1
|
Blum D, Reuter M, Schliebs W, Tomaschewski J, Erdmann R, Wagner R. Membrane binding and pore forming insertion of PEX5 into horizontal lipid bilayer. Biol Chem 2023; 404:157-167. [PMID: 36260915 DOI: 10.1515/hsz-2022-0183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/29/2022] [Indexed: 11/15/2022]
Abstract
The assembly of the peroxisomal translocon involves the transition of a soluble form of the peroxisomal targeting receptor PEX5 into a membrane-bound form, which becomes an integral membrane component of the import pore for peroxisomal matrix proteins. How this transition occurs is still a mystery. We addressed this question using a artificial horizontal bilayer in combination with fluorescence time-correlated single photon counting (TCSPC) and electrophysiological channel recording. Purified human isoform PEX5L and truncated PEX5L(1-335) lacking the cargo binding domain were selectively labeled with thiol-reactive Atto-dyes. Diffusion coefficients of labeled protein in solution show that PEX5L is monomeric with a rather compact spherical conformation, while the truncated protein appeared in a more extended conformation. Labeled PEX5L and the truncated PEX5L(1-335) bind stably to horizontal bilayer thereby accumulating around 100-fold. The diffusion coefficients of the membrane-bound PEX5L forms are 3-4 times lower than in solution, indicating the formation of larger complexes. Electrophysiological single channel recording shows that membrane-bound labeled and non-labeled PEX5L, but not the truncated PEX5L(1-335), can form ion conducting membrane channels. The data suggest that PEX5L is the pore-forming component of the oligomeric peroxisomal translocon and that spontaneous PEX5L membrane surface binding might be an important step in its assembly.
Collapse
Affiliation(s)
- Daniel Blum
- MOLIFE Research Center, Jacobs, University Bremen, D-28759 Bremen, Germany
| | - Maren Reuter
- Institut für Biochemie und Pathobiochemie, Abt. Systembiochemie, Medizinische Fakultät, Ruhr-Universität Bochum, D-44801 Bochum, Germany
| | - Wolfgang Schliebs
- Institut für Biochemie und Pathobiochemie, Abt. Systembiochemie, Medizinische Fakultät, Ruhr-Universität Bochum, D-44801 Bochum, Germany
| | - Jana Tomaschewski
- Institut für Biochemie und Pathobiochemie, Abt. Systembiochemie, Medizinische Fakultät, Ruhr-Universität Bochum, D-44801 Bochum, Germany
| | - Ralf Erdmann
- Institut für Biochemie und Pathobiochemie, Abt. Systembiochemie, Medizinische Fakultät, Ruhr-Universität Bochum, D-44801 Bochum, Germany
| | - Richard Wagner
- MOLIFE Research Center, Jacobs, University Bremen, D-28759 Bremen, Germany
| |
Collapse
|
2
|
Ando T, Bhamidimarri SP, Brending N, Colin-York H, Collinson L, De Jonge N, de Pablo PJ, Debroye E, Eggeling C, Franck C, Fritzsche M, Gerritsen H, Giepmans BNG, Grunewald K, Hofkens J, Hoogenboom JP, Janssen KPF, Kaufman R, Klumpermann J, Kurniawan N, Kusch J, Liv N, Parekh V, Peckys DB, Rehfeldt F, Reutens DC, Roeffaers MBJ, Salditt T, Schaap IAT, Schwarz US, Verkade P, Vogel MW, Wagner R, Winterhalter M, Yuan H, Zifarelli G. The 2018 correlative microscopy techniques roadmap. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2018; 51:443001. [PMID: 30799880 PMCID: PMC6372154 DOI: 10.1088/1361-6463/aad055] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/14/2018] [Accepted: 07/01/2018] [Indexed: 05/19/2023]
Abstract
Developments in microscopy have been instrumental to progress in the life sciences, and many new techniques have been introduced and led to new discoveries throughout the last century. A wide and diverse range of methodologies is now available, including electron microscopy, atomic force microscopy, magnetic resonance imaging, small-angle x-ray scattering and multiple super-resolution fluorescence techniques, and each of these methods provides valuable read-outs to meet the demands set by the samples under study. Yet, the investigation of cell development requires a multi-parametric approach to address both the structure and spatio-temporal organization of organelles, and also the transduction of chemical signals and forces involved in cell-cell interactions. Although the microscopy technologies for observing each of these characteristics are well developed, none of them can offer read-out of all characteristics simultaneously, which limits the information content of a measurement. For example, while electron microscopy is able to disclose the structural layout of cells and the macromolecular arrangement of proteins, it cannot directly follow dynamics in living cells. The latter can be achieved with fluorescence microscopy which, however, requires labelling and lacks spatial resolution. A remedy is to combine and correlate different readouts from the same specimen, which opens new avenues to understand structure-function relations in biomedical research. At the same time, such correlative approaches pose new challenges concerning sample preparation, instrument stability, region of interest retrieval, and data analysis. Because the field of correlative microscopy is relatively young, the capabilities of the various approaches have yet to be fully explored, and uncertainties remain when considering the best choice of strategy and workflow for the correlative experiment. With this in mind, the Journal of Physics D: Applied Physics presents a special roadmap on the correlative microscopy techniques, giving a comprehensive overview from various leading scientists in this field, via a collection of multiple short viewpoints.
Collapse
Affiliation(s)
- Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | | | | | - H Colin-York
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, OX3 9DS Oxford, United Kingdom
| | | | - Niels De Jonge
- INM-Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
- Saarland University, 66123 Saarbrücken, Germany
| | - P J de Pablo
- Dpto. Física de la Materia Condensada Universidad Autónoma de Madrid 28049, Madrid, Spain
- Instituto de Física de la Materia Condensada IFIMAC, Universidad Autónoma de Madrid 28049, Madrid, Spain
| | - Elke Debroye
- KU Leuven, Department of Chemistry, B-3001 Heverlee, Belgium
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, OX3 9DS Oxford, United Kingdom
- Institute of Applied Optics, Friedrich-Schiller University, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
| | - Christian Franck
- Department of Mechanical Engineering, University of Wisconsin-Madison, 1513 University Ave, Madison, WI 53706, United States of America
| | - Marco Fritzsche
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, OX3 9DS Oxford, United Kingdom
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Hans Gerritsen
- Debye Institute, Utrecht University, Utrecht, Netherlands
| | - Ben N G Giepmans
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Kay Grunewald
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Centre of Structural Systems Biology Hamburg and University of Hamburg, Hamburg, Germany
- Heinrich-Pette-Institute, Leibniz Institute of Virology, Hamburg, Germany
| | - Johan Hofkens
- KU Leuven, Department of Chemistry, B-3001 Heverlee, Belgium
| | | | | | - Rainer Kaufman
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Centre of Structural Systems Biology Hamburg and University of Hamburg, Hamburg, Germany
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Judith Klumpermann
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, Netherlands
| | - Nyoman Kurniawan
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Nalan Liv
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, Netherlands
| | - Viha Parekh
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Diana B Peckys
- Faculty of Medicine, Saarland University, 66421 Homburg, Germany
| | - Florian Rehfeldt
- University of Göttingen, Third Institute of Physics-Biophysics, 37077 Göttingen, Germany
| | - David C Reutens
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Tim Salditt
- University of Göttingen, Institute for X-Ray Physics, 37077 Göttingen, Germany
| | - Iwan A T Schaap
- SmarAct GmbH, Schütte-Lanz-Str. 9, D-26135 Oldenburg, Germany
| | - Ulrich S Schwarz
- Institute for Theoretical Physics and BioQuant, Heidelberg University, Heidelberg, Germany
| | - Paul Verkade
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Michael W Vogel
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Richard Wagner
- Department of Life Sciences & Chemistry, Jacobs University, Bremen, Germany
| | | | - Haifeng Yuan
- KU Leuven, Department of Chemistry, B-3001 Heverlee, Belgium
| | - Giovanni Zifarelli
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Huang H, Simsek MF, Jin W, Pralle A. Effect of receptor dimerization on membrane lipid raft structure continuously quantified on single cells by camera based fluorescence correlation spectroscopy. PLoS One 2015; 10:e0121777. [PMID: 25811483 PMCID: PMC4374828 DOI: 10.1371/journal.pone.0121777] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 02/10/2015] [Indexed: 02/07/2023] Open
Abstract
Membrane bound cell signaling is modulated by the membrane ultra-structure, which itself may be affected by signaling. However, measuring the interaction of membrane proteins with membrane structures in intact cells in real-time poses considerable challenges. In this paper we present a non-destructive fluorescence method that quantifies these interactions in single cells, and is able to monitor the same cell continuously to observe small changes. This approach combines total internal fluorescence microscopy with fluorescence correlation spectroscopy to measure the protein's diffusion and molecular concentration in different sized areas simultaneously. It correctly differentiates proteins interacting with membrane fences from proteins interacting with cholesterol-stabilized domains, or lipid rafts. This method detects small perturbations of the membrane ultra-structure or of a protein's tendency to dimerize. Through continuous monitoring of single cells, we demonstrate how dimerization of GPI-anchored proteins increases their association with the structural domains. Using a dual-color approach we study the effect of dimerization of one GPI-anchored protein on another type of GPI-anchored protein expressed in the same cell. Scans over the cell surface reveal a correlation between cholesterol stabilized domains and membrane cytoskeleton.
Collapse
Affiliation(s)
- Heng Huang
- Department of Physics, University at Buffalo the State University of New York, Buffalo, New York, United States of America
| | - M. Fethullah Simsek
- Department of Physics, University at Buffalo the State University of New York, Buffalo, New York, United States of America
| | - Weixiang Jin
- Department of Physics, University at Buffalo the State University of New York, Buffalo, New York, United States of America
| | - Arnd Pralle
- Department of Physics, University at Buffalo the State University of New York, Buffalo, New York, United States of America
- Department of Biophysics and Physiology, University at Buffalo the State University of New York, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
4
|
Bartsch P, Walter C, Selenschik P, Honigmann A, Wagner R. Horizontal Bilayer for Electrical and Optical Recordings. MATERIALS 2012. [PMCID: PMC5449052 DOI: 10.3390/ma5122705] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Philipp Bartsch
- Biophysics, Department of Biology/Chemistry, University Osnabrueck, Barbarastr. 13, Osnabrueck 49076, Germany; E-Mails: (P.B.); (C.W.); (P.S.); (A.H.)
- Ionovation GmbH, Westerbreite 7, Osnabrueck 49084, Germany
| | - Claudius Walter
- Biophysics, Department of Biology/Chemistry, University Osnabrueck, Barbarastr. 13, Osnabrueck 49076, Germany; E-Mails: (P.B.); (C.W.); (P.S.); (A.H.)
- Ionovation GmbH, Westerbreite 7, Osnabrueck 49084, Germany
| | - Philipp Selenschik
- Biophysics, Department of Biology/Chemistry, University Osnabrueck, Barbarastr. 13, Osnabrueck 49076, Germany; E-Mails: (P.B.); (C.W.); (P.S.); (A.H.)
| | - Alf Honigmann
- Biophysics, Department of Biology/Chemistry, University Osnabrueck, Barbarastr. 13, Osnabrueck 49076, Germany; E-Mails: (P.B.); (C.W.); (P.S.); (A.H.)
| | - Richard Wagner
- Biophysics, Department of Biology/Chemistry, University Osnabrueck, Barbarastr. 13, Osnabrueck 49076, Germany; E-Mails: (P.B.); (C.W.); (P.S.); (A.H.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-541-969-2398; Fax: +49-541-969-2243
| |
Collapse
|