1
|
Khanra M, Ghosh I, Khatun S, Ghosh N, Gayen S. Dengue virus-host interactions: Structural and mechanistic insights for future therapeutic strategies. J Struct Biol 2025; 217:108196. [PMID: 40090430 DOI: 10.1016/j.jsb.2025.108196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/14/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
Dengue pathogen, transmitted by mosquitoes, poses a growing threat as it is capable of inflicting severe illness in humans. Around 40% of the global population is currently affected by the virus, resulting in thousands of fatalities each year. The genetic blueprint of the virus comprises 10 proteins. Three proteins serve as structural components: the capsid (C), the precursor of the membrane protein (PrM/M), and the envelope protein (E). The other proteins serve as non-structural (NS) proteins, consisting of NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5. The virus relies on these NS proteins to expropriate host proteins for its replication. During their intracellular replication, these viruses engage with numerous host components and exploit the cellular machinery for tasks such as entry into various organs, propagation, and transmission. This review explores mainly the relationship between dengue viral protein and host proteins elucidating the development of viral-host interactions. These relationships between the virus and the host give important information on the processes behind viral replication and the etiology of disease, which in turn facilitates the creation of more potent treatment strategies.
Collapse
Affiliation(s)
- Moumita Khanra
- Molecular Pharmacology Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Indrani Ghosh
- Molecular Pharmacology Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Samima Khatun
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Nilanjan Ghosh
- Molecular Pharmacology Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
2
|
Li Q, Kang C. Structures and Dynamics of Dengue Virus Nonstructural Membrane Proteins. MEMBRANES 2022; 12:231. [PMID: 35207152 PMCID: PMC8880049 DOI: 10.3390/membranes12020231] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023]
Abstract
Dengue virus is an important human pathogen threating people, especially in tropical and sub-tropical regions. The viral genome has one open reading frame and encodes one polyprotein which can be processed into structural and nonstructural (NS) proteins. Four of the seven nonstructural proteins, NS2A, NS2B, NS4A and NS4B, are membrane proteins. Unlike NS3 or NS5, these proteins do not harbor any enzymatic activities, but they play important roles in viral replication through interactions with viral or host proteins to regulate important pathways and enzymatic activities. The location of these proteins on the cell membrane and the functional roles in viral replication make them important targets for antiviral development. Indeed, NS4B inhibitors exhibit antiviral activities in different assays. Structural studies of these proteins are hindered due to challenges in crystallization and the dynamic nature of these proteins. In this review, the function and membrane topologies of dengue nonstructural membrane proteins are presented. The roles of solution NMR spectroscopy in elucidating the structure and dynamics of these proteins are introduced. The success in the development of NS4B inhibitors proves that this class of proteins is an attractive target for antiviral development.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Congbao Kang
- Experimental Drug Development Centre, Agency for Science, Technology and Research, 10 Biopolis Road, #5-01, Singapore 138670, Singapore
| |
Collapse
|
3
|
Dey D, Poudyal S, Rehman A, Hasan SS. Structural and biochemical insights into flavivirus proteins. Virus Res 2021; 296:198343. [PMID: 33607183 DOI: 10.1016/j.virusres.2021.198343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 01/01/2023]
Abstract
Flaviviruses are the fastest spreading arthropod-borne viruses that cause severe symptoms such as hepatitis, hemorrhagic fever, encephalitis, and congenital deformities. Nearly 40 % of the entire human population is at risk of flavivirus epidemics. Yet, effective vaccination is restricted only to a few flaviviruses such as yellow fever and Japanese encephalitis viruses, and most recently for select cases of dengue virus infections. Despite the global spread of dengue virus, and emergence of new threats such as Zika virus and a new genotype of Japanese encephalitis virus, insights into flavivirus targets for potentially broad-spectrum vaccination are limited. In this review article, we highlight biochemical and structural differences in flavivirus proteins critical for virus assembly and host interactions. A comparative sequence analysis of pH-responsive properties of viral structural proteins identifies trends in conservation of complementary acidic-basic character between interacting viral structural proteins. This is highly relevant to the understanding of pH-sensitive differences in virus assembly in organelles such as neutral ER and acidic Golgi. Surface residues in viral interfaces identified by structural approaches are shown to demonstrate partial conservation, further reinforcing virus-specificity in assembly and interactions with host proteins. A comparative analysis of epitope conservation in emerging flaviviruses identifies therapeutic antibody candidates that have potential as broad spectrum anti-virals, thus providing a path towards development of vaccines.
Collapse
Affiliation(s)
- Debajit Dey
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore MD 21201, USA
| | - Shishir Poudyal
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette IN 47907, USA
| | - Asma Rehman
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore MD 21201, USA
| | - S Saif Hasan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, 22. S. Greene St. Baltimore MD 21201, USA; Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 9600 Gudelsky Drive, Rockville MD 20850, USA.
| |
Collapse
|
4
|
Insights into Structures and Dynamics of Flavivirus Proteases from NMR Studies. Int J Mol Sci 2020; 21:ijms21072527. [PMID: 32260545 PMCID: PMC7177695 DOI: 10.3390/ijms21072527] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 12/29/2022] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy plays important roles in structural biology and drug discovery, as it is a powerful tool to understand protein structures, dynamics, and ligand binding under physiological conditions. The protease of flaviviruses is an attractive target for developing antivirals because it is essential for the maturation of viral proteins. High-resolution structures of the proteases in the absence and presence of ligands/inhibitors were determined using X-ray crystallography, providing structural information for rational drug design. Structural studies suggest that proteases from Dengue virus (DENV), West Nile virus (WNV), and Zika virus (ZIKV) exist in open and closed conformations. Solution NMR studies showed that the closed conformation is predominant in solution and should be utilized in structure-based drug design. Here, we reviewed solution NMR studies of the proteases from these viruses. The accumulated studies demonstrated that NMR spectroscopy provides additional information to understand conformational changes of these proteases in the absence and presence of substrates/inhibitors. In addition, NMR spectroscopy can be used for identifying fragment hits that can be further developed into potent protease inhibitors.
Collapse
|
5
|
Li Y, Zhang Z, Phoo WW, Loh YR, Wang W, Liu S, Chen MW, Hung AW, Keller TH, Luo D, Kang C. Structural Dynamics of Zika Virus NS2B-NS3 Protease Binding to Dipeptide Inhibitors. Structure 2017; 25:1242-1250.e3. [DOI: 10.1016/j.str.2017.06.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/13/2017] [Accepted: 06/08/2017] [Indexed: 01/13/2023]
|
6
|
García Cordero J, León Juárez M, González-Y-Merchand JA, Cedillo Barrón L, Gutiérrez Castañeda B. Caveolin-1 in lipid rafts interacts with dengue virus NS3 during polyprotein processing and replication in HMEC-1 cells. PLoS One 2014; 9:e90704. [PMID: 24643062 PMCID: PMC3958351 DOI: 10.1371/journal.pone.0090704] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/18/2014] [Indexed: 01/10/2023] Open
Abstract
Lipid rafts are ordered microdomains within cellular membranes that are rich in cholesterol and sphingolipids. Caveolin (Cav-1) and flotillin (Flt-1) are markers of lipid rafts, which serve as an organizing center for biological phenomena and cellular signaling. Lipid rafts involvement in dengue virus (DENV) processing, replication, and assembly remains poorly characterized. Here, we investigated the role of lipid rafts after DENV endocytosis in human microvascular endothelial cells (HMEC-1). The non-structural viral proteins NS3 and NS2B, but not NS5, were associated with detergent-resistant membranes. In sucrose gradients, both NS3 and NS2B proteins appeared in Cav-1 and Flt-1 rich fractions. Additionally, double immunofluorescence staining of DENV-infected HMEC-1 cells showed that NS3 and NS2B, but not NS5, colocalized with Cav-1 and Flt-1. Furthermore, in HMEC-1cells transfected with NS3 protease, shown a strong overlap between NS3 and Cav-1, similar to that in DENV-infected cells. In contrast, double-stranded viral RNA (dsRNA) overlapped weakly with Cav-1 and Flt-1. Given these results, we investigated whether Cav-1 directly interacted with NS3. Cav-1 and NS3 co-immunoprecipitated, indicating that they resided within the same complex. Furthermore, when cellular cholesterol was depleted by methyl-beta cyclodextrin treatment after DENV entrance, lipid rafts were disrupted, NS3 protein level was reduced, besides Cav-1 and NS3 were displaced to fractions 9 and 10 in sucrose gradient analysis, and we observed a dramatically reduction of DENV particles release. These data demonstrate the essential role of caveolar cholesterol-rich lipid raft microdomains in DENV polyprotein processing and replication during the late stages of the DENV life cycle.
Collapse
Affiliation(s)
- Julio García Cordero
- Departamento de Biomedicina Molecular, Centro de Investigación y Estudios Avanzados del IPN, México City, México
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas IPN, México City, México
| | - Moisés León Juárez
- Departamento de Biomedicina Molecular, Centro de Investigación y Estudios Avanzados del IPN, México City, México
| | | | - Leticia Cedillo Barrón
- Departamento de Biomedicina Molecular, Centro de Investigación y Estudios Avanzados del IPN, México City, México
- * E-mail: (BGC); (LCB)
| | - Benito Gutiérrez Castañeda
- Laboratorio de Inmunología, Facultad de Estudios Superiores Iztacala Universidad Autónoma de México, Tlalnepantla Estado de México, México
- * E-mail: (BGC); (LCB)
| |
Collapse
|
7
|
Replication cycle and molecular biology of the West Nile virus. Viruses 2013; 6:13-53. [PMID: 24378320 PMCID: PMC3917430 DOI: 10.3390/v6010013] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 12/27/2022] Open
Abstract
West Nile virus (WNV) is a member of the genus Flavivirus in the family Flaviviridae. Flaviviruses replicate in the cytoplasm of infected cells and modify the host cell environment. Although much has been learned about virion structure and virion-endosomal membrane fusion, the cell receptor(s) used have not been definitively identified and little is known about the early stages of the virus replication cycle. Members of the genus Flavivirus differ from members of the two other genera of the family by the lack of a genomic internal ribosomal entry sequence and the creation of invaginations in the ER membrane rather than double-membrane vesicles that are used as the sites of exponential genome synthesis. The WNV genome 3' and 5' sequences that form the long distance RNA-RNA interaction required for minus strand initiation have been identified and contact sites on the 5' RNA stem loop for NS5 have been mapped. Structures obtained for many of the viral proteins have provided information relevant to their functions. Viral nonstructural protein interactions are complex and some may occur only in infected cells. Although interactions between many cellular proteins and virus components have been identified, the functions of most of these interactions have not been delineated.
Collapse
|
8
|
Kim YM, Gayen S, Kang C, Joy J, Huang Q, Chen AS, Wee JLK, Ang MJY, Lim HA, Hung AW, Li R, Noble CG, Lee LT, Yip A, Wang QY, Chia CSB, Hill J, Shi PY, Keller TH. NMR analysis of a novel enzymatically active unlinked dengue NS2B-NS3 protease complex. J Biol Chem 2013; 288:12891-900. [PMID: 23511634 DOI: 10.1074/jbc.m112.442723] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The dengue virus (DENV) is a mosquito-borne pathogen responsible for an estimated 100 million human infections annually. The viral genome encodes a two-component trypsin-like protease that contains the cofactor region from the nonstructural protein NS2B and the protease domain from NS3 (NS3pro). The NS2B-NS3pro complex plays a crucial role in viral maturation and has been identified as a potential drug target. Using a DENV protease construct containing NS2B covalently linked to NS3pro via a Gly4-Ser-Gly4 linker ("linked protease"), previous x-ray crystal structures show that the C-terminal fragment of NS2B is remote from NS3pro and exists in an open state in the absence of an inhibitor; however, in the presence of an inhibitor, NS2B complexes with NS3pro to form a closed state. This linked enzyme produced NMR spectra with severe signal overlap and line broadening. To obtain a protease construct with a resolved NMR spectrum, we expressed and purified an unlinked protease complex containing a 50-residue segment of the NS2B cofactor region and NS3pro without the glycine linker using a coexpression system. This unlinked protease complex was catalytically active at neutral pH in the absence of glycerol and produced dispersed cross-peaks in a (1)H-(15)N heteronuclear single quantum correlation spectrum that enabled us to conduct backbone assignments using conventional techniques. In addition, titration with an active-site peptide aldehyde inhibitor and paramagnetic relaxation enhancement studies demonstrated that the unlinked DENV protease exists predominantly in a closed conformation in solution. This protease complex can serve as a useful tool for drug discovery against DENV.
Collapse
Affiliation(s)
- Young Mee Kim
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), Singapore 138669
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|