1
|
Li C, Xue Y, Yinwang E, Ye Z. The Recruitment and Immune Suppression Mechanisms of Myeloid-Derived Suppressor Cells and Their Impact on Bone Metastatic Cancer. Cancer Rep (Hoboken) 2025; 8:e70044. [PMID: 39947253 PMCID: PMC11825175 DOI: 10.1002/cnr2.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND MDSCs are immature neutrophils and monocytes with immunosuppressive potentials, involving mononuclear MDSCs (M-MDSCs) and polymorphonuclear MDSCs (PMN-MDSCs). RECENT FINDINGS They are significant components of the tumor microenvironment (TME). Besides, recent studies also verified that MDSCs also facilitated the progression of bone metastasis by regulating the network of cytokines and the function of immune cells. CONCLUSION It is necessary to summarize the mechanisms of MDSC recruitment and immunosuppression, and their impact on bone metastasis.
Collapse
Affiliation(s)
- Chengyuan Li
- Department of Orthopedic Surgery, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yucheng Xue
- Department of Orthopedic Surgery, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Eloy Yinwang
- Department of Orthopedic Surgery, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zhaoming Ye
- Department of Orthopedic Surgery, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
2
|
Wang J, Cui Z, Song Q, Yang K, Chen Y, Peng S. Integrating single-cell RNA-seq and bulk RNA-seq to construct a neutrophil prognostic model for predicting prognosis and immune response in oral squamous cell carcinoma. Hum Genomics 2024; 18:140. [PMID: 39726033 DOI: 10.1186/s40246-024-00712-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is an aggressive malignancy with poor prognosis. Neutrophil infiltration has been associated with unfavorable outcomes in OSCC, but the underlying molecular mechanisms remain unclear. METHODS This study integrated single-cell transcriptomics (scRNA-seq) with bulk RNA-seq data to analyze neutrophil infiltration patterns in OSCC and identify key gene modules using weighted gene co-expression network analysis (hdWGCNA). A prognostic model was developed based on univariate and Lasso-Cox regression analyses, stratifying patients into high- and low-risk groups. Immune landscape and drug sensitivity analyses were conducted to explore group-specific differences. Additionally, Mendelian randomization analysis was employed to identify genes causally related to OSCC progression. RESULTS Several key pathways associated with neutrophil interactions in OSCC progression were identified, leading to the construction of a prognostic model based on significant module genes. The model demonstrated strong predictive performance in distinguishing survival rates between high- and low-risk groups. Immune landscape analysis revealed significant differences in cell infiltration patterns and TIDE scores between the groups. Drug sensitivity analysis highlighted differences in drug responsiveness between high- and low-risk groups. CONCLUSION This study elucidates the critical role of neutrophils and their associated gene modules in OSCC progression. The prognostic model provides a novel reference for patient stratification and targeted therapy. These findings offer potential new targets for OSCC diagnosis, prognosis, and immunotherapy.
Collapse
Affiliation(s)
- Jinhang Wang
- Department of Stomatology, The Second Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Zifeng Cui
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qiwen Song
- Department of Stomatology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Kaicheng Yang
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yanping Chen
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shixiong Peng
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
3
|
Lotfi M, Maharati A, Hamidi AA, Taghehchian N, Moghbeli M. MicroRNA-532 as a probable diagnostic and therapeutic marker in cancer patients. Mutat Res 2024; 829:111874. [PMID: 38986233 DOI: 10.1016/j.mrfmmm.2024.111874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
The high mortality rate in cancer patients is always one of the main challenges of the health systems globally. Several factors are involved in the high rate of cancer related mortality, including late diagnosis and drug resistance. Cancer is mainly diagnosed in the advanced stages of tumor progression that causes the failure of therapeutic strategies and increases the death rate in these patients. Therefore, assessment of the molecular mechanisms associated with the occurrence of cancer can be effective to introduce early tumor diagnostic markers. MicroRNAs (miRNAs) as the stable non-coding RNAs in the biological body fluids are involved in regulation of cell proliferation, migration, and apoptosis. MiR-532 deregulation has been reported in different tumor types. Therefore, in the present review we discussed the role of miR-532 during tumor growth. It has been shown that miR-532 has mainly a tumor suppressor role through the regulation of transcription factors, chemokines, and signaling pathways such as NF-kB, MAPK, PI3K/AKT, and WNT. In addition to the independent role of miR-532 in regulation of cellular processes, it also functions as a mediator of lncRNAs and circRNAs. Therefore, miR-532 can be considered as a non-invasive diagnostic/prognostic marker as well as a therapeutic target in cancer patients.
Collapse
Affiliation(s)
- Malihe Lotfi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Hamidi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Fukawa Y, Kayamori K, Tsuchiya M, Ikeda T. IL-1 Generated by Oral Squamous Cell Carcinoma Stimulates Tumor-Induced and RANKL-Induced Osteoclastogenesis: A Possible Mechanism of Bone Resorption Induced by the Infiltration of Oral Squamous Cell Carcinoma. Int J Mol Sci 2022; 24:ijms24010688. [PMID: 36614130 PMCID: PMC9821332 DOI: 10.3390/ijms24010688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
We previously observed a novel osteoclastogenesis system that is induced by oral squamous cell carcinoma (OSCC) cells, which target osteoclast precursor cells (OPC) without upregulation of the master transcriptional factor of osteoclastogenesis, NFATc1. Here, we analyzed inflammatory cytokines that were preferentially expressed in one of the osteoclastogenic OSCC cell lines, namely NEM, compared with the subclone that had lost its osteoclastogenic properties. Based on a gene expression microarray and a protein array analyses, IL-1, IL-6, IL-8, and CXCL1 were chosen as candidates responsible for tumor-induced osteoclastogenesis. From the results of the in vitro osteoclastogenesis assay using OPCs cultured with OSCC cells or their culture supernatants, IL-1 was selected as a stimulator of both OSCC-induced and RANKL-induced osteoclastogenesis. The IL-1 receptor antagonist significantly attenuated osteoclastogenesis induced by NEM cells. The stimulatory effects of IL-1 for OSCC-induced and RANKL-induced osteoclastogenesis were effectively attenuated with cannabidiol and denosumab, respectively. These results suggest that IL-1 secreted from OSCC cells stimulates not only tumor-induced osteoclastogenesis targeting OPCs but also physiological RANKL-induced osteoclastogenesis, and this may be the biological mechanism of bone resorption induced by the infiltration of OSCC. These results also suggest that IL-1 inhibitors are candidates for therapeutic agents against bone resorption induced by OSCC.
Collapse
|
5
|
Israr M, DeVoti JA, Papayannakos CJ, Bonagura VR. Role of chemokines in HPV-induced cancers. Semin Cancer Biol 2022; 87:170-183. [PMID: 36402301 DOI: 10.1016/j.semcancer.2022.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Human papillomaviruses (HPVs) cause cancers of the uterine cervix, oropharynx, anus, and vulvovaginal tract. Low-risk HPVs, such as HPV6 and 11, can also cause benign mucosal lesions including genital warts, and in patients with recurrent respiratory papillomatosis, lesions in the larynx, and on occasion, in the lungs. However, both high and less tumorigenic HPVs share a striking commonality in manipulating both innate and adaptive immune responses in HPV- infected keratinocytes, the natural host for HPV infection. In addition, immune/inflammatory cell infiltration into the tumor microenvironment influences cancer growth and prognosis, and this process is tightly regulated by different chemokines. Chemokines are small proteins and exert their biological effects by binding with G protein-coupled chemokine receptors (GPCRs) that are found on the surfaces of select target cells. Chemokines are not only involved in the establishment of a pro-tumorigenic microenvironment and organ-directed metastases but also involved in disease progression through enhancing tumor cell growth and proliferation. Therefore, having a solid grasp on chemokines and immune checkpoint modulators can help in the treatment of these cancers. In this review, we discuss the recent advances on the expression patterns and regulation of the main chemokines found in HPV-induced cancers, and their effects on both immune and non-immune cells in these lesions. Importantly, we also present the current knowledge of therapeutic interventions on the expression of specific chemokine and their receptors that have been shown to influence the development and progression of HPV-induced cancers.
Collapse
Affiliation(s)
- Mohd Israr
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - James A DeVoti
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Christopher J Papayannakos
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Vincent R Bonagura
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.
| |
Collapse
|
6
|
Li CH, Palanisamy K, Li X, Yu SH, Wang IK, Li CY, Sun KT. Exosomal tumor necrosis factor-α from hepatocellular cancer cells (Huh-7) promote osteoclast differentiation. J Cell Biochem 2021; 122:1749-1760. [PMID: 34383347 DOI: 10.1002/jcb.30127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/28/2022]
Abstract
Bone is the common extra-hepatic site for cancer metastasis. Hepatic cancer is associated with a higher incidence of pathological fracture. However, this important regulatory mechanism remains unexplored. Thus, exosome-mediated cell-cell communication between hepatocellular cancer and bone might be key to osteolytic bone destruction. Huh-7 exosomes were characterized for size and exosome marker expressions (CD63, Alix). Exosome mediated osteoclast differentiation in the RAW 264.7 cells was monitored from day 1 to 6 and multinucleated osteoclast formation and bone resorption activity were analyzed. The osteoclastogenic factor expressions in the exosomes and osteoclast differentiation markers such as tumor necrosis factor receptor 6 (TRAF6), nuclear factor κB (NF-κB), nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), and cathepsin K (CTSK) were analyzed using western blot. Exosomes released by liver cancer cells (Huh-7) promoted osteoclast differentiation in RAW 264.7 cells. Analysis of osteoclastogenic factors in the exosomes showed that exosomes were specifically enriched with tumor necrosis factor α (TNF-α). Huh-7 exosomes promoted osteoclast differentiation by significantly increasing the number of TRAP-positive multi nucleated osteoclasts and resorption pits. Importantly, exosomes upregulated osteoclast markers TRAF6, NF-κB, and CTSK expressions. Further, neutralizing exosomal TNF-α reverted exosome-mediated osteoclast differentiation in RAW 264.7 cells. Collectively, our findings show that cellular communication of exosomal TNF-α from hepatocellular cancer cells (Huh-7) regulates osteoclast differentiation through NF-κB/CTSK/TRAP expressions. Thus, exosomal TNF-α might act as an important therapeutic target to prevent hepatocellular cancer mediated pathological bone disease.
Collapse
Affiliation(s)
- Ching-Hao Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Kalaiselvi Palanisamy
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Xin Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Shao-Hua Yu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
| | - I-Kuan Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Division of Nephrology, China Medical University Hospital, Taichung, Taiwan.,Department of Internal Medicine, China Medical University, Taichung, Taiwan
| | - Chi-Yuan Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
| | - Kuo-Ting Sun
- Department of Pediatric Dentistry, China Medical University Hospital, Taichung, Taiwan.,School of Dentistry, China Medical University, Taichung, Taiwan
| |
Collapse
|
7
|
Liu W, Li CJ, Li LJ. [Advances in molecular mechanisms of bone invasion by oral cancer]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2021; 39:221-226. [PMID: 33834679 DOI: 10.7518/hxkq.2021.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bone invasion by oral cancer is a common clinical problem, which affects the choice of treatment and predicts a poor prognosis. Unfortunately, the molecular mechanism of this phenomenon has not been fully elucidated. Current studies have revealed that oral cancer cells modulate the formation and function of osteoclasts through the expression of a series of signal molecules. Many signal pathways are involved in this process, of which receptor activator of nuclear factor-κB ligand/receptor activator of nuclear factor-κB/osteoprotegerin signaling pathway attracted much attention. In this review, we introduce recent progress in molecular mechanisms of bone invasion by oral cancer.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chun-Jie Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Long-Jiang Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Son SH, Park J, Jung MJ, Lee SK, Kim H, Kim KR, Park KK, Chung WY. Transforming growth factor-β-regulated fractalkine as a marker of erosive bone invasion in oral squamous cell carcinoma. Eur J Oral Sci 2021; 129:e12750. [PMID: 33503283 DOI: 10.1111/eos.12750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022]
Abstract
Patients with oral squamous cell carcinoma (OSCC) bone invasion are surgically treated with bone resection, which results in severe physical and psychological damage. Here, we investigated the potential of fractalkine (CX3CL1), which is regulated by transforming growth factor (TGF-β), as a novel biomarker for correct prediction and early detection of OSCC-associated bone invasion. TGF-β knockdown and treatment with a TGF-β-neutralizing antibody decreased the level of fractalkine in the culture media of HSC-2 and YD10B OSCC cells. Treatment with a fractalkine-neutralizing antibody reduced TGF-β-stimulated invasion by HSC-2 and YD10B cells. Fractalkine treatment increased the viability, invasion, and uPA secretion of both OSCC cell lines. Furthermore, OSCC cell bone invasion was assessed following subcutaneous inoculation of wild-type or TGF-β knockdown OSCC cells in mouse calvaria. TGF-β knockdown prevented erosive bone invasion, reduced the number of osteoclasts at the tumor-bone interface, and downregulated fractalkine expression in mouse tumor tissues. Our results indicate that the production of fractalkine is stimulated by TGF-β and mediates TGF-β-induced cell invasion in several OSCC cell lines showing an erosive pattern of bone invasion. Fractalkine may be a useful predictive marker and therapeutic target for OSCC-induced bone destruction.
Collapse
Affiliation(s)
- Seung Hwa Son
- Department of Oral Biology and BK21 PLUS project, Yonsei University College of Dentistry, Seoul, Korea
| | - Junhee Park
- Department of Oral Biology and BK21 PLUS project, Yonsei University College of Dentistry, Seoul, Korea
| | - Min Ju Jung
- Department of Oral Biology and BK21 PLUS project, Yonsei University College of Dentistry, Seoul, Korea.,Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, Korea
| | - Sun Kyoung Lee
- Department of Oral Biology and BK21 PLUS project, Yonsei University College of Dentistry, Seoul, Korea
| | - Hyungkeun Kim
- Department of Oral Biology and BK21 PLUS project, Yonsei University College of Dentistry, Seoul, Korea.,Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, Korea.,Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Korea
| | - Ki Rim Kim
- Department of Dental Hygiene, College of Science and Engineering, Kyungpook National University, Sangju, Korea
| | - Kwang-Kyun Park
- Department of Oral Biology and BK21 PLUS project, Yonsei University College of Dentistry, Seoul, Korea
| | - Won-Yoon Chung
- Department of Oral Biology and BK21 PLUS project, Yonsei University College of Dentistry, Seoul, Korea.,Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, Korea.,Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Korea
| |
Collapse
|
9
|
Park J, Zhang X, Lee SK, Song NY, Son SH, Kim KR, Shim JH, Park KK, Chung WY. CCL28-induced RARβ expression inhibits oral squamous cell carcinoma bone invasion. J Clin Invest 2020; 129:5381-5399. [PMID: 31487270 DOI: 10.1172/jci125336] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 09/03/2019] [Indexed: 12/30/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) frequently invades the maxillary or mandibular bone, and this bone invasion is closely associated with poor prognosis and survival. Here, we show that CCL28 functions as a negative regulator of OSCC bone invasion. CCL28 inhibited invasion and epithelial-mesenchymal transition (EMT), and its inhibition of EMT was characterized by induced E-cadherin expression and reduced nuclear localization of β-catenin in OSCC cells with detectable RUNX3 expression levels. CCL28 signaling via CCR10 increased retinoic acid receptor-β (RARβ) expression by reducing the interaction between RARα and HDAC1. In addition, CCL28 reduced RANKL production in OSCC and osteoblastic cells and blocked RANKL-induced osteoclastogenesis in osteoclast precursors. Intraperitoneally administered CCL28 inhibited tumor growth and osteolysis in mouse calvaria and tibia inoculated with OSCC cells. RARβ expression was also increased in tumor tissues. In patients with OSCC, low CCL28, CCR10, and RARβ expression levels were highly correlated with bone invasion. Patients with OSCC who had higher expression of CCL28, CCR10, or RARβ had significantly better overall survival. These findings suggest that CCL28, CCR10, and RARβ are useful markers for the prediction and treatment of OSCC bone invasion. Furthermore, CCL28 upregulation in OSCC cells or CCL28 treatment can be a therapeutic strategy for OSCC bone invasion.
Collapse
Affiliation(s)
- Junhee Park
- Department of Dentistry and.,Department of Applied Life Science, Graduate School, Yonsei University, Seoul, Korea.,Department of Oral Biology and BK21 PLUS project, Yonsei University College of Dentistry, Seoul, Korea
| | - Xianglan Zhang
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Korea.,Department of Pathology, Yanbian University Hospital, Yanji city, China
| | - Sun Kyoung Lee
- Department of Applied Life Science, Graduate School, Yonsei University, Seoul, Korea.,Department of Oral Biology and BK21 PLUS project, Yonsei University College of Dentistry, Seoul, Korea
| | - Na-Young Song
- Department of Dentistry and.,Department of Oral Biology and BK21 PLUS project, Yonsei University College of Dentistry, Seoul, Korea
| | - Seung Hwa Son
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Korea
| | - Ki Rim Kim
- Department of Dental Hygiene, College of Science and Engineering, Kyungpook National University, Sangju, Korea
| | - Jae Hoon Shim
- Department of Applied Life Science, Graduate School, Yonsei University, Seoul, Korea
| | - Kwang-Kyun Park
- Department of Dentistry and.,Department of Applied Life Science, Graduate School, Yonsei University, Seoul, Korea.,Department of Oral Biology and BK21 PLUS project, Yonsei University College of Dentistry, Seoul, Korea
| | - Won-Yoon Chung
- Department of Dentistry and.,Department of Applied Life Science, Graduate School, Yonsei University, Seoul, Korea.,Department of Oral Biology and BK21 PLUS project, Yonsei University College of Dentistry, Seoul, Korea.,Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Korea
| |
Collapse
|
10
|
Nguyen CTK, Sawangarun W, Mandasari M, Morita KI, Harada H, Kayamori K, Yamaguchi A, Sakamoto K. AIRE is induced in oral squamous cell carcinoma and promotes cancer gene expression. PLoS One 2020; 15:e0222689. [PMID: 32012175 PMCID: PMC6996854 DOI: 10.1371/journal.pone.0222689] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/02/2020] [Indexed: 12/23/2022] Open
Abstract
Autoimmune regulator (AIRE) is a transcriptional regulator that is primarily expressed in medullary epithelial cells, where it induces tissue-specific antigen expression. Under pathological conditions, AIRE expression is induced in epidermal cells and promotes skin tumor development. This study aimed to clarify the role of AIRE in the pathogenesis of oral squamous cell carcinoma (OSCC). AIRE expression was evaluated in six OSCC cell lines and in OSCC tissue specimens. Expression of STAT1, ICAM1, CXCL10, CXCL11, and MMP9 was elevated in 293A cells stably expressing AIRE, and conversely, was decreased in AIRE-knockout HSC3 OSCC cells when compared to the respective controls. Upregulation of STAT1, and ICAM in OSCC cells was confirmed in tissue specimens by immunohistochemistry. We provide evidence that AIRE exerts transcriptional control in cooperation with ETS1. Expression of STAT1, ICAM1, CXCL10, CXCL11, and MMP9 was increased in 293A cells upon Ets1 transfection, and coexpression of AIRE further increased the expression of these proteins. AIRE coprecipitated with ETS1 in a modified immunoprecipitation assay using formaldehyde crosslinking. Chromatin immunoprecipitation and quantitative PCR analysis revealed that promoter fragments of STAT1, ICAM1, CXCL10, and MMP9 were enriched in the AIRE precipitates. These results indicate that AIRE is induced in OSCC and supports cancer-related gene expression in cooperation with ETS1. This is a novel function of AIRE in extrathymic tissues under the pathological condition.
Collapse
Affiliation(s)
- Chi Thi Kim Nguyen
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Wanlada Sawangarun
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masita Mandasari
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kei-ichi Morita
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Bioresource Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kou Kayamori
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Yamaguchi
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Kei Sakamoto
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
11
|
Chen SC, Chen FW, Hsu YL, Kuo PL. Systematic Analysis of Transcriptomic Profile of Renal Cell Carcinoma under Long-Term Hypoxia Using Next-Generation Sequencing and Bioinformatics. Int J Mol Sci 2017; 18:ijms18122657. [PMID: 29215599 PMCID: PMC5751259 DOI: 10.3390/ijms18122657] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/25/2017] [Accepted: 12/04/2017] [Indexed: 01/28/2023] Open
Abstract
Patients with clear cell renal cell carcinoma (ccRCC) are often diagnosed with both von Hippel-Lindau (VHL) mutations and the constitutive activation of hypoxia-inducible factor-dependent signaling. In this study, we investigated the effects of long-term hypoxia in 786-O, a VHL-defective renal cell carcinoma cell line, to identify potential genes and microRNAs associated with tumor malignancy. The transcriptomic profiles of 786-O under normoxia, short-term hypoxia and long-term hypoxia were analyzed using next-generation sequencing. The results showed that long-term hypoxia promoted the ability of colony formation and transwell migration compared to normoxia. In addition, the differentially expressed genes induced by long-term hypoxia were involved in various biological processes including cell proliferation, the tumor necrosis factor signaling pathway, basal cell carcinoma and cancer pathways. The upregulated (L1CAM and FBN1) and downregulated (AUTS2, MAPT, AGT and USH1C) genes in 786-O under long-term hypoxia were also observed in clinical ccRCC samples along with malignant grade. The expressions of these genes were significantly correlated with survival outcomes in patients with renal cancer. We also found that long-term hypoxia in 786-O resulted in decreased expressions of hsa-mir-100 and hsa-mir-378 and this effect was also observed in samples of metastatic ccRCC compared to samples of non-metastatic ccRCC. These findings may provide a new direction for the study of potential molecular mechanisms associated with the progression of ccRCC.
Collapse
Affiliation(s)
- Szu-Chia Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Internal Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan.
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Feng-Wei Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
12
|
Dias Schalch T, Porta Santos Fernandes K, Costa-Rodrigues J, Pereira Garcia M, Agnelli Mesquita-Ferrari R, Kalil Bussadori S, Fernandes MH. Photomodulation of the osteoclastogenic potential of oral squamous carcinoma cells. JOURNAL OF BIOPHOTONICS 2016; 9:1136-1147. [PMID: 27089455 DOI: 10.1002/jbio.201500292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/15/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
The treatment for oral cancer usually involves surgical excision followed by chemotherapy and/or radiotherapy. The combination of these therapies generally promotes a serious inflammation of the mucosa of the digestive tract, denominated mucositis, which compromises continuity of treatment. Photobiomodulation (PBM) therapy has been used successfully to reduce the oral mucositis, however there is still some controversy regarding the effects of this therapy on unintentionally irradiated tumor cells that may remain after cancer treatment. The aim of this study was to analyze the effect of PBM therapy (using parameters for mucositis) on the modulation of osteoclastogenic potential of a cell line derived from human lingual squamous cell carcinoma (SCC9). Previously irradiated SCC9 cells were co-cultured with human osteoclast precursors. Co-cultures performed with non-irradiated SCC9 cells served as control. After 7, 14 and 21 days the co-cultures were evaluated for the tartrate-resistant acid phosphatase (TRAP) activity, an osteoclastogenic marker. Additionally, the monocultures of SCC9 cells (non-irradiated and irradiated) were analyzed for cell viability/proliferation and for the expression of IL-11 and PTHrP. The irradiation of SCC9 cells with PBM with an energy density of 4 J/cm2 decreased the pro-osteoclastogenic potential of those cells. This may represent a potential useful side effect of PBM therapy. PBM (using recommended parameters for mucositis treatment) decreases the osteoclastogenic potential of oral squamous carcinoma cells.
Collapse
Affiliation(s)
- Tatiana Dias Schalch
- Biophotonics Applied to Health Sciences Postgraduate Program, Nove de Julho University - UNINOVE, 235/249 Vergueiro Street, 01504-001, São Paulo, Brazil
| | - Kristianne Porta Santos Fernandes
- Biophotonics Applied to Health Sciences Postgraduate Program, Nove de Julho University - UNINOVE, 235/249 Vergueiro Street, 01504-001, São Paulo, Brazil
| | - João Costa-Rodrigues
- Laboratory for Bone Metabolism and Regeneration, Faculdade de Medicina Dentária, Universidade do Porto, Portugal, Dr. Manuel Pereira da Silva Street, 4200-393, Porto, Portugal
| | - Mônica Pereira Garcia
- Laboratory for Bone Metabolism and Regeneration, Faculdade de Medicina Dentária, Universidade do Porto, Portugal, Dr. Manuel Pereira da Silva Street, 4200-393, Porto, Portugal
| | - Raquel Agnelli Mesquita-Ferrari
- Biophotonics Applied to Health Sciences Postgraduate Program, Nove de Julho University - UNINOVE, 235/249 Vergueiro Street, 01504-001, São Paulo, Brazil
| | - Sandra Kalil Bussadori
- Biophotonics Applied to Health Sciences Postgraduate Program, Nove de Julho University - UNINOVE, 235/249 Vergueiro Street, 01504-001, São Paulo, Brazil
| | - Maria Helena Fernandes
- Laboratory for Bone Metabolism and Regeneration, Faculdade de Medicina Dentária, Universidade do Porto, Portugal, Dr. Manuel Pereira da Silva Street, 4200-393, Porto, Portugal
| |
Collapse
|
13
|
Panda S, Padhiary SK, Routray S. Chemokines accentuating protumoral activities in oral cancer microenvironment possess an imperious stratagem for therapeutic resolutions. Oral Oncol 2016; 60:8-17. [PMID: 27531867 DOI: 10.1016/j.oraloncology.2016.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/01/2016] [Accepted: 06/10/2016] [Indexed: 12/15/2022]
Abstract
Chemokines, the chemotactic cytokines have established their role in tumorigenesis and tumor progression. Studies, which explored their role in oral cancer for protumoral activity, point towards targeting chemokines for oral squamous cell carcinoma therapy. The need of the hour is to emphasize/divulge in the activities of chemokine ligands and their receptors in the tumor microenvironment for augmentation of such stratagems. This progressing sentience of chemokines and their receptors has inspired this review which is an endeavour to comprehend their role as an aid in accentuating hallmarks of cancer and targeted therapy.
Collapse
Affiliation(s)
- Swagatika Panda
- Department of Oral Pathology and Microbiology, Institute of Dental Sciences, Siksha 'O' Anusandhan University, Bhubaneswar 751030, India.
| | - Subrat Kumar Padhiary
- Department of Oral and Maxillofacial Surgery, Institute of Dental Sciences, Siksha 'O' Anusandhan University, Bhubaneswar 751030, India.
| | - Samapika Routray
- Department of Oral Pathology and Microbiology, Institute of Dental Sciences, Siksha 'O' Anusandhan University, Bhubaneswar 751030, India.
| |
Collapse
|
14
|
Hwang YS, Ahn SY, Moon S, Zheng Z, Cha IH, Kim J, Zhang X. Insulin-like growth factor-II mRNA binding protein-3 and podoplanin expression are associated with bone invasion and prognosis in oral squamous cell carcinoma. Arch Oral Biol 2016; 69:25-32. [PMID: 27232357 DOI: 10.1016/j.archoralbio.2016.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 03/30/2016] [Accepted: 05/08/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVE This study aimed to evaluate the prognostic implications of insulin-like growth factor-II mRNA binding protein-3 (IMP3) and podoplanin (PDPN) as therapeutic targets against oral squamous cell carcinoma (OSCC) with bone invasion. STUDY DESIGN We elucidated the correlation of IMP3 and PDPN expression with bone invasion in 160 OSCC tissue specimens, and assessed a mouse calvarium xenograft model using an IMP3- and PDPN-depleted OSCC cell line. RESULTS The retrospective analysis revealed that the expression of IMP3 and PDPN is significantly correlated with T stage, lymph node metastasis, and the overall survival of OSCC patients. In addition, the dual expression of IMP3 and PDPN but not the single expression of either IMP3 or PDPN was associated with bone invasion and the number of osteoclasts in patients with OSCC. In support of these findings, IMP3 or PDPN depletion inhibited the invasive capacity of OSCC cells in a three-dimensional culture system, tumorigenesis, and regional bone destruction in a xenograft mouse model. In addition, IMP3 or PDPN depletion inhibited the expression of interleukin (IL)-6 and IL-8 in OSCC cells, and decreased the expression of receptor activator of NF-κB ligand (RANKL) in xenograft tumor tissues of OSCC. CONCLUSIONS These results suggest that IMP3 and PDPN may have strong influence on the pathogenesis of OSCC, especially in bone invasion, and may serve as novel therapeutic targets with prognostic implications for bone-invasive OSCC.
Collapse
Affiliation(s)
- Young Sun Hwang
- Department of Dental Hygiene, College of Health Science, Eulji University, Seoul, Korea
| | - Sung Yong Ahn
- Department of Oral Pathology, Graduate School, Yonsei University College of Dentistry, Seoul, Korea; Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Korea
| | - Sook Moon
- Department of Oral Pathology, Graduate School, Yonsei University College of Dentistry, Seoul, Korea
| | - Zhenlong Zheng
- Department of Dermatology, Yanbian University Hospital, Yanji City, Jilin province, China
| | - In-Ho Cha
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Korea
| | - Jin Kim
- Department of Oral Pathology, Graduate School, Yonsei University College of Dentistry, Seoul, Korea; Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Korea
| | - Xianglan Zhang
- Department of Pathology, Yanbian University Hospital, Yanji City, Jilin province, China; Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Korea.
| |
Collapse
|
15
|
da Silva JM, Soave DF, Moreira dos Santos TP, Batista AC, Russo RC, Teixeira MM, Silva TAD. Significance of chemokine and chemokine receptors in head and neck squamous cell carcinoma: A critical review. Oral Oncol 2016; 56:8-16. [DOI: 10.1016/j.oraloncology.2016.02.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/14/2016] [Accepted: 02/29/2016] [Indexed: 12/17/2022]
|
16
|
Sahingur SE, Yeudall WA. Chemokine function in periodontal disease and oral cavity cancer. Front Immunol 2015; 6:214. [PMID: 25999952 PMCID: PMC4419853 DOI: 10.3389/fimmu.2015.00214] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/18/2015] [Indexed: 12/12/2022] Open
Abstract
The chemotactic cytokines, or chemokines, comprise a superfamily of polypeptides with a wide range of activities that include recruitment of immune cells to sites of infection and inflammation, as well as stimulation of cell proliferation. As such, they function as antimicrobial molecules and play a central role in host defenses against pathogen challenge. However, their ability to recruit leukocytes and potentiate or prolong the inflammatory response may have profound implications for the progression of oral diseases such as chronic periodontitis, where tissue destruction may be widespread. Moreover, it is increasingly recognized that chronic inflammation is a key component of tumor progression. Interaction between cancer cells and their microenvironment is mediated in large part by secreted factors such as chemokines, and serves to enhance the malignant phenotype in oral and other cancers. In this article, we will outline the biological and biochemical mechanisms of chemokine action in host–microbiome interactions in periodontal disease and in oral cancer, and how these may overlap and contribute to pathogenesis.
Collapse
Affiliation(s)
- Sinem Esra Sahingur
- Department of Periodontics, Virginia Commonwealth University , Richmond, VA , USA ; Department of Microbiology and Immunology, Virginia Commonwealth University , Richmond, VA , USA
| | - W Andrew Yeudall
- Department of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University , Richmond, VA , USA ; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University , Richmond, VA , USA ; Massey Cancer Center, Virginia Commonwealth University , Richmond, VA , USA
| |
Collapse
|
17
|
Association of high expression of Groβ with clinical and pathological characteristics of unfavorable prognosis in gastrointestinal stromal tumors. DISEASE MARKERS 2015; 2015:171035. [PMID: 25944970 PMCID: PMC4405288 DOI: 10.1155/2015/171035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 12/14/2022]
Abstract
GROβ (CXCL2) is a chemokine produced by endotoxin-treated macrophages that mediates inflammation and tumor development. However, little is known about GROβ expression in gastrointestinal stromal tumors (GIST) or the relationship between GROβ expression and clinical attributes of GIST. GROβ expression was examined via immunohistochemical staining of 173 GIST samples using tissue microarray. The relationship between GROβ expression and relevant patient and tumor characteristics was assessed, using chi-square tests. Univariate and multivariate analysis was carried out using the Cox regression method. High GROβ cytoplasm staining was detected in 56 (32.4%) specimens; high GROβ nuclear staining was detected in 64 (37.0%) specimens. High GROβ cytoplasm staining was significantly associated with patients' age (P = 0.043) and tumor location (P = 0.014), while high GROβ nucleus staining was significantly associated with mitotic index (P = 0.034), tumor location (P = 0.049), and AFIP-Miettinen risk classification (P = 0.048). Kaplan-Meier survival curves showed GIST patients with low GROβ cytoplasm expression (P = 0.023) and mitotic index < 6 per 50 HPFs (P = 0.026) to have a more favorable prognosis. These findings indicate that GROβ expression correlates with malignant GIST phenotypes and could be an unfavorable prognostic marker in patients with GIST.
Collapse
|
18
|
Hardaway AL, Herroon MK, Rajagurubandara E, Podgorski I. Marrow adipocyte-derived CXCL1 and CXCL2 contribute to osteolysis in metastatic prostate cancer. Clin Exp Metastasis 2015; 32:353-68. [PMID: 25802102 DOI: 10.1007/s10585-015-9714-5] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/12/2015] [Indexed: 01/25/2023]
Abstract
Increased bone marrow adiposity is a common feature of advanced age, obesity and associated metabolic pathologies. Augmented numbers of marrow adipocytes positively correlate with dysregulated bone remodeling, also a well-established complication of metastatic disease. We have shown previously that marrow adiposity accelerates prostate tumor progression in the skeleton and promotes extensive destruction of the bone; however, the factors behind adipocyte-driven osteolysis in the skeletal tumor microenvironment are not currently known. In this study, utilizing in vivo diet-induced models of bone marrow adiposity, we reveal evidence for positive correlation between increased marrow fat content, bone degradation by ARCaP(M) and PC3 prostate tumors, and augmented levels of host-derived CXCL1 and CXCL2, ligands of CXCR2 receptor. We show by in vitro osteoclastogenesis assays that media conditioned by bone marrow adipocytes is a significant source of CXCL1 and CXCL2 proteins. We also demonstrate that both the adipocyte-conditioned media and the recombinant CXCL1 and CXCL2 ligands efficiently accelerate osteoclast maturation, a process that can be blocked by neutralizing antibodies to each of the chemokines. We further confirm the contribution of CXCR2 signaling axis to adiposity-driven osteoclastogenesis by blocking fat cell-induced osteoclast differentiation with CXCR2 antagonist or neutralizing antibodies. Together, our results link CXCL1 and CXCL2 chemokines with bone marrow adiposity and implicate CXCR2 signaling in promoting effects of marrow fat on progression of skeletal tumors in bone.
Collapse
Affiliation(s)
- Aimalie L Hardaway
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield, Rm 6304, Detroit, MI, 48201, USA
| | | | | | | |
Collapse
|
19
|
Transforming growth factor-β synthesized by stromal cells and cancer cells participates in bone resorption induced by oral squamous cell carcinoma. Biochem Biophys Res Commun 2015; 458:777-82. [DOI: 10.1016/j.bbrc.2015.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 02/03/2015] [Indexed: 12/21/2022]
|
20
|
Peng X, Li W, Johnson WD, Torres KEO, McCormick DL. Overexpression of lipocalins and pro-inflammatory chemokines and altered methylation of PTGS2 and APC2 in oral squamous cell carcinomas induced in rats by 4-nitroquinoline-1-oxide. PLoS One 2015; 10:e0116285. [PMID: 25635769 PMCID: PMC4312057 DOI: 10.1371/journal.pone.0116285] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/08/2014] [Indexed: 12/12/2022] Open
Abstract
Oral squamous cell carcinomas (OSCC) induced in F344 rats by 4-nitroquinoline-1-oxide (4-NQO) demonstrate considerable phenotypic similarity to human oral cancers. Gene expression studies (microarray and PCR) were coupled with methylation analysis of selected genes to identify molecular markers of carcinogenesis in this model and potential biochemical and molecular targets for oral cancer chemoprevention. Microarray analysis of 11 pairs of OSCC and site-matched phenotypically normal oral tissues from 4-NQO-treated rats identified more than 3500 differentially expressed genes; 1735 genes were up-regulated in rat OSCC versus non-malignant tissues, while 1803 genes were down-regulated. In addition to several genes involved in normal digestion, genes demonstrating the largest fold increases in expression in 4-NQO-induced OSCC include three lipocalins (VEGP1, VEGP2, LCN2) and three chemokines (CCL, CXCL2, CXCL3); both classes are potentially druggable targets for oral cancer chemoprevention and/or therapy. Down-regulated genes in 4-NQO-induced OSCC include numerous keratins and keratin-associated proteins, suggesting that alterations in keratin expression profiles may provide a useful biomarker of oral cancer in F344 rats treated with 4-NQO. Confirming and extending our previous results, PTGS2 (cyclooxygenase-2) and several cyclooxygenase-related genes were significantly up-regulated in 4-NQO-induced oral cancers; up-regulation of PTGS2 was associated with promoter hypomethylation. Rat OSCC also demonstrated increased methylation of the first exon of APC2; the increased methylation was correlated with down-regulation of this tumor suppressor gene. Overexpression of pro-inflammatory chemokines, hypomethylation of PTGS2, and hypermethylation of APC2 may be causally linked to the etiology of oral cancer in this model.
Collapse
Affiliation(s)
- Xinjian Peng
- Life Sciences Group, IIT Research Institute, Chicago, Illinois, 60616, United States of America
- * E-mail:
| | - Wenping Li
- Life Sciences Group, IIT Research Institute, Chicago, Illinois, 60616, United States of America
| | - William D. Johnson
- Life Sciences Group, IIT Research Institute, Chicago, Illinois, 60616, United States of America
| | | | - David L. McCormick
- Life Sciences Group, IIT Research Institute, Chicago, Illinois, 60616, United States of America
| |
Collapse
|
21
|
TORRES-MARTIN MIGUEL, LASSALETTA LUIS, ISLA ALBERTO, DE CAMPOS JOSEM, PINTO GIOVANNYR, BURBANO ROMMELR, CASTRESANA JAVIERS, MELENDEZ BARBARA, REY JUANA. Global expression profile in low grade meningiomas and schwannomas shows upregulation of PDGFD, CDH1 and SLIT2 compared to their healthy tissue. Oncol Rep 2014; 32:2327-34. [PMID: 25333347 PMCID: PMC4240498 DOI: 10.3892/or.2014.3526] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 08/26/2014] [Indexed: 12/20/2022] Open
Abstract
Schwannomas and grade I meningiomas are non‑metastatic neoplasms that share the common mutation of gene NF2. They usually appear in neurofibromatosis type 2 patients. Currently, there is no drug treatment available for both tumors, thus the use of wide expression technologies is crucial to identify therapeutic targets. Affymetrix Human Gene 1.0 ST was used to test global gene expression in 22 meningiomas, 31 schwannomas and, as non-tumoral controls, 3 healthy meningeal tissues, 8 non-tumoral nerves and 1 primary Schwann cell culture. A non-stringent P-value cut-off and fold change were used to establish deregulated genes. We identified a subset of genes that were upregulated in meningiomas and schwannomas when compared to their respectively healthy tissues, including PDGFD, CDH1 and SLIT2. Thus, these genes should be thoroughly studied as targets in a possible combined treatment.
Collapse
Affiliation(s)
- MIGUEL TORRES-MARTIN
- Molecular Neuro-Oncogenetics Laboratory, Research Unit, Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
| | - LUIS LASSALETTA
- Department of Otolaryngology, Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
| | - ALBERTO ISLA
- Department of Neurosurgery, Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
| | | | - GIOVANNY R. PINTO
- Genetics and Molecular Biology Laboratory, Federal University of Piau, Parnaiba, Brazil
| | - ROMMEL R. BURBANO
- Human Cytogenetics Laboratory, Institute of Biological Sciences, Federal University of Para, Belem, Brazil
| | - JAVIER S. CASTRESANA
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, Pamplona, Spain
| | - BARBARA MELENDEZ
- Molecular Pathology Research Unit, Virgen de la Salud Hospital, Toledo, Spain
| | - JUAN A. REY
- Molecular Neuro-Oncogenetics Laboratory, Research Unit, Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
| |
Collapse
|
22
|
The macrophage inflammatory proteins MIP1α (CCL3) and MIP2α (CXCL2) in implant-associated osteomyelitis: linking inflammation to bone degradation. Mediators Inflamm 2014; 2014:728619. [PMID: 24795505 PMCID: PMC3984830 DOI: 10.1155/2014/728619] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/18/2014] [Indexed: 12/22/2022] Open
Abstract
Bacterial infections of bones remain a serious complication of endoprosthetic surgery. These infections are difficult to treat, because many bacterial species form biofilms on implants, which are relatively resistant towards antibiotics. Bacterial biofilms elicit a progressive local inflammatory response, resulting in tissue damage and bone degradation. In the majority of patients, replacement of the prosthesis is required. To address the question of how the local inflammatory response is linked to bone degradation, tissue samples were taken during surgery and gene expression of the macrophage inflammatory proteins MIP1α (CCL3) and MIP2α (CXCL2) was assessed by quantitative RT-PCR. MIPs were expressed predominantly at osteolytic sites, in close correlation with CD14 which was used as marker for monocytes/macrophages. Colocalisation of MIPs with monocytic cells could be confirmed by histology. In vitro experiments revealed that, aside from monocytic cells, also osteoblasts were capable of MIP production when stimulated with bacteria; moreover, CCL3 induced the differentiation of monocytes to osteoclasts. In conclusion, the multifunctional chemokines CCL3 and CXCL2 are produced locally in response to bacterial infection of bones. In addition to their well described chemokine activity, these cytokines can induce generation of bone resorbing osteoclasts, thus providing a link between bacterial infection and osteolysis.
Collapse
|
23
|
Govey PM, Jacobs JM, Tilton SC, Loiselle AE, Zhang Y, Freeman WM, Waters KM, Karin NJ, Donahue HJ. Integrative transcriptomic and proteomic analysis of osteocytic cells exposed to fluid flow reveals novel mechano-sensitive signaling pathways. J Biomech 2014; 47:1838-45. [PMID: 24720889 DOI: 10.1016/j.jbiomech.2014.03.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/11/2014] [Accepted: 03/11/2014] [Indexed: 01/01/2023]
Abstract
Osteocytes, positioned within bone׳s porous structure, are subject to interstitial fluid flow upon whole bone loading. Such fluid flow is widely theorized to be a mechanical signal transduced by osteocytes, initiating a poorly understood cascade of signaling events mediating bone adaptation to mechanical load. The objective of this study was to examine the time course of flow-induced changes in osteocyte gene transcript and protein levels using high-throughput approaches. Osteocyte-like MLO-Y4 cells were subjected to 2h of oscillating fluid flow (1Pa peak shear stress) and analyzed following 0, 2, 8, and 24h post-flow incubation. Transcriptomic microarray analysis, followed by gene ontology pathway analysis, demonstrated fluid flow regulation of genes consistent with both known and unknown metabolic and inflammatory responses in bone. Additionally, two of the more highly up-regulated gene products - chemokines Cxcl1 and Cxcl2, supported by qPCR - have not previously been reported as responsive to fluid flow. Proteomic analysis demonstrated greatest up-regulation of the ATP-producing enzyme NDK, calcium-binding Calcyclin, and G protein-coupled receptor kinase 6. Finally, an integrative pathway analysis merging fold changes in transcript and protein levels predicted signaling nodes not directly detected at the sampled time points, including transcription factors c-Myc, c-Jun, and RelA/NF-κB. These results extend our knowledge of the osteocytic response to fluid flow, most notably up-regulation of Cxcl1 and Cxcl2 as possible paracrine agents for osteoblastic and osteoclastic recruitment. Moreover, these results demonstrate the utility of integrative, high-throughput approaches in place of a traditional candidate approach for identifying novel mechano-sensitive signaling molecules.
Collapse
Affiliation(s)
- Peter M Govey
- Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Jon M Jacobs
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Susan C Tilton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Alayna E Loiselle
- Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Yue Zhang
- Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Willard M Freeman
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Katrina M Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Norman J Karin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Henry J Donahue
- Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, Penn State College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
24
|
Chemokines and cytokines as salivary biomarkers for the early diagnosis of oral cancer. Int J Dent 2013; 2013:813756. [PMID: 24376459 PMCID: PMC3860143 DOI: 10.1155/2013/813756] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/31/2013] [Indexed: 01/19/2023] Open
Abstract
Chemokines have been shown to be important in both inflammation and carcinogenesis and are able to be measured in saliva with relatively robust methods including enzyme-linked immunosorbent assays (ELISA). Thus it has been hypothesized that patients with oral cancer and oral potentially malignant lesions will have elevated levels of specific chemokines in oral fluids and that this may be used as a marker of both the early detection of malignant disease and progression to malignancy. The concept that salivary biomarkers can be easily measured and indicate disease states has profound consequences for clinical practice and may open up new strategies for the diagnosis, prognosis, and potential therapy of oral squamous cell carcinoma (OSCC). This review focuses on our understanding of cytokines and chemokines and the potential role that they may have in clinical practice.
Collapse
|
25
|
Al-toub M, Almusa A, Almajed M, Al-Nbaheen M, Kassem M, Aldahmash A, Alajez NM. Pleiotropic effects of cancer cells' secreted factors on human stromal (mesenchymal) stem cells. Stem Cell Res Ther 2013; 4:114. [PMID: 24405819 PMCID: PMC3854757 DOI: 10.1186/scrt325] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 09/12/2013] [Indexed: 02/07/2023] Open
Abstract
Introduction Studying cancer tumors’ microenvironment may reveal a novel role in driving cancer progression and metastasis. The biological interaction between stromal (mesenchymal) stem cells (MSCs) and cancer cells remains incompletely understood. Herein, we investigated the effects of tumor cells’ secreted factors as represented by a panel of human cancer cell lines (breast (MCF7 and MDA-MB-231); prostate (PC-3); lung (NCI-H522); colon (HT-29) and head & neck (FaDu)) on the biological characteristics of MSCs. Methods Morphological changes were assessed using fluorescence microscopy. Changes in gene expression were assessed using Agilent microarray and qRT-PCR. GeneSpring 12.1 and DAVID tools were used for bioinformatic and signaling pathway analyses. Cell migration was assessed using a transwell migration system. SB-431542, PF-573228 and PD98059 were used to inhibit transforming growth factor β (TGFβ), focal adhesion kinase (FAK), and mitogen activated protein kinase kinase (MAPKK) pathways, respectively. Interleukin-1β (IL1β) was measured using ELISA. Results MSCs exposed to secreted factors present in conditioned media (CM) from FaDu, MDA-MB-231, PC-3 and NCI-H522, but not from MCF7 and HT-29, developed an elongated, spindle-shaped morphology with bipolar processes. In association with phenotypic changes, genome-wide gene expression and bioinformatics analysis revealed an enhanced pro-inflammatory response of those MSCs. Pharmacological inhibitions of FAK and MAPKK severely impaired the pro-inflammatory response of MSCs to tumor CM (approximately 80% to 99%, and 55% to 88% inhibition, respectively), while inhibition of the TGFβ pathway was found to promote the pro-inflammatory response (approximately 3-fold increase). In addition, bioinformatics and pathway analysis of gene expression data from tumor cell lines combined with experimental validation revealed tumor-derived IL1β as one mediator of the pro-inflammatory phenotype observed in MSCs exposed to tumor CM. MSCs exhibited significant tropism toward secreted factors from the aforementioned tumor cell lines, while both normal and MSCs exposed to tumor CM were capable of attracting human peripheral blood mononuclear cells (PBMCs). Conclusions Our data revealed tumor-derived IL1β as one mediator of the pro-inflammatory response in MSCs exposed to tumor CM, which was found to be positively regulated by FAK and MAPK signaling and negatively regulated by TGFβ signaling. Thus, our data support a model where MSCs could promote cancer progression through becoming pro-inflammatory cells within the cancer stroma.
Collapse
|