1
|
Liu J, Li C, Yang F, Li M, Wu B, Chen H, Li S, Zhang X, Yang J, Xia Y, Wu M, Li Y, Liu B, Zhao D. Effects of angiotensin II combined with asparaginase and dexamethasone on the femoral head in mice: A model of steroid-induced femoral head osteonecrosis. Front Cell Dev Biol 2022; 10:975879. [PMID: 36187471 PMCID: PMC9521711 DOI: 10.3389/fcell.2022.975879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background: To study the pathogenesis of steroid-induced femoral head osteonecrosis, an ideal animal model is very important. As experimental animals, mice are beneficial for studying the pathogenesis of disease. However, there are currently few mouse models of steroid-induced femoral head osteonecrosis, and there are many questions that require further exploration and research.Purposes: The purpose of this study was to establish a new model of osteonecrosis in mice using angiotensin II (Ang II) combined with asparaginase (ASP) and dexamethasone (DEX) and to study the effects of this drug combination on femoral head osteonecrosis in mice.Methods: Male BALB/c mice (n = 60) were randomly divided into three groups. Group A (normal control, NC) was treated with physiological saline and given a normal diet. Group B (DEX + ASP, DA) was given free access to food and water (containing 2 mg/L DEX) and subjected to intraperitoneal injection of ASP (1200 IU/kg twice/week for 8 weeks). Group C (DEX + ASP + Ang II, DAA) was treated the same as group B, it was also given free access to food and water (containing 2 mg/L DEX) and subjected to intraperitoneal injection of ASP (1200 IU/kg twice/week for 8 weeks), but in the 4th and 8th weeks, subcutaneous implantation of a capsule osmotic pump (0.28 mg/kg/day Ang II) was performed. The mice were sacrificed in the 4th and 8th weeks, and the model success rate, mouse mortality rate, body weight, blood lipids, coagulation factors, histopathology, and number of local vessels in the femoral head were evaluated.Results: DAA increased the model success rate [4th week, 30% (DA) vs. 40% (DAA) vs. 0% (NC); 8th week, 40% (DA) vs. 70% (DAA) vs. 0% (NC)]. There was no significant difference in mortality rate between the groups [4th week, 0% (DA) vs. 0% (DAA) vs. 0% (NC); 8th week, 5% (DA) vs. 10% (DAA) vs. 0% (NC)]. DAA affected mouse body weight and significantly affected blood lipids and blood coagulation factors. DAA reduces the number of blood vessels in the femoral head and destroys the local blood supply.Conclusion: Angiotensin II combined with asparaginase and dexamethasone can obviously promote the necrosis of femoral head and provide a new idea for the model and treatment of osteonecrosis.
Collapse
Affiliation(s)
- Jiahe Liu
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Chenzhi Li
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Fan Yang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
- Institute of Metal Research Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Minde Li
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Baolin Wu
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Haojie Chen
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Shaopeng Li
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Xiuzhi Zhang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Jiahui Yang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Yan Xia
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Mingjian Wu
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Yancheng Li
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Baoyi Liu
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
- *Correspondence: Baoyi Liu, ; Dewei Zhao,
| | - Dewei Zhao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
- *Correspondence: Baoyi Liu, ; Dewei Zhao,
| |
Collapse
|
2
|
Zhang F, Huang X, Qi Y, Qian Z, Ni S, Zhong Z, Zhang X, Li D, Yu B. Juglanin Inhibits Osteoclastogenesis in Ovariectomized Mice via the Suppression of NF-κB Signaling Pathways. Front Pharmacol 2021; 11:596230. [PMID: 33708115 PMCID: PMC7941268 DOI: 10.3389/fphar.2020.596230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022] Open
Abstract
Bone metabolism is a physiological process that involves both osteoblasts and osteoclasts. Pathological changes of osteoclasts are commonly seen in osteoporosis diseases. Juglanin is a natural compound, reported to have an inhibitory effect on inflammation, oxidative stress and cancer progression. The purpose of this study is to explore the role that Juglanin plays on the osteoclast functions and underlying signaling pathways. In vitro study demonstrated that Juglanin had negative influence on osteoclastic differentiation by suppressing the transcription activity of osteoclastogenesis-related genes and proteins. To determine the underlying mechanism, Western blot was employed to show that Juglanin could significantly have negative effect on the phosphorylation of P50, P65, I-κB, ultimately suppressing the expression and transcriptional activity of nuclear factor of activated T cells (NFATc1). In vivo Juglanin treatment attenuate bone reducing in mice with removed ovary through suppressing osteoclast functioning. Taken together, our study demonstrated that in the molecular mechanism, JUG inhibited the expression of receptor activator of nuclear factor-κ B ligand (RANKL) induced NF - κ B signaling pathway, thus may play a vital part in preventing postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Fangxue Zhang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Xiaowei Huang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuhan Qi
- Department of Plastic Surgery, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhi Qian
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Shuo Ni
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Zeyuan Zhong
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Xu Zhang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.,Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Baoqing Yu
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
3
|
Yuan S, Hua P, Zhao C, Zhou H, Xu J, Xu J, Gu Q. Jatrophane Diterpenoids from Euphorbia esula as Inhibitors of RANKL-Induced Osteoclastogenesis. JOURNAL OF NATURAL PRODUCTS 2020; 83:1005-1017. [PMID: 32233482 DOI: 10.1021/acs.jnatprod.9b00929] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Eighteen new jatrophane diterpenoids, euphoesulatins A-R (1-18), and three known diterpenoids (19-21) were isolated from Euphorbia esula. Compounds 1-7, 14, and 18 represent a rare type of jatrophane-type diterpenoid containing a nicotinoyloxy group. The absolute configuration of 1 was determined by X-ray crystallography. The compounds were assayed for their antiosteoporotic activity in a bone-marrow-derived macrophage cell line, and compounds 1, 8, and 10 significantly inhibited the formation of osteoclasts, with IC50 values of 1.2, 3.5, and 2.3 μM, respectively. These three compounds also dose-dependently reduced the activity of nuclear factor activated T-cell cytoplasmic 1. This study reveals the antiosteoporotic effects of jatrophane diterpenoids for the first time.
Collapse
Affiliation(s)
- Shengheng Yuan
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Pei Hua
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Chao Zhao
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Huihao Zhou
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
4
|
Methods to Determine the Effects of MIF on In Vitro Osteoclastogenesis Using Murine Bone Marrow-Derived Cells and Human Peripheral Blood Mononuclear Cells. Methods Mol Biol 2020; 2080:135-145. [PMID: 31745877 DOI: 10.1007/978-1-4939-9936-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Osteoclasts are the only cells that are capable of resorbing bones, and they are involved in multiple diseases and disorders. This chapter will describe several in vitro osteoclastogenesis methods, which allows further investigation of molecular mechanisms of osteoclastogenesis in normal physiological and disease conditions. This chapter includes a protocol for isolating osteoclast progenitors from mouse bone marrow and human peripheral blood, as well as obtaining murine osteoblasts for the coculture system. Furthermore, culture and identification of multinucleated osteoclasts in vitro is also described in this chapter.
Collapse
|
5
|
Yu C, Wang L, Ni Y, Wang J. A simple and robust reporter gene assay for measuring the bioactivity of anti-RANKL therapeutic antibodies. RSC Adv 2019; 9:40196-40202. [PMID: 35542634 PMCID: PMC9076180 DOI: 10.1039/c9ra07328k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/16/2019] [Indexed: 11/21/2022] Open
Abstract
RANKL (receptor activator of nuclear factor κB ligand) plays a key role in the differentiation, activation and survival of osteoclasts. Denosumab, which targets RANKL, is approved for osteoporosis or bone loss that has a high risk for fracture and bone metastases from solid tumors. Bioactivity determination is essential for the safety and efficacy of therapeutic antibodies. At present, the mechanism of action (MOA) based bioassay for anti-RANKL monoclonal antibodies (mAbs) is the measurement of tartrate resistant acid phosphatase (TRAP) activity, which takes about five days and has complex operation and relatively high variation. In this study, we developed a reporter gene assay (RGA) based on a RAW264.7 cell line stably expressing luciferase reporter under the control of nuclear factor-κB (NF-κB) response elements. After optimizing the key parameters, the validation results based on ICH-Q2 not only show superior specificity, precision, linearity, accuracy and passage stability, but also a short duration and simple operation. These results demonstrate the RGA based on the RANKL-RANK-NF-κB pathway can be an excellent alternative for measuring the bioactivity of anti-RANKL mAbs.
Collapse
Affiliation(s)
- Chuanfei Yu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control No. 29, Huatuo Road, Daxing District Beijing 102629 China +86-10-53851527
| | - Lan Wang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control No. 29, Huatuo Road, Daxing District Beijing 102629 China +86-10-53851527
| | - Yongbo Ni
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control No. 29, Huatuo Road, Daxing District Beijing 102629 China +86-10-53851527
| | - Junzhi Wang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control No. 29, Huatuo Road, Daxing District Beijing 102629 China +86-10-53851527
| |
Collapse
|
6
|
Allison H, McNamara LM. Inhibition of osteoclastogenesis by mechanically stimulated osteoblasts is attenuated during estrogen deficiency. Am J Physiol Cell Physiol 2019; 317:C969-C982. [DOI: 10.1152/ajpcell.00168.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Osteoporotic bone loss and fracture have long been regarded to arise upon depletion of circulating estrogen, which increases osteoclastogenesis and bone resorption. Osteoblasts from human osteoporotic patients also display deficient osteogenic responses to mechanical loading. However, while osteoblasts play an important role in regulating osteoclast differentiation, how this relationship is affected by estrogen deficiency is unknown. This study seeks to determine how mechanically stimulated osteoblasts regulate osteoclast differentiation and matrix degradation under estrogen deficiency. Here, we report that osteoblast-induced osteoclast differentiation (indicated by tartrate-resistant acid phosphatase, cathepsin K, and nuclear factor of activated T cells, cytoplasmic 1) and matrix degradation were inhibited by estrogen treatment and mechanical loading. However, estrogen-deficient osteoblasts exacerbated osteoclast formation and matrix degradation in conditioned medium and coculture experiments. This was accompanied by higher expression of cyclooxygenase-2 and macrophage colony-stimulating factor, but not osteoprotegerin, by osteoblasts under estrogen deficiency. Interestingly, this response was exacerbated under conditions that block the Rho-Rho-associated protein kinase signaling pathway. This study provides an important, but previously unrecognized, insight into bone loss in postmenopausal osteoporosis, whereby estrogen-deficient osteoblasts fail to produce inhibitory osteoprotegerin after mechanical stimulation but upregulate macrophage colony-stimulating factor and cyclooxygenase-2 expression and, thus, leave osteoclast activity unconstrained.
Collapse
Affiliation(s)
- H. Allison
- Mechanobiology and Medical Devices Research Group, Centre for Biomechanics Research, Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - L. M. McNamara
- Mechanobiology and Medical Devices Research Group, Centre for Biomechanics Research, Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| |
Collapse
|
7
|
de Castro LF, Burke AB, Wang HD, Tsai J, Florenzano P, Pan KS, Bhattacharyya N, Boyce AM, Gafni RI, Molinolo AA, Robey PG, Collins MT. Activation of RANK/RANKL/OPG Pathway Is Involved in the Pathophysiology of Fibrous Dysplasia and Associated With Disease Burden. J Bone Miner Res 2019; 34:290-294. [PMID: 30496606 PMCID: PMC6983320 DOI: 10.1002/jbmr.3602] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/24/2018] [Accepted: 10/06/2018] [Indexed: 01/08/2023]
Abstract
Fibrous dysplasia of bone (FD) is a mosaic disease caused by mutations in GNAS. Constitutive activation of the α-subunit of the Gs stimulatory protein (Gαs) leads to dysregulated proliferation of bone marrow stromal cells (BMSCs), generating expansile lesions of fibrotic tissue and abnormal bone. Local bone remodeling regulation by BMSCs is also altered, and FD tissue is characterized by abundant osteoclast-like cells that may be essential for lesion expansion. Animal models show local expression of RANKL in bone lesions, and treatment with the RANKL neutralizing antibody denosumab decreased lesion expansion rate in a patient with aggressive FD. However, the role of RANKL/osteoprotegerin (OPG) in FD pathophysiology is not yet understood. We measured serum levels of RANKL, OPG, and inactive RANKL-OPG complexes in FD patients of known disease burden and in healthy volunteers (HVs). RANK, RANKL, and Ki67 immunohistochemistry were assessed in FD tissue. Cultured FD and HV BMSCs were stimulated with prostaglandin E2 (PGE2 ) and 1,25 vitamin D3 to increase RANKL expression, and media levels of RANKL and OPG were measured. Osteoclastogenic induction by FD or HV BMSCs was assessed in co-cultures with HV peripheral monocytes. FD patients showed a 16-fold increase in serum RANKL compared to HVs. OPG was moderately increased (24%), although RANKL/OPG ratio was 12-fold higher in FD patients than in HVs. These measurements were positively correlated with the skeletal burden score (SBS), a validated marker of overall FD burden. No differences in serum inactive RANKL-OPG complexes were observed. In FD tissue, RANKL+ and Ki67+ fibroblastic cells were observed near RANK+ osteoclasts. High levels of RANKL were released by FD BMSCs cultures, but were undetectable in HV cultures. FD BMSC released less OPG than HV BMSCs. FD, but not HV BMSCs, induced osteoclastogenesis in monocyte co-cultures, which was prevented by denosumab addition. These data are consistent with the role of RANKL as a driver in FD-induced osteoclastogenesis. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Luis F de Castro
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Andrea B Burke
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.,Department of Oral and Maxillofacial Surgery, University of Washington School of Dentistry, Seattle, WA, USA
| | - Howard D Wang
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.,Medical Research Scholars Program (MRSP), National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Tsai
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.,Department of Oral and Maxillofacial Surgery, University of Washington School of Dentistry, Seattle, WA, USA
| | - Pablo Florenzano
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.,Department of Endocrinology, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Kristen S Pan
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.,Medical Research Scholars Program (MRSP), National Institutes of Health, Bethesda, MD, USA
| | - Nisan Bhattacharyya
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Alison M Boyce
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Rachel I Gafni
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Alfredo A Molinolo
- Biorepository and Tissue Technology Shared Resource, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Pamela G Robey
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Michael T Collins
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
He L, Hong G, Zhou L, Zhang J, Fang J, He W, Tickner J, Han X, Zhao L, Xu J. Asiaticoside, a component of Centella asiatica attenuates RANKL-induced osteoclastogenesis via NFATc1 and NF-κB signaling pathways. J Cell Physiol 2018; 234:4267-4276. [PMID: 30146787 DOI: 10.1002/jcp.27195] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 07/17/2018] [Indexed: 12/21/2022]
Abstract
Identification of natural compounds that inhibit osteoclastogenesis will facilitate the development of antiresorptive treatment of osteolytic bone diseases. Asiaticoside is a triterpenoid derivative isolated from Centella asiatica, which exhibits varying biological effects like angiogenesis, anti-inflammation, wound healing, and osteogenic differentiation. However, its role in osteoclastogenesis remains unknown. Here, we show that Asiaticoside can suppress RANKL-induced osteoclast formation and bone resorption in a dose-dependent manner. Asiaticoside attenuated the expression of osteoclast marker genes including Ctsk, Atp6v0d2, Nfatc1, Acp5, and Dc-stamp. Furthermore, Asiaticoside inhibited RANKL-mediated NF-κB and NFATc1 activities, and RANKL-induced calcium oscillation. Collectively, this study demonstrates that Asiaticoside inhibited osteoclast formation and function through attenuating RANKL-induced key signaling pathways, which may indicate that Asiaticoside is a potential antiresorptive agent against osteoclast-related osteolytic bone diseases.
Collapse
Affiliation(s)
- Lilei He
- Department of Orthopaedics, Affiliated Foshan Hospital, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China.,The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Guoju Hong
- National Key Discipline and Orthopedic Laboratory, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Orthopedic Department, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lin Zhou
- Department of Rheumatology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jianguo Zhang
- The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Jian Fang
- The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Wei He
- National Key Discipline and Orthopedic Laboratory, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jennifer Tickner
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Xiaorui Han
- Department of Radiography, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong, China
| | - Lilian Zhao
- The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiake Xu
- National Key Discipline and Orthopedic Laboratory, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
9
|
Chai RC, McDonald MM, Terry RL, Kovačić N, Down JM, Pettitt JA, Mohanty ST, Shah S, Haffari G, Xu J, Gillespie MT, Rogers MJ, Price JT, Croucher PI, Quinn JMW. Melphalan modifies the bone microenvironment by enhancing osteoclast formation. Oncotarget 2017; 8:68047-68058. [PMID: 28978095 PMCID: PMC5620235 DOI: 10.18632/oncotarget.19152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/02/2017] [Indexed: 11/25/2022] Open
Abstract
Melphalan is a cytotoxic chemotherapy used to treat patients with multiple myeloma (MM). Bone resorption by osteoclasts, by remodeling the bone surface, can reactivate dormant MM cells held in the endosteal niche to promote tumor development. Dormant MM cells can be reactivated after melphalan treatment; however, it is unclear whether melphalan treatment increases osteoclast formation to modify the endosteal niche. Melphalan treatment of mice for 14 days decreased bone volume and the endosteal bone surface, and this was associated with increases in osteoclast numbers. Bone marrow cells (BMC) from melphalan-treated mice formed more osteoclasts than BMCs from vehicle-treated mice, suggesting that osteoclast progenitors were increased. Melphalan also increased osteoclast formation in BMCs and RAW264.7 cells in vitro, which was prevented with the cell stress response (CSR) inhibitor KNK437. Melphalan also increased expression of the osteoclast regulator the microphthalmia-associated transcription factor (MITF), but not nuclear factor of activated T cells 1 (NFATc1). Melphalan increased expression of MITF-dependent cell fusion factors, dendritic cell-specific transmembrane protein (Dc-stamp) and osteoclast-stimulatory transmembrane protein (Oc-stamp) and increased cell fusion. Expression of osteoclast stimulator receptor activator of NFκB ligand (RANKL) was unaffected by melphalan treatment. These data suggest that melphalan stimulates osteoclast formation by increasing osteoclast progenitor recruitment and differentiation in a CSR-dependent manner. Melphalan-induced osteoclast formation is associated with bone loss and reduced endosteal bone surface. As well as affecting bone structure this may contribute to dormant tumor cell activation, which has implications for how melphalan is used to treat patients with MM.
Collapse
Affiliation(s)
- Ryan C Chai
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Michelle M McDonald
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Rachael L Terry
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Nataša Kovačić
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, Australia.,Department of Anatomy, University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Jenny M Down
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, Australia.,Bone Biology Group, Department of Human Metabolism, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Jessica A Pettitt
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Sindhu T Mohanty
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Shruti Shah
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Gholamreza Haffari
- Faculty of Information Technology, Monash University, Clayton, Australia
| | - Jiake Xu
- School of Pathology and Laboratory Medicine, The University of Western Australia, Nedlands, Australia
| | - Matthew T Gillespie
- Faculty of Medicine and Health Sciences, Monash University, Clayton, Australia
| | - Michael J Rogers
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - John T Price
- College of Health and Biomedicine, Victoria University, St Albans, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne, Victoria University and Western Health, St. Albans, Australia
| | - Peter I Croucher
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Julian M W Quinn
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| |
Collapse
|
10
|
Khonsuphap P, Pavasant P, Irwandi RA, Leethanakul C, Vacharaksa A. Epithelial Cells Secrete Interferon-γ Which Suppresses Expression of Receptor Activator of Nuclear Factor Kappa-B Ligand in Human Mandibular Osteoblast-Like Cells. J Periodontol 2017; 88:e65-e74. [DOI: 10.1902/jop.2016.160476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Pakchisa Khonsuphap
- Research Unit on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Dentistry, Chulalongkorn University
- Research Unit of Mineralized Tissue, Faculty of Dentistry, Chulalongkorn University
| | - Prasit Pavasant
- Research Unit of Mineralized Tissue, Faculty of Dentistry, Chulalongkorn University
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University
| | - Rizky Aditya Irwandi
- Research Unit on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Dentistry, Chulalongkorn University
| | - Chidchanok Leethanakul
- Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Songkla, Thailand
| | - Anjalee Vacharaksa
- Research Unit on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Dentistry, Chulalongkorn University
| |
Collapse
|
11
|
Hu X, Zhao Y, Man QW, Li RF, Liu B, Zhao YF. The effects of marsupialization on bone regeneration adjacent to keratocystic odontogenic tumors, and the mechanisms involved. J Oral Sci 2017; 59:475-481. [DOI: 10.2334/josnusd.16-0653] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Xiang Hu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University
- Faculty of Dentistry, The University of Hong Kong
| | - Yi Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University
- Department of Prosthodontics, School and Hospital of Stomatology, Wuhan University
| | - Qi-Wen Man
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University
| | - Rui-Fang Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University
| | - Bing Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University
| | - Yi-Fang Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University
| |
Collapse
|
12
|
Zeng X, Zhang Y, Wang S, Wang K, Tao L, Zou M, Chen N, Xu J, Liu S, Li X. Artesunate suppresses RANKL-induced osteoclastogenesis through inhibition of PLCγ1-Ca 2+ –NFATc1 signaling pathway and prevents ovariectomy-induced bone loss. Biochem Pharmacol 2017; 124:57-68. [DOI: 10.1016/j.bcp.2016.10.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/21/2016] [Indexed: 11/29/2022]
|
13
|
Amyloid β Peptide Enhances RANKL-Induced Osteoclast Activation through NF-κB, ERK, and Calcium Oscillation Signaling. Int J Mol Sci 2016; 17:ijms17101683. [PMID: 27735865 PMCID: PMC5085715 DOI: 10.3390/ijms17101683] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 09/19/2016] [Accepted: 09/22/2016] [Indexed: 01/10/2023] Open
Abstract
Osteoporosis and Alzheimer’s disease (AD) are common chronic degenerative disorders which are strongly associated with advanced age. We have previously demonstrated that amyloid beta peptide (Aβ), one of the pathological hallmarks of AD, accumulated abnormally in osteoporotic bone specimens in addition to having an activation effect on osteoclast (Bone 2014,61:164-75). However, the underlying molecular mechanisms remain unclear. Activation of NF-κB, extracellular signal-regulated kinase (ERK) phosphorylates, and calcium oscillation signaling pathways by receptor activator NF-κB ligand (RANKL) plays a pivotal role in osteoclast activation. Targeting this signaling to modulate osteoclast function has been a promising strategy for osteoclast-related diseases. In this study, we investigated the effects of Aβ on RANKL-induced osteoclast signaling pathways in vitro. In mouse bone marrow monocytes (BMMs), Aβ exerted no effect on RANKL-induced osteoclastogenesis but promoted osteoclastic bone resorption. In molecular levels, Aβ enhanced NF-κB activity and IκB-α degradation, activated ERK phosphorylation and stimulated calcium oscillation, thus leading to upregulation of NFAT-c1 expression during osteoclast activation. Taken together, our data demonstrate that Aβ enhances RANKL-induced osteoclast activation through IκB-α degradation, ERK phosphorylation, and calcium oscillation signaling pathways and that Aβ may be a promising agent in the treatment of osteoclast-related disease such as osteoporosis.
Collapse
|
14
|
Kao CT, Huang TH, Fang HY, Chen YW, Chien CF, Shie MY, Yeh CH. Tensile force on human macrophage cells promotes osteoclastogenesis through receptor activator of nuclear factor κB ligand induction. J Bone Miner Metab 2016. [PMID: 26204845 DOI: 10.1007/s00774-015-0690-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Little is known about the effects of tensile forces on osteoclastogenesis by human monocytes in the absence of mechanosensitive cells, including osteoblasts and fibroblasts. In this study we consider the effects of tensile force on osteoclastogenesis in human monocytes. The cells were treated with receptor activator of nuclear factor κB ligand (RANKL) to promote osteoclastogenesis. Then,expression and secretion of cathepsin K were examined. RANKL and the formation of osteoclasts during the osteoclast differentiation process under continual tensile stress were evaluated by Western blot. It was also found that -100 kPa or lower induces RANKL-enhanced tartrate-resistant acid phosphatase activity in a dose-dependent manner. Furthermore, an increased tensile force raises the expression and secretion of cathepsin K elevated by RANKL, and is concurrent with the increase of TNF-receptor-associated factor 6 induction and nuclear factor κB activation. Overall, the current report demonstrates that tensile force reinforces RANKL-induced osteoclastogenesis by retarding osteoclast differentiation. The tensile force is able to modify every cell through dose-dependent in vitro RANKL-mediated osteoclastogenesis, affecting the fusion of preosteoclasts and function of osteoclasts. However, tensile force increased TNF-receptor-associated factor 6 expression. These results are in vitro findings and were obtained under a condition of tensile force. The current results help us to better understand the cellular roles of human macrophage populations in osteoclastogenesis as well as in alveolar bone remodeling when there is tensile stress.
Collapse
Affiliation(s)
- Chia-Tze Kao
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Tsui-Hsien Huang
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hsin-Yuan Fang
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung, Taiwan
- Department of Thoracic Surgery, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, College of Public Health, China Medical University, Taichung, Taiwan
| | - Yi-Wen Chen
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Chien-Fang Chien
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ming-You Shie
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung, Taiwan.
| | - Chia-Hung Yeh
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
15
|
Dela Cruz A, Grynpas MD, Mitchell J. Elevated Gα11 expression in osteoblast lineage cells promotes osteoclastogenesis and leads to enhanced trabecular bone accrual in response to pamidronate. Am J Physiol Endocrinol Metab 2016; 310:E811-20. [PMID: 27006198 DOI: 10.1152/ajpendo.00049.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/15/2016] [Indexed: 11/22/2022]
Abstract
Osteoblastic cells indirectly induce osteoclastogenesis in the bone microenvironment by expressing paracrine factors such as RANKL and M-CSF, leading to increased bone resorption. These cytokines can be regulated by a variety of intracellular pathways, which include G protein-coupled receptor signaling. To explore how enhanced signaling of the Gαq/11 pathway in osteoblast lineage cells may mediate osteoclast formation, we cocultured wild-type (WT) preosteoclasts with BMSCs derived from either WT or transgenic mice with osteoblast-specific overexpression of Gα11 (G11-Tg). G11-Tg cocultures had elevated osteoclast numbers with greater resorptive capacity and increased expression of Rankl, Rankl:Opg (osteoprotegerin), and M-csf compared with cocultures with WT BMSCs. As well, cocultures with G11-Tg BMSCs required a higher concentration of OPG to inhibit osteoclast formation and less angiotensin II to increase osteoclast size. These indicate that G11-Tg osteoblasts drive the increased osteoclast formation and osteopenia seen in G11-Tg mice. Pamidronate treatment of G11-Tg mice restored the trabecular bone loss phenotype, as bone mineral density, bone volume, trabecular number, separation, and expressions of osteoblastic and osteoclastic genes were comparable with WT parameters. These changes were characterized by enhanced accumulation of calcified cartilage in trabecular bone, demonstrating that resorption of the cartilaginous intermediate by osteoclasts is more affected by bisphosphonate treatment in G11-Tg mice. In conclusion, overexpression of Gα11 in osteoblastic cells promotes osteoclastogenesis by upregulation of Rankl and M-csf and bone loss by increased osteoclast resorption of the trabecular bone and cartilaginous matrix.
Collapse
Affiliation(s)
- Ariana Dela Cruz
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario Canada
| | - Marc D Grynpas
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; and Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jane Mitchell
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario Canada;
| |
Collapse
|
16
|
Zeng XZ, He LG, Wang S, Wang K, Zhang YY, Tao L, Li XJ, Liu SW. Aconine inhibits RANKL-induced osteoclast differentiation in RAW264.7 cells by suppressing NF-κB and NFATc1 activation and DC-STAMP expression. Acta Pharmacol Sin 2016; 37:255-63. [PMID: 26592521 DOI: 10.1038/aps.2015.85] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/27/2015] [Indexed: 11/10/2022]
Abstract
AIM Aconiti Lateralis Radix Preparata is a traditional Chinese medicine used to treat chronic arthritis and is highly effective against rheumatoid arthritis. However, the effects of aconine, a derivative of aconitum alkaloids, on osteoclasts, which can absorb bone, remain unknown. Here, we investigated the effects of aconine on osteoclast differentiation and bone resorption in vitro. METHODS The viability of mouse leukemic monocyte/macrophage cell line RAW264.7 was measured using CCK-8 assays. Osteoclast differentiation was induced by incubation of RAW264.7 cells in the presence of RANKL, and assessed with TRAP staining assay. Bone resorption was examined with bone resorption pits assay. The expression of relevant genes and proteins was analyzed using RT-PCR and Western blots. The activation of NF-κB and nuclear factor of activated T-cells (NFAT) was examined using stable NF-κB and NFATc1 luciferase reporter gene systems, RT-PCR and Western blot analysis. RESULTS Aconine (0.125, 0.25 μmol/L) did not affect the viability of RAW264.7 cells, but dose-dependently inhibited RANKL-induced osteoclast formation and bone resorptive activity. Furthermore, aconine dose-dependently inhibited the RANKL-induced activation of NF-κB and NFATc1 in RAW264.7 cells, and subsequently reduced the expression of osteoclast-specific genes (c-Src, β3-Integrin, cathepsin K and MMP-9) and the expression of dendritic cell-specific transmembrane protein (DC-STAMP), which played an important role in cell-cell fusion. CONCLUSION These findings suggest that aconine inhibits RANKL-induced osteoclast differentiation in RAW264.7 cells by suppressing the activation of NF-κB and NFATc1 and the expression of the cell-cell fusion molecule DC-STAMP.
Collapse
|
17
|
Tu MG, Chen YW, Shie MY. Macrophage-mediated osteogenesis activation in co-culture with osteoblast on calcium silicate cement. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:276. [PMID: 26543022 DOI: 10.1007/s10856-015-5607-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/26/2015] [Indexed: 06/05/2023]
Abstract
The use of calcium silicate (CS) cement holds great promise for bone substitute biomaterials. However, the effects of CS on osteoblast and macrophage cells are not fully understood. This study examines cell proliferation and differentiation of mono- or co-cultured MC3T3-E1 and Raw 264.7 cells on CS cement. Very few studies to date have looked at the effects of osteoblast and macrophages on biomaterial-regulated osteogenesis. In this study the proliferation and differentiation of MC3T3-E1, Raw 264.7 and co-cultured MC3T3-E1/Raw 264.7 on CS cements have been analyzed using a PrestoBlue kit and ELISA. In addition, the effect of macrophages on CS-coordinated osteogenesis of MC3T3-E1 has been investigated. Results show that MC3T3-E1, Raw 264.7 and co-cultured MC3T3-E1/Raw 264.7 adhere to and proliferate well on the CS cement. In a co-culture, the CS cements inhibit receptor activator of nuclear factor kappa B ligand expression of both genes and proteins in Raw 264.7 cells when compared to those grown in mono-cultured system. Ca deposition of MC3T3-E1 in the co-culture is higher than that of cells in a mono-culture. Bone morphogenetic protein 2 (BMP2) is also significantly up-regulated by the CS cement stimulation, indicating that macrophages may participate in the CS stimulated osteogenesis. Interestingly, when macrophage are cultured with BMP2 receptor-blocking MC3T3-E1 on the CS cements, the osteogenesis differentiation of the cells is significantly inhibited, indicating the important role of macrophages in biomaterial-induced osteogenesis via BMP2 receptors. It is assumed that it is an increase in the secretion of the BMP2 from the Raw 264.7 cell that is primarily involved in the promotion of the osteogenesis of the MC3T3-E1. These results provide valuable insights into both the mechanism of CS-stimulated osteogenesis, and strategies to optimize the evaluation system for the in vitro osteogenesis capacity of bone substitute biomaterials.
Collapse
Affiliation(s)
- Ming-Gene Tu
- School of Dentistry, China Medical University, Taichung, Taiwan
- Department of Dentistry, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Wen Chen
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Ming-You Shie
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
18
|
Green AC, Poulton IJ, Vrahnas C, Häusler KD, Walkley CR, Wu JY, Martin TJ, Gillespie MT, Chandraratna RAS, Quinn JMW, Sims NA, Purton LE. RARγ is a negative regulator of osteoclastogenesis. J Steroid Biochem Mol Biol 2015; 150:46-53. [PMID: 25800721 DOI: 10.1016/j.jsbmb.2015.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/03/2015] [Accepted: 03/17/2015] [Indexed: 01/14/2023]
Abstract
Vitamin A is known to influence post-natal bone content, with excess intake being associated with reduced bone mineral density and increased fracture risk. Despite this, the roles retinoids play in regulating osteoclastogenesis, particularly in vivo, remain unresolved. This study therefore aimed to determine the effect of loss of retinoic acid receptors (RAR)α or RARγ on bone mass (analyzed by histomorphometry and dual-energy X-ray absorptiometry) and osteoclastogenesis in mice in vivo. RARγ null mice had significantly less trabecular bone at 8 weeks of age compared to wildtype littermates. In contrast, no change in trabecular bone mass was detected in RARα null mice at this age. Further histomorphometric analysis revealed a significantly greater osteoclast surface in bones from 8-week-old RARγ null male mice. This in vivo effect was cell lineage autonomous, and was associated with increased osteoclastogenesis in vitro from hematopoietic cells obtained from 8-week-old RARγ null male mice. The use of highly selective agonists in RANKL-induced osteoclast differentiation of wild type mouse whole bone marrow cells and RAW264.7 cells in vitro showed a stronger inhibitory effect of RARγ than RARα agonists, suggesting that RARγ is a more potent inhibitor of osteoclastogenesis. Furthermore, NFAT activation was also more strongly inhibited by RARγ than RARα agonists. While RARα and RARγ antagonists did not significantly affect osteoclast numbers in vitro, larger osteoclasts were observed in cultures stimulated with the antagonists, suggesting increased osteoclast fusion. Further investigation into the effect of retinoids in vivo revealed that oral administration of 5mg/kg/day ATRA for 10 days protected against bone loss induced by granulocyte colony-stimulating factor (G-CSF) by inhibiting the pro-osteoclastogenic action of G-CSF. Collectively, our data indicates a physiological role for RARγ as a negative regulator of osteoclastogenesis in vivo and in vitro, and reveals distinct influences of RARα and RARγ in bone structure regulation.
Collapse
Affiliation(s)
- Alanna C Green
- St. Vincent's Institute, Fitzroy, Victoria 3065, Australia; Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Victoria 3065, Australia
| | | | - Christina Vrahnas
- St. Vincent's Institute, Fitzroy, Victoria 3065, Australia; Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Victoria 3065, Australia
| | - Karl D Häusler
- St. Vincent's Institute, Fitzroy, Victoria 3065, Australia
| | - Carl R Walkley
- St. Vincent's Institute, Fitzroy, Victoria 3065, Australia; Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Victoria 3065, Australia
| | - Joy Y Wu
- Division of Endocrinology, Stanford University School of Medicine, CA 94305, USA
| | - T John Martin
- St. Vincent's Institute, Fitzroy, Victoria 3065, Australia; Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Victoria 3065, Australia
| | - Matthew T Gillespie
- MIMR-PHI Institute, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | | | - Julian M W Quinn
- MIMR-PHI Institute, Monash Medical Centre, Clayton, Victoria 3168, Australia; The Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010 Australia
| | - Natalie A Sims
- St. Vincent's Institute, Fitzroy, Victoria 3065, Australia; Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Victoria 3065, Australia
| | - Louise E Purton
- St. Vincent's Institute, Fitzroy, Victoria 3065, Australia; Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Victoria 3065, Australia.
| |
Collapse
|
19
|
Martin A, Xiong J, Koromila T, Ji JS, Chang S, Song YS, Miller JL, Han CY, Kostenuik P, Krum SA, Chimge NO, Gabet Y, Frenkel B. Estrogens antagonize RUNX2-mediated osteoblast-driven osteoclastogenesis through regulating RANKL membrane association. Bone 2015; 75:96-104. [PMID: 25701138 PMCID: PMC4387095 DOI: 10.1016/j.bone.2015.02.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 02/04/2015] [Accepted: 02/08/2015] [Indexed: 01/17/2023]
Abstract
In addition to its thoroughly investigated role in bone formation, the osteoblast master transcription factor RUNX2 also promotes osteoclastogenesis and bone resorption. Here we demonstrate that 17β-estradiol (E2), strongly inhibits RUNX2-mediated osteoblast-driven osteoclastogenesis in co-cultures. Towards deciphering the underlying mechanism, we induced premature expression of RUNX2 in primary murine pre-osteoblasts, which resulted in robust differentiation of co-cultured splenocytes into mature osteoclasts. This was attributable to RUNX2-mediated increase in RANKL secretion, determined by ELISA, as well as to RUNX2-mediated increase in RANKL association with the osteoblast membrane, demonstrated using confocal fluorescence microscopy. The increased association with the osteoblast membrane was recapitulated by transiently expressed GFP-RANKL. E2 abolished the RUNX2-mediated increase in membrane-associated RANKL and GFP-RANKL, as well as the concomitant osteoclastogenesis. RUNX2-mediated RANKL cellular redistribution was attributable in part to a decrease in Opg expression, but E2 did not influence Opg expression either in the presence or absence of RUNX2. Diminution of RUNX2-mediated osteoclastogenesis by E2 occurred regardless of whether the pre-osteoclasts were derived from wild type or estrogen receptor alpha (ERα)-knockout mice, suggesting that activated ERα inhibited osteoblast-driven osteoclastogenesis by acting in osteoblasts, possibly targeting RUNX2. Indeed, microarray analysis demonstrated global attenuation of the RUNX2 response by E2, including abrogation of Pstpip2 expression, which likely plays a critical role in membrane trafficking. Finally, the selective ER modulators (SERMs) tamoxifen and raloxifene mimicked E2 in abrogating the stimulatory effect of osteoblastic RUNX2 on osteoclast differentiation in the co-culture assay. Thus, E2 antagonizes RUNX2-mediated RANKL trafficking and subsequent osteoclastogenesis. Targeting RUNX2 and/or downstream mechanisms that regulate RANKL trafficking may lead to the development of improved SERMs and possibly non-hormonal therapeutic approaches to high turnover bone disease.
Collapse
Affiliation(s)
- Anthony Martin
- Department of Biochemistry and Molecular Biology, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Jian Xiong
- Department of Biochemistry and Molecular Biology, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Theodora Koromila
- Department of Biochemistry and Molecular Biology, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Jie S. Ji
- Department of Biochemistry and Molecular Biology, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Stephanie Chang
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Yae S. Song
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Jonathan L. Miller
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Chun-Ya Han
- Metabolic Disorders Research, Amgen Inc., 1 Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Paul Kostenuik
- Metabolic Disorders Research, Amgen Inc., 1 Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Susan A. Krum
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, David Geffen School of Medicine, UCLA, 10833 Le Conte Ave, Los Angeles, CA, 90095 USA
| | - Nyam-Osor Chimge
- Department of Medicine, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, P.O. Box 39040, Tel Aviv, 69978 Israel
| | - Baruch Frenkel
- Department of Biochemistry and Molecular Biology, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
- Department of Orthopaedic Surgery, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
| |
Collapse
|
20
|
Osteoblasts subjected to tensile force induce osteoclastic differentiation of murine macrophages in a coculture system. J Dent Sci 2015. [DOI: 10.1016/j.jds.2013.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
21
|
Gu R, Santos LL, Ngo D, Fan H, Singh PP, Fingerle-Rowson G, Bucala R, Xu J, Quinn JMW, Morand EF. Macrophage migration inhibitory factor is essential for osteoclastogenic mechanisms in vitro and in vivo mouse model of arthritis. Cytokine 2015; 72:135-45. [PMID: 25647268 DOI: 10.1016/j.cyto.2014.11.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/27/2014] [Accepted: 11/16/2014] [Indexed: 01/21/2023]
Abstract
Macrophage migration inhibitory factor (MIF) enhances activation of leukocytes, endothelial cells and fibroblast-like synoviocytes (FLS), thereby contributing to the pathogenesis of rheumatoid arthritis (RA). A MIF promoter polymorphism in RA patients resulted in higher serum MIF concentration and worsens bone erosion; controversially current literature reported an inhibitory role of MIF in osteoclast formation. The controversial suggested that the precise role of MIF and its putative receptor CD74 in osteoclastogenesis and RA bone erosion, mediated by locally formed osteoclasts in response to receptor activator of NF-κB ligand (RANKL), is unclear. We reported that in an in vivo K/BxN serum transfer arthritis, reduced clinical and histological arthritis in MIF(-/-) and CD74(-/-) mice were accompanied by a virtual absence of osteoclasts at the synovium-bone interface and reduced osteoclast-related gene expression. Furthermore, in vitro osteoclast formation and osteoclast-related gene expression were significantly reduced in MIF(-/-) cells via decreasing RANKL-induced phosphorylation of NF-κB-p65 and ERK1/2. This was supported by a similar reduction of osteoclastogenesis observed in CD74(-/-) cells. Furthermore, a MIF blockade reduced RANKL-induced osteoclastogenesis via deregulating RANKL-mediated NF-κB and NFATc1 transcription factor activation. These data indicate that MIF and CD74 facilitate RANKL-induced osteoclastogenesis, and suggest that MIF contributes directly to bone erosion, as well as inflammation, in RA.
Collapse
Affiliation(s)
- Ran Gu
- Centre for Inflammatory Disease, Monash University, Clayton, Australia
| | - Leilani L Santos
- Centre for Inflammatory Disease, Monash University, Clayton, Australia
| | - Devi Ngo
- Centre for Inflammatory Disease, Monash University, Clayton, Australia
| | - HuaPeng Fan
- Centre for Inflammatory Disease, Monash University, Clayton, Australia
| | | | | | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jiake Xu
- School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, Australia
| | - Julian M W Quinn
- Prince Henry's Institute, Clayton, Australia; Dept of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Eric F Morand
- Centre for Inflammatory Disease, Monash University, Clayton, Australia.
| |
Collapse
|
22
|
Zhang Y, Liu X, Li K, Bai J. Mycobacterium tuberculosis 10-kDa co-chaperonin regulates the expression levels of receptor activator of nuclear factor-κB ligand and osteoprotegerin in human osteoblasts. Exp Ther Med 2014; 9:919-924. [PMID: 25667654 PMCID: PMC4316961 DOI: 10.3892/etm.2014.2153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 11/12/2014] [Indexed: 11/28/2022] Open
Abstract
The aim of the present study was to investigate the effect of recombinant Mycobacterium tuberculosis (r-Mt) 10-kDa co-chaperonin (cpn10) on the expression of osteoprotegerin (OPG) and receptor activator of nuclear factor-κB ligand (RANKL) in third-generation cultured osteoblasts. The osteoblast-like cultures were isolated from bone fragments taken from patients undergoing surgery. Prior to stimulation with r-Mt cpn10, cells were incubated in serum-free medium for 24 h. r-Mt cpn10 was added into fresh serum-free medium, reaching final concentrations of 0.01–10 μg/ml. The levels of OPG were determined using enzyme-linked immunosorbent assay. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis was performed to determine the levels of RANKL and OPG mRNA. For measurement of the protein levels of OPG and RANKL, a western blotting assay was performed. r-Mt cpn10 downregulated the protein levels of OPG in the third generation cultured osteoblasts at a dose of 10 μg/ml. RT-qPCR revealed that the OPG mRNA level was decreased by 73% after 4 h and by 85.5% after 8 h following incubation with r-Mt cpn10 (10 μg/ml). Western blot analysis demonstrated similar results for the OPG protein level. In the third-generation cultured osteoblasts, the levels of RANKL mRNA and protein were increased by 2.6- and 1-fold, respectively, following incubation with r-Mt cpn10 (10 μg/ml). Furthermore, the RANKL/OPG ratio was markedly increased by r-Mt cpn10 (10 μg/ml) treatment. In conclusion, the results of the current study demonstrated that r-Mt cpn10 decreased the levels of OPG and increased the levels of RANKL in a dose- and time-dependent manner. Notably, the present study indicated that r-Mt cpn10 exerts its effect on osteoblastic cells by increasing the RANKL/OPG ratio.
Collapse
Affiliation(s)
- Yuanyu Zhang
- Department of Orthopedics, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
| | - Xia Liu
- Department of Pathology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
| | - Kun Li
- Department of Orthopedics, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
| | - Jingping Bai
- Department of Orthopedics, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
| |
Collapse
|
23
|
Song R, Liu X, Zhu J, Gao Q, Wang Q, Zhang J, Wang D, Cheng L, Hu D, Yuan Y, Gu J, Liu Z. RhoV mediates apoptosis of RAW264.7 macrophages caused by osteoclast differentiation. Mol Med Rep 2014; 11:1153-9. [PMID: 25354898 DOI: 10.3892/mmr.2014.2817] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 08/14/2014] [Indexed: 11/06/2022] Open
Abstract
Macrophages, a type of immune cell, are the precursors of osteoclasts, and have important roles in bone remodeling and the immune system. In the present study, the RAW264.7 cell line was used as a macrophage model in order to study the macrophage changes during osteoclastogenesis. Receptor activator of nuclear factor κB ligand (RANKL) and macrophage colony‑stimulating factor (M‑CSF) induce the formation of osteoclasts from several precursor cells. Observation of RAW264.7 macrophage osteoclastogenesis under the induction of RANKL and M‑CSF revealed that except the few RAW264.7 macrophages that were differentiated into osteoclasts, almost all undifferentiated RAW264.7 macrophages underwent apoptosis. BRL‑3A cells have no differentiation ability, and RANKL and M‑CSF treatments did not induce BRL‑3A cell apoptosis. When osteoprotegerin (OPG) was used to completely inhibit the differentiation of RAW264.7 macrophages to osteoclasts, apoptosis did not occur amongst the RAW264.7 macrophages despite the action of RANKL and M‑CSF. Rac1, RhoA and RhoV are apoptosis‑associated genes in the Rho guanosine triphosphate (GTP)ase family. Their expression levels were detected using quantitative polymerase chain reaction (qPCR). During the process of osteoclast differentiation, the mRNA expression of RhoV was significantly upregulated, while apoptosis occurred in a large proportion of macrophages. However, when macrophage apoptosis was inhibited by OPG, RhoV expression was significantly downregulated. Conversely, Rac1 and RhoA expression did not vary in correspondence with the apoptotic rate of the RAW264.7 macrophages. In conclusion, differentiation of RAW264.7 macrophages into osteoclasts resulted in their apoptosis. OPG inhibited RAW264.7 macrophage differentiation into osteoclasts, and thereby inhibited the apoptosis of RAW264.7 macrophages. RhoV mediated the apoptosis of RAW264.7 macrophages during osteoclast differentiation.
Collapse
Affiliation(s)
- Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Qian Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Qichao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Jiaming Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Dong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Laiyang Cheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Di Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| |
Collapse
|
24
|
Kao W, Gu R, Jia Y, Wei X, Fan H, Harris J, Zhang Z, Quinn J, Morand EF, Yang YH. A formyl peptide receptor agonist suppresses inflammation and bone damage in arthritis. Br J Pharmacol 2014; 171:4087-96. [PMID: 24824742 PMCID: PMC4243981 DOI: 10.1111/bph.12768] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 03/20/2014] [Accepted: 04/28/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Annexin A1 (AnxA1) is an endogenous anti-inflammatory protein and agonist of the formyl peptide receptor 2 (FPR2). However, the potential for therapeutic FPR ligands to modify immune-mediated disease has been little explored. We investigated the effects of a synthetic FPR agonist on joint disease in the K/BxN model of rheumatoid arthritis (RA) and RA fibroblast-like synoviocytes (FLS). EXPERIMENTAL APPROACH Arthritis was induced by injection of K/BxN serum at day 0 and 2 in wild-type (WT) or AnxA1(-/-) mice and clinical and histopathological manifestations measured 8-11 days later. WT mice were given the FPR agonist compound 43 (Cpd43) (6 or 30 mg·kg(-1) i.p.) for 4 days. Effects of AnxA1 and Cpd43 on RANKL-induced osteoclastogenesis were assessed in RAW 264.7 cells and human RA FLS and macrophages. KEY RESULTS Treatment with Cpd43 before or after the onset of arthritis reduced clinical disease severity and attenuated synovial TNF-α and osteoclast-associated gene expression. Deletion of AnxA1 in mice exacerbated arthritis severity in the K/BxN model. In vitro, Cpd43 suppressed osteoclastogenesis and NFAT activity elicited by RANKL, and inhibited IL-6 secretion by mouse macrophages. In human RA joint-derived FLS and monocyte-derived macrophages, Cpd43 treatment inhibited IL-6 release, while blocking FPR2 or silencing AnxA1 increased this release. CONCLUSIONS AND IMPLICATIONS The FPR agonist Cpd43 reduced osteoclastogenesis and inflammation in a mouse model of RA and exhibited anti-inflammatory effects in relevant human cells. These data suggest that FPR ligands may represent novel therapeutic agents capable of ameliorating inflammation and bone damage in RA.
Collapse
MESH Headings
- Animals
- Annexin A1/deficiency
- Annexin A1/metabolism
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Bone and Bones/drug effects
- Bone and Bones/metabolism
- Bone and Bones/pathology
- Cells, Cultured
- Disease Models, Animal
- Inflammation/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Phenylurea Compounds/administration & dosage
- Phenylurea Compounds/chemistry
- Phenylurea Compounds/pharmacology
- Pyrazoles/administration & dosage
- Pyrazoles/chemistry
- Pyrazoles/pharmacology
- Receptors, Formyl Peptide/agonists
- Receptors, Formyl Peptide/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- W Kao
- Centre for Inflammatory Diseases, Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre, Monash UniversityClayton, Vic., Australia
- Department of Microbiology, Harbin Medical UniversityHarbin, China
| | - R Gu
- Centre for Inflammatory Diseases, Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre, Monash UniversityClayton, Vic., Australia
| | - Y Jia
- Centre for Inflammatory Diseases, Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre, Monash UniversityClayton, Vic., Australia
- Department of Rheumatology and Immunology, Peking University People's HospitalBeijing, China
| | - Xuemin Wei
- Centre for Inflammatory Diseases, Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre, Monash UniversityClayton, Vic., Australia
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - H Fan
- Centre for Inflammatory Diseases, Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre, Monash UniversityClayton, Vic., Australia
| | - J Harris
- Centre for Inflammatory Diseases, Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre, Monash UniversityClayton, Vic., Australia
| | - Zhiyi Zhang
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - J Quinn
- Prince Henry's Institute, Monash Medical CentreClayton, Vic., Australia
- Department of Biochemistry and Molecular Biology, Monash UniversityClayton, Vic., Australia
| | - E F Morand
- Centre for Inflammatory Diseases, Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre, Monash UniversityClayton, Vic., Australia
| | - Y H Yang
- Centre for Inflammatory Diseases, Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre, Monash UniversityClayton, Vic., Australia
| |
Collapse
|
25
|
HSP90 inhibitors enhance differentiation and MITF (microphthalmia transcription factor) activity in osteoclast progenitors. Biochem J 2013; 451:235-44. [PMID: 23379601 DOI: 10.1042/bj20121626] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The HSP90 (heat-shock protein 90) inhibitor 17-AAG (17-allylamino-demethoxygeldanamycin) increases osteoclast formation both in vitro and in vivo, an action that can enhance cancer invasion and growth in the bone microenvironment. The cellular mechanisms through which 17-AAG exerts this action are not understood. Thus we sought to clarify the actions of 17-AAG on osteoclasts and determine whether other HSP90 inhibitors had similar properties. We determined that 17-AAG and the structurally unrelated HSP90 inhibitors CCT018159 and NVP-AUY922 dose-dependently increased RANKL [receptor activator of NF-κB (nuclear factor κB) ligand]-stimulated osteoclastogenesis in mouse bone marrow and pre-osteoclastic RAW264.7 cell cultures. Moreover, 17-AAG also enhanced RANKL- and TNF (tumour necrosis factor)-elicited osteoclastogenesis, but did not affect RANKL-induced osteoclast survival, suggesting that only differentiation mechanisms are targeted. 17-AAG affected the later stages of progenitor maturation (after 3 days of incubation), whereas the osteoclast formation enhancer TGFβ (transforming growth factor β) acted prior to this, suggesting different mechanisms of action. In studies of RANKL-elicited intracellular signalling, 17-AAG treatment did not increase c-Fos or NFAT (nuclear factor of activated T-cells) c1 protein levels nor did 17-AAG increase activity in luciferase-based NF-κB- and NFAT-response assays. In contrast, 17-AAG treatment (and RANKL treatment) increased both MITF (microphthalmia-associated transcription factor) protein levels and MITF-dependent vATPase-d2 (V-type proton ATPase subunit d2) gene promoter activity. These results indicate that HSP90 inhibitors enhance osteoclast differentiation in an NFATc1-independent manner that involves elevated MITF levels and activity.
Collapse
|
26
|
Takyar FM, Tonna S, Ho PWM, Crimeen-Irwin B, Baker EK, Martin TJ, Sims NA. EphrinB2/EphB4 inhibition in the osteoblast lineage modifies the anabolic response to parathyroid hormone. J Bone Miner Res 2013; 28:912-25. [PMID: 23165727 DOI: 10.1002/jbmr.1820] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 10/04/2012] [Accepted: 10/29/2012] [Indexed: 11/11/2022]
Abstract
Previous reports indicate that ephrinB2 expression by osteoblasts is stimulated by parathyroid hormone (PTH) and its related protein (PTHrP) and that ephrinB2/EphB4 signaling between osteoblasts and osteoclasts stimulates osteoblast differentiation while inhibiting osteoclast differentiation. To determine the role of the ephrinB2/EphB4 interaction in the skeleton, we used a specific inhibitor, soluble EphB4 (sEphB4), in vitro and in vivo. sEphB4 treatment of cultured osteoblasts specifically inhibited EphB4 and ephrinB2 phosphorylation and reduced mRNA levels of late markers of osteoblast/osteocyte differentiation (osteocalcin, dentin matrix protein-1 [DMP-1], sclerostin, matrix-extracellular phosphoglycoprotein [MEPE]), while substantially increasing RANKL. sEphB4 treatment in vivo in the presence and absence of PTH increased osteoblast formation and mRNA levels of early osteoblast markers (Runx2, alkaline phosphatase, Collagen 1α1, and PTH receptor [PTHR1]), but despite a substantial increase in osteoblast numbers, there was no significant change in bone formation rate or in late markers of osteoblast/osteocyte differentiation. Rather, in the presence of PTH, sEphB4 treatment significantly increased osteoclast formation, an effect that prevented the anabolic effect of PTH, causing instead a decrease in trabecular number. This enhancement of osteoclastogenesis by sEphB4 was reproduced in vitro but only in the presence of osteoblasts. These data indicate that ephrinB2/EphB4 signaling within the osteoblast lineage is required for late stages of osteoblast differentiation and, further, restricts the ability of osteoblasts to support osteoclast formation, at least in part by limiting RANKL production. This indicates a key role for the ephrinB2/EphB4 interaction within the osteoblast lineage in osteoblast differentiation and support of osteoclastogenesis.
Collapse
Affiliation(s)
- Farzin M Takyar
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | | | | | | | | | | | | |
Collapse
|