubiquitin-like modifier-1 (SUMO1).
CONCLUSION: PRDX1 was overexpressed in the tumor tissues of liver cancer and served as an independent poor prognostic factor for overall survival. PRDX1 can be modified by SUMO to play specific roles in hepatocarcinogenesis.
Collapse
|
28
|
Mishra M, Jiang H, Wu L, Chawsheen HA, Wei Q. The sulfiredoxin-peroxiredoxin (Srx-Prx) axis in cell signal transduction and cancer development. Cancer Lett 2015; 366:150-9. [PMID: 26170166 DOI: 10.1016/j.canlet.2015.07.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/06/2015] [Accepted: 07/04/2015] [Indexed: 12/13/2022]
Abstract
Redox signaling is a critical component of cell signaling pathways that are involved in the regulation of cell growth, metabolism, hormone signaling, immune regulation and variety of other physiological functions. Peroxiredoxin (Prx) is a family of thiol-based peroxidase that acts as a regulator of redox signaling. Members of Prx family can act as antioxidants and chaperones. Sulfiredoxin (Srx) is an antioxidant protein that exclusively reduces over-oxidized typical 2-Cys Prx. Srx has different affinities for individual Prx and it also catalyzes the deglutathionylation of variety of substrates. Individual component of the Srx-Prx system plays critical role in carcinogenesis by modulating cell signaling pathways involved in cell proliferation, migration and metastasis. Expression levels of individual component of the Srx-Prx axis have been correlated with patient survival outcome in multiple cancer types. This review will summarize the molecular basis of differences in the affinity of Srx for individual Prx and the role of individual component of the Srx-Prx system in tumor progression and metastasis. This enhanced understanding of molecular aspects of Srx-Prx interaction and its role in cell signal transduction will help define the Srx-Prx system as a future therapeutic target in human cancer.
Collapse
Affiliation(s)
- Murli Mishra
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Hong Jiang
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Lisha Wu
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Hedy A Chawsheen
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Qiou Wei
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
29
|
Fu R, Zhang XR, Liao M, Fu DY. Proteomic identification of differentially expressed proteins in rat hepatocarcinogenesis using iTRAQ technology. Shijie Huaren Xiaohua Zazhi 2015; 23:1873-1882. [DOI: 10.11569/wcjd.v23.i12.1873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To identify differentially expressed proteins in rat hepatocarcinogenesis.
METHODS: Sprague-Dawley rats were randomly divided into a diethylinitrosamine (DEN) group and a normal control group. The DEN group was administrated 0.01% DEN solution in water for 18 wk, and the control group was given vehicle. The animals were sacrificed at the end of the 4th, 10th, 12th, or 18th week. Liver tissue proteins were quantified and identified using the isobaric tags for relative an absolute quantitation (iTRAQ) technology with two dimensional liquid chromatography-tandem mass spectrometry (2DLC-MS/MS). The functions of differentially expressed proteins were analyzed by bioinformatics.
RESULTS: A total of 530 proteins were identified by MS, and the numbers of differentially expressed proteins at the four time points were 128, 113, 106 and 127, respectively. Forty-nine proteins were identified simultaneously at two or more time points, of which 37 were up-regulated and 12 down-regulated. Bioinformatics analysis indicated that differentially expressed proteins are associated with post-translational modification, transcription, recombination and signal transduction pathways.
CONCLUSION: The protein changes in the process of rat hepatocarcinogenesis can be observed dynamically by iTRAQ combined with LC-ESI-MS/MS. Six proteins (peroxiredoxin-1, peroxiredoxin-2, thiosulfate sulfurtransferase, eukaryotic translation initiation factor 3 subunit b, alpha-2-HS-glycoprotein, and superoxide dismutase 1) are associated closely with hepatic fibrosis or hepatic carcinoma, and they may play critical roles in hepatocarcinogenesis.
Collapse
|
30
|
Cai CY, Zhai LL, Wu Y, Tang ZG. Expression and clinical value of peroxiredoxin-1 in patients with pancreatic cancer. Eur J Surg Oncol 2014; 41:228-35. [PMID: 25434328 DOI: 10.1016/j.ejso.2014.11.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/09/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Peroxiredoxin-1 (Prx-1) is an important protector for redox damage and its abnormal expression is continually reported in various tumors. This study aims to investigate the expression status of Prx-1 and evaluate its clinical value in pancreatic cancer. METHODOLOGY Immunohistochemistry was used to detect Prx-1 expression in pancreatic cancer tissues and para-cancerous tissues. Enzyme-linked immunosorbent assay (ELISA) method was applied to detect the serum Prx-1 levels. RESULTS The immunohistochemical results indicated that positive rate of Prx-1 was (p < 0.05) higher in pancreatic cancer tissues (74.4%) than in para-cancerous tissues (37.2%). Prx-1 expression was positively correlated with vascular endothelial growth factor (VEGF) and microvessel density (MVD) in cancer tissues. The ELISA results showed that patients with pancreatic cancer had a higher serum Prx-1 level than healthy subjects (31.2 ± 13.5 vs. 13.2 ± 11.9 ng/ml, p < 0.001). Prx-1 expression was correlated with aggressive clinicopathological parameter. The combination of serum Prx-1 and CA19-9, the area under the curve (AUC) was significantly higher than Prx-1 separate. Positive Prx-1 expression was correlated with disappointing overall survival (OS) (p = 0.002) and disease-free survival (DFS) (p < 0.001). Multivariate analysis showed that Prx-1 staining as an independent biomarker of poor OS (p = 0.035) and DFS (p < 0.001). CONCLUSION These findings suggest that the levels of Prx-1 expression are significantly increased in pancreatic cancer. The up-regulated Prx-1 is closely related to tumor angiogenesis and acts as a promising tumor marker for diagnosis and prognosis of pancreatic cancer.
Collapse
Affiliation(s)
- C-Y Cai
- Department of General Surgery, Anhui Provincial Hospital Affiliated with Anhui Medical University, No. 17 Lujiang Road, Hefei 230001, Anhui Province, People's Republic of China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, No. 17 Lujiang Road, Hefei 230001, Anhui Province, People's Republic of China
| | - L-L Zhai
- Department of General Surgery, Anhui Provincial Hospital Affiliated with Anhui Medical University, No. 17 Lujiang Road, Hefei 230001, Anhui Province, People's Republic of China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, No. 17 Lujiang Road, Hefei 230001, Anhui Province, People's Republic of China.
| | - Y Wu
- Department of General Surgery, Anhui Provincial Hospital Affiliated with Anhui Medical University, No. 17 Lujiang Road, Hefei 230001, Anhui Province, People's Republic of China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, No. 17 Lujiang Road, Hefei 230001, Anhui Province, People's Republic of China
| | - Z-G Tang
- Department of General Surgery, Anhui Provincial Hospital Affiliated with Anhui Medical University, No. 17 Lujiang Road, Hefei 230001, Anhui Province, People's Republic of China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, No. 17 Lujiang Road, Hefei 230001, Anhui Province, People's Republic of China.
| |
Collapse
|
31
|
Wang H, Sit WH, Tipoe GL, Wan JMF. Differential protective effects of extra virgin olive oil and corn oil in liver injury: a proteomic study. Food Chem Toxicol 2014; 74:131-8. [PMID: 25303780 DOI: 10.1016/j.fct.2014.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 08/30/2014] [Accepted: 09/02/2014] [Indexed: 12/27/2022]
Abstract
Extra virgin olive oil (EVOO) presents benefits against chronic liver injury induced by hepatotoxins such as carbon tetrachloride (CCl4); however, the protective mechanisms remain unclear. In the present study, a two-dimensional gel based proteomic approach was constructed to explore the mechanisms. Rats are injected with CCl4 twice a week for 4 weeks to induce liver fibrosis, and were fed laboratory chow plus 20% (w/w) of either corn oil or EVOO over the entire experimental period. Histological staining, MDA assay and fibrogenesis marker gene analysis illustrate that the CCl4-treated animals fed EVOO have a lower fibrosis and lipid peroxidation level in the liver than the corn oil fed group. The proteomic study indicates that the protein expression of thioredoxin domain-containing protein 12, peroxiredoxin-1, thiosulphate sulphurtransferase, calcium-binding protein 1, Annexin A2 and heat shock cognate 71 kDa protein are higher in livers from EVOO-fed rats with the CCl4 treatment compared with those from rats fed with corn oil, whereas the expression of COQ9, cAMP-dependent protein kinase type I-alpha regulatory subunit, phenylalanine hydroxylase and glycerate kinase are lower. Our findings confirmed the benefits of EVOO against chronic liver injury, which may be attributable to the antioxidant effects, hepatocellular function regulation and hepatic metabolism modification effects of EVOO.
Collapse
Affiliation(s)
- Hualin Wang
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China; Food and Nutrition Division, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Wat-Hung Sit
- Food and Nutrition Division, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - George Lim Tipoe
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jennifer Man-Fan Wan
- Food and Nutrition Division, School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
32
|
Teruya R, Ikejiri AT, Somaio Neto F, Chaves JC, Bertoletto PR, Taha MO, Fagundes DJ. Expression of oxidative stress and antioxidant defense genes in the kidney of inbred mice after intestinal ischemia and reperfusion. Acta Cir Bras 2014; 28:848-55. [PMID: 24316858 DOI: 10.1590/s0102-86502013001200007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/26/2013] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To determine the gene expressions profile related to the oxidative stress and the antioxidant response in the kidneys of mice subjected to intestinal ischemia and reperfusion. METHODS Twelve inbred mice (C57BL/6) were randomly assigned to one of two groups: the control group (CG) underwent anesthesia and was observed for 120 min and the ischemia/reperfusion group (IRG), animals were anesthetized and subjected to laparotomy and ischemia for 60 minutes followed by 60 minutes of reperfusion. The expressions of 84 genes from the kidney were determined by the Reverse Transcription qualitative Polymerase Chain Reaction (RT-qPCR). All genes that were up regulated by more than threefold using the algorithm [2(ΔΔCt)] were considered statically significant (p<0.05). RESULTS In the IRG group 29 (34.52%) of 84 genes, were up regulated by more than threefold. The genes that were differentially up regulated in the glutathione peroxidase cluster (10 genes): were Gpx2 and Gpx7. The genes that were up regulated in the peroxidase cluster (16 genes) were following: Duox1, Epx, Lpo, Mpo, Ptgs2, Rag2, Serpinb1b, Tmod1 and Tpo. The genes that up regulated in the reactive oxygen species cluster (16 genes): Il19, Il22, Nos2, Nox1, Noxa1, Noxo1, Recql4 and Sod2. The genes that were up regulated in the oxidative stress cluster (22 genes) were: Mpp4, Nudt15, Upc3 and Xpa. The genes that were up regulated in the oxygen carriers cluster (12 genes) were: Hbq1, Mb, Ngb, Slc38a1 and Xirp1. The peroxiredoxins genes (10) showed no consistent differential regulation. CONCLUSION The genes related to oxidative stress and antioxidant defense showed increased expression in renal tissue trigged intestinal ischemia and reperfusion.
Collapse
|
33
|
FENG JIHONG, FU ZHONGXUE, GUO JINBAO, LU WEIDONG, WEN KUNMING, CHEN WANGSHENG, WANG HAO, WEI JILAI, ZHANG SHOURU. Overexpression of peroxiredoxin 2 inhibits TGF-β1-induced epithelial-mesenchymal transition and cell migration in colorectal cancer. Mol Med Rep 2014; 10:867-73. [DOI: 10.3892/mmr.2014.2316] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/28/2014] [Indexed: 11/06/2022] Open
|
34
|
Akt-mediated transforming growth factor-β1-induced epithelial-mesenchymal transition in cultured human esophageal squamous cancer cells. Cancer Gene Ther 2014; 21:238-45. [PMID: 24874843 DOI: 10.1038/cgt.2014.23] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/19/2014] [Indexed: 12/28/2022]
Abstract
Epithelial-mesenchymal transition (EMT) has a crucial role during embryonic development and has also come under intense scrutiny as a mechanism through which esophageal squamous cell cancer (ESCC) progresses to become metastatic. Transforming growth factor beta (TGF-β)-mediated EMT has been observed in a variety of cell types and has been identified as the main inducer of EMT in many types of cancer. Akt activity is involved in TGF-β-mediated EMT; however, its precise relationship and role in EMT in ESCC has not been well explained to date. Our data demonstrated that in human ESCC tissues Akt and its activated form, phosphorylated-Akt (p-Akt), were overexpressed; in addition, Akt and p-Akt were negatively correlated with epithelial cadherin (E-cadherin). In EC-9706 cells, exogenous TGF-β1 could induce EMT and at the same time could increase the EC-9706 cell invasive and metastatic ability. Moreover, Akt knockdown by small-interfering RNA could attenuate the EMT induced by TGF-β1 by increasing the epithelial marker E-cadherin and decreasing the mesenchymal marker Vimentin. Silencing Akt expression could decrease the migration ability of EC-9706 cells efficiently. In short, Akt is likely to have a more important role in the EMT induced by TGF-β1 in EC-9706 and may contribute to the invasive and metastatic ability of EC-9706. Akt may be an effective therapeutic in advanced and metastatic ESCC.
Collapse
|
35
|
Sun QK, Zhu JY, Wang W, Lv Y, Zhou HC, Yu JH, Xu GL, Ma JL, Zhong W, Jia WD. Diagnostic and prognostic significance of peroxiredoxin 1 expression in human hepatocellular carcinoma. Med Oncol 2013; 31:786. [PMID: 24297309 DOI: 10.1007/s12032-013-0786-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 11/24/2013] [Indexed: 12/23/2022]
Abstract
Peroxiredoxin 1 (Prdx1) is a member of the peroxiredoxin family of antioxidant enzymes and implicated in cell differentiation, proliferation, and apoptosis. The aim of the present study was to determine the expression and diagnostic and prognostic significance of Prdx1 in human hepatocellular carcinoma (HCC). Prdx1 expression was examined in 76 HCC patients and 20 healthy volunteers. The relationships between Prdx1 expression and clinicopathological features were analyzed. Receiver operating characteristics analysis was used to calculate the diagnostic accuracy of serum Prdx1, serum alpha-fetoprotein (AFP), and their combination. The prognostic impact of Prdx1 on overall survival (OS) and disease-free survival (DFS) of HCC patients was investigated. Prdx1-positive rate was significantly (p < 0.05) higher in HCC (77.1 %) than in adjacent non-tumorous liver tissues (18.4 %). Prdx1 immunoreactivity was positively correlated with tumor vascular endothelial growth factor expression and microvessel density. Prdx1 expression was significantly associated with tumor size, microvascular invasion, Edmondson grade, tumor capsula status, serum AFP, and tumor-node-metastasis stage. The combination of serum Prdx1 and AFP had a markedly higher area under the curve than serum Prdx1 alone. Positive Prdx1 expression was associated with unfavorable OS (p = 0.004) and DFS (p = 0.001). Multivariate analysis revealed intra-tumoral Prdx1 staining as an independent poor prognostic marker for OS (p = 0.006) and DFS (p = 0.002). Taken together, our data suggest that increased Prdx1 expression is associated with tumor angiogenesis and progression in HCC and serves as a promising biomarker for detection and prognosis of this malignancy.
Collapse
Affiliation(s)
- Qi-Kai Sun
- Department of Hepatic Surgery, Anhui Provincial Hospital, Anhui Medical University, Hefei, 230001, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ren J, Wang R, Huang G, Song H, Chen Y, Chen L. sFRP1 inhibits epithelial-mesenchymal transition in A549 human lung adenocarcinoma cell line. Cancer Biother Radiopharm 2013; 28:565-71. [PMID: 23802127 DOI: 10.1089/cbr.2012.1453] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) plays an important role in tumor metastasis of human nonsmall cell lung cancer (NSCLC). The Wnt pathway is identified as a key regulator of normal tissue development, and its aberrant activation contributes to the process of EMT. The secreted frizzled-related protein 1 (sFRP1), a Wnt-signaling antagonist, is downregulated in many tumors, including lung cancer. However, the role of sFRP1 in EMT and tumor metastasis remains unclear. In this study, we found that sFRP1 was dramatically downregulated in transforming growth factor β1 (TGF-β1)-induced EMT in the A549 human lung cancer cell line. Restoration of sFRP1 could inhibit the TGF-β1-induced EMT phenotype and tumor metastasis of the A549 cell line both in vitro and in vivo through inhibition of the Wnt pathway. Furthermore, FH535, a reversible Wnt-signaling inhibitor, exerted a similar effect on the TGF-β1-induced EMT phenotype. These results indicate that sFRP1, an endogenous antagonist of the Wnt pathway, inhibits TGF-β1-induced EMT, and might be a potential biomarker for the treatment of NSCLC.
Collapse
Affiliation(s)
- Jin Ren
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, China
| | | | | | | | | | | |
Collapse
|
37
|
Towards a functional proteomics approach to the comprehension of idiopathic pulmonary fibrosis, sarcoidosis, systemic sclerosis and pulmonary Langerhans cell histiocytosis. J Proteomics 2013; 83:60-75. [DOI: 10.1016/j.jprot.2013.03.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/22/2013] [Accepted: 03/09/2013] [Indexed: 01/02/2023]
|