1
|
Malicek D, Wittig I, Luger S, Foerch C. Proteomics-Based Approach to Identify Novel Blood Biomarker Candidates for Differentiating Intracerebral Hemorrhage From Ischemic Stroke-A Pilot Study. Front Neurol 2022; 12:713124. [PMID: 34975707 PMCID: PMC8719589 DOI: 10.3389/fneur.2021.713124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background: A reliable distinction between ischemic stroke (IS) and intracerebral hemorrhage (ICH) is required for diagnosis-specific treatment and effective secondary prevention in patients with stroke. However, in resource-limited settings brain imaging, which is the current diagnostic gold standard for this purpose, is not always available in time. Hence, an easily accessible and broadly applicable blood biomarker-based diagnostic test differing stroke subtypes would be desirable. Using an explorative proteomics approach, this pilot study aimed to identify novel blood biomarker candidates for distinguishing IS from ICH. Material and Methods: Plasma samples from patients with IS and ICH were drawn during hospitalization and were analyzed by using liquid chromatography/mass spectrometry. Proteins were identified using the human reference proteome database UniProtKB, and label-free quantification (LFQ) data were further analyzed using bioinformatic tools. Results: Plasma specimens of three patients with IS and four patients with ICH with a median National Institute of Health Stroke Scale (NIHSS) of 12 [interquartile range (IQR) 10.5–18.5] as well as serum samples from two healthy volunteers were analyzed. Among 495 identified protein groups, a total of 368 protein groups exhibited enough data points to be entered into quantitative analysis. Of the remaining 22 top-listed proteins, a significant difference between IS and ICH was found for Carboxypeptidase N subunit 2 (CPN2), Coagulation factor XII (FXII), Plasminogen, Mannan-binding lectin serine protease 1, Serum amyloid P-component, Paraoxonase 1, Carbonic anhydrase 1, Fibulin-1, and Granulins. Discussion: In this exploratory proteomics-based pilot study, nine candidate biomarkers for differentiation of IS and ICH were identified. The proteins belong to the immune system, the coagulation cascade, and the apoptosis system, respectively. Further investigations in larger cohorts of patients with stroke using additional biochemical analysis methods, such as ELISA or Western Blotting are now necessary to validate these markers, and to characterize diagnostic accuracy with regard to the development of a point-of-care-system for use in resource-limited areas.
Collapse
Affiliation(s)
- David Malicek
- Department of Neurology, Goethe University/University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Ilka Wittig
- Functional Proteomics, Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Sebastian Luger
- Department of Neurology, Goethe University/University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Christian Foerch
- Department of Neurology, Goethe University/University Hospital Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Corbacho-Alonso N, Baldán-Martín M, López JA, Rodríguez-Sánchez E, Martínez PJ, Mourino-Alvarez L, Martin-Rojas T, Sastre-Oliva T, Madruga F, Vázquez J, Padial LR, Alvarez-Llamas G, Vivanco F, Ruiz-Hurtado G, Ruilope LM, Barderas MG. Novel molecular plasma signatures on cardiovascular disease can stratify patients throughout life. J Proteomics 2020; 222:103816. [DOI: 10.1016/j.jprot.2020.103816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/30/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023]
|
3
|
Perera NCN, Godahewa GI, Jung S, Kim MJ, Nam BH, Lee J. Identification and characterization of a carboxypeptidase N1 from red lip mullet (Liza haematocheila); revealing its immune relevance. FISH & SHELLFISH IMMUNOLOGY 2019; 84:223-232. [PMID: 30300741 DOI: 10.1016/j.fsi.2018.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/29/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
Complement system orchestrates the innate and adaptive immunity via the activation, recruitment, and regulation of immune molecules to destroy pathogens. However, regulation of the complement is essential to avoid injuries to the autologous tissues. The present study unveils the characteristic features of an important complement component, anaphylatoxin inactivator from red lip mullet at its molecular and functional level. Mullet carboxypeptidase N1 (MuCPN1) cDNA sequence possessed an open reading frame of 1347 bp, which encoded a protein of 449 amino acids with a predicted molecular weight of 51 kDa. In silico analysis discovered two domains of PM14-Zn carboxypeptidase and a C-terminal domain of M14 N/E carboxypeptidase, two zinc-binding signature motifs, and an N-glycosylation site in the MuCPN1 sequence. Homology analysis revealed that most of the residues in the sequence are conserved among the other selected homologs. Phylogeny analysis showed that MuCPN1 closely cladded with the Maylandia zebra CPN1 and clustered together with the teleostean counterparts. A challenge experiment showed modulated expression of MuCPN1 upon polyinosinic:polycytidylic acid and Lactococcus garviae in head kidney, spleen, gill, and liver tissues. The highest upregulation of MuCPN1 was observed 24 h post infection against poly I:C in each tissue. Moreover, the highest relative expressions upon L. garviae challenge were observed at 24 h post infection in head kidney tissue and 48 h post infection in spleen, gill, and liver tissues. MuCPN1 transfected cells triggered a 2.2-fold increase of nitric oxide (NO) production upon LPS stimulation compared to the un-transfected controls suggesting that MuCPN1 is an active protease which releases arginine from complement C3a, C4a, and C5a. These results have driven certain way towards enhancing the understanding of immune role of MuCPN1 in the complement defense mechanism of red lip mullet.
Collapse
Affiliation(s)
- N C N Perera
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - G I Godahewa
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Myoung-Jin Kim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
4
|
de Vries PS, Yu B, Feofanova EV, Metcalf GA, Brown MR, Zeighami AL, Liu X, Muzny DM, Gibbs RA, Boerwinkle E, Morrison AC. Whole-genome sequencing study of serum peptide levels: the Atherosclerosis Risk in Communities study. Hum Mol Genet 2018; 26:3442-3450. [PMID: 28854705 DOI: 10.1093/hmg/ddx266] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/04/2017] [Indexed: 01/27/2023] Open
Abstract
Oligopeptides are important markers of protein metabolism, as they are cleaved from larger polypeptides and proteins. Genetic association studies may help elucidate their origin and function. In 1,552 European Americans and 1,872 African Americans of the Atherosclerosis Risk in Communities study, we performed whole-genome and whole-exome sequencing and measured serum levels of 25 peptides. Common variants (minor allele frequency > 5%) were analysed individually. We grouped low-frequency variants (minor allele frequency ≤ 5%) by a genome-wide sliding window using region-based aggregate tests. Furthermore, low-frequency regulatory variants were grouped by gene, as were functional coding variants. All analyses were performed separately in each ancestry group and then meta-analysed. We identified 22 common variant associations with peptide levels (P-value < 4.2 × 10-10), including 16 novel gene-peptide pairs. Notably, variants in kinin-kallikrein genes KNG1, F12, KLKB1, and ACE were associated with several different peptides. Variants in KLKB1 and ACE were associated with a fragment of complement component 3f. Both common variants and low-frequency coding variants in CPN1 were associated with a fibrinogen cleavage peptide. Four sliding windows were significantly associated with peptide levels (P-value < 4.2 × 10-10). Our results highlight the importance of the kinin-kallikrein system in the regulation of serum peptide levels, strengthen the evidence for a broad link between the kinin-kallikrein and complement systems, and suggest a role of CPN1 in the conversion of fibrinogen to fibrin.
Collapse
Affiliation(s)
- Paul S de Vries
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, 77030 TX, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, 77030 TX, USA
| | - Elena V Feofanova
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, 77030 TX, USA
| | - Ginger A Metcalf
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, 77030 TX, USA
| | - Michael R Brown
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, 77030 TX, USA
| | - Atefeh L Zeighami
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, 77030 TX, USA
| | - Xiaoming Liu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, 77030 TX, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, 77030 TX, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, 77030 TX, USA
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, 77030 TX, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, 77030 TX, USA
| | - Alanna C Morrison
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, 77030 TX, USA
| |
Collapse
|
5
|
Timofeev АV. [Basic carboxypeptidases of blood: significance for coagulology]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2016; 62:141-9. [PMID: 27143370 DOI: 10.18097/pbmc20166202141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review considers the basic metallocarboxypeptidases of human blood and their role in coagulologic disorders. In includes information on the history of the discovery and biological characteristics of potential enzymes-regulators of the fibrinolytic process: carboxypeptidase U and carboxypeptidase N. Certain attention is paid to the biochemical mechanisms and the main modern concepts of the antifibrinolytic effects of these enzymes.
Collapse
Affiliation(s)
- А V Timofeev
- Russian Research Institute of Haematology and Transfusiology, Saint Petersburg, Russia
| |
Collapse
|
6
|
Biological actions of pentraxins. Vascul Pharmacol 2015; 73:38-44. [DOI: 10.1016/j.vph.2015.05.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/15/2015] [Accepted: 05/02/2015] [Indexed: 01/01/2023]
|
7
|
Elevated cytokines, thrombin and PAI-1 in severe HCPS patients due to Sin Nombre virus. Viruses 2015; 7:559-89. [PMID: 25674766 PMCID: PMC4353904 DOI: 10.3390/v7020559] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/03/2015] [Indexed: 12/16/2022] Open
Abstract
Sin Nombre Hantavirus (SNV, Bunyaviridae Hantavirus) is a Category A pathogen that causes Hantavirus Cardiopulmonary Syndrome (HCPS) with case fatality ratios generally ranging from 30% to 50%. HCPS is characterized by vascular leakage due to dysregulation of the endothelial barrier function. The loss of vascular integrity results in non-cardiogenic pulmonary edema, shock, multi-organ failure and death. Using Electric Cell-substrate Impedance Sensing (ECIS) measurements, we found that plasma samples drawn from University of New Mexico Hospital patients with serologically-confirmed HCPS, induce loss of cell-cell adhesion in confluent epithelial and endothelial cell monolayers grown in ECIS cultureware. We show that the loss of cell-cell adhesion is sensitive to both thrombin and plasmin inhibitors in mild cases, and to thrombin only inhibition in severe cases, suggesting an increasing prothrombotic state with disease severity. A proteomic profile (2D gel electrophoresis and mass spectrometry) of HCPS plasma samples in our cohort revealed robust antifibrinolytic activity among terminal case patients. The prothrombotic activity is highlighted by acute ≥30 to >100 fold increases in active plasminogen activator inhibitor (PAI-1) which, preceded death of the subjects within 48 h. Taken together, this suggests that PAI-1 might be a response to the severe pathology as it is expected to reduce plasmin activity and possibly thrombin activity in the terminal patients.
Collapse
|
8
|
Zhang J, Ma G, Lv Z, Zhou Y, Wen C, Wu Y, Xu R. Targeted thrombolysis strategies for neuroprotective effect. Neural Regen Res 2014; 9:1316-22. [PMID: 25221585 PMCID: PMC4160859 DOI: 10.4103/1673-5374.137580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2014] [Indexed: 12/24/2022] Open
Abstract
Stroke is usually treated by systemic thrombolytic therapy if the patient presents within an appropriate time window. There is also widespread interest in the development of thrombolytic agents that can be used in cases of delayed presentation. Current agents that can be used in cases of delayed presentation of nerve damage by thrombus. Current systemic thrombolytic therapy is associated with adverse effects such as fibrinogenolysis and bleeding. In an attempt to increase the efficacy, safety, and specificity of thrombolytic therapy, a number of targeted thrombolytic agents have been studied in recent years. This review focuses on the concepts underlying targeted thrombolytic therapy and describes recent drug developments in this field.
Collapse
Affiliation(s)
- Junping Zhang
- School of Biomedical Sciences, Huaqiao University & Engineering Research Center of Molicular Medicine, Ministry of Education, Xiamen, Fujian Province, China
| | - Guoxing Ma
- School of Biomedical Sciences, Huaqiao University & Engineering Research Center of Molicular Medicine, Ministry of Education, Xiamen, Fujian Province, China
| | - Zhimin Lv
- School of Biomedical Sciences, Huaqiao University & Engineering Research Center of Molicular Medicine, Ministry of Education, Xiamen, Fujian Province, China
| | - Yu Zhou
- School of Biomedical Sciences, Huaqiao University & Engineering Research Center of Molicular Medicine, Ministry of Education, Xiamen, Fujian Province, China
| | - Chunguang Wen
- School of Biomedical Sciences, Huaqiao University & Engineering Research Center of Molicular Medicine, Ministry of Education, Xiamen, Fujian Province, China
| | - Yaqing Wu
- School of Biomedical Sciences, Huaqiao University & Engineering Research Center of Molicular Medicine, Ministry of Education, Xiamen, Fujian Province, China
| | - Ruian Xu
- School of Biomedical Sciences, Huaqiao University & Engineering Research Center of Molicular Medicine, Ministry of Education, Xiamen, Fujian Province, China
| |
Collapse
|
9
|
Liumbruno GM, Franchini M. Proteomic analysis of venous thromboembolism: an update. Expert Rev Proteomics 2013; 10:179-88. [PMID: 23573784 DOI: 10.1586/epr.13.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Venous thromboembolism is a complex, multifactorial disorder, the pathogenesis of which typically involves a variety of inherited or acquired factors. The multifactorial etiology of this disease and the partial correlation between genotype and prothrombotic phenotype limit greatly the value of genetic analysis in assessing thrombotic risk. The integration of several new 'omics' techniques enables a multifaceted and holistic approach to the study of venous thrombotic processes and pave the way to the search and identification of novel blood biomarkers and/or effectors of thrombus formation that can also be the possible future target of new anticoagulant and thrombolytic therapies for more personalized medicine. This review provides a comprehensive overview of the latest candidate proteomic biomarkers of venous thrombosis and of the proteomics studies relevant to its pathophysiology, some of which seem to confirm the existence of a common physiopathological basis for venous thromboembolism and atherothrombosis.
Collapse
Affiliation(s)
- Giancarlo Maria Liumbruno
- UOC di Immunoematologia e Medicina Trasfusionale and UOC di Patologia Clinica, San Giovanni Calibita Fatebenefratelli Hospital, 00186 Rome, Italy.
| | | |
Collapse
|
10
|
Kovács A, Szabó L, Longstaff C, Tenekedjiev K, Machovich R, Kolev K. Ambivalent roles of carboxypeptidase B in the lytic susceptibility of fibrin. Thromb Res 2013; 133:80-7. [PMID: 24094605 PMCID: PMC3891004 DOI: 10.1016/j.thromres.2013.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/10/2013] [Accepted: 09/17/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Removal of C-terminal lysine residues that are continuously exposed in lysing fibrin is an established anti-fibrinolytic mechanism dependent on the plasma carboxypeptidase TAFIa, which also removes arginines that are exposed at the time of fibrinogen clotting by thrombin. OBJECTIVE To evaluate the impact of alterations in fibrin structure mediated by constitutive carboxypeptidase activity on the function of fibrin as a template for tissue plasminogen activator-(tPA) induced plasminogen activation and its susceptibility to digestion by plasmin. METHODS AND RESULTS We used the stable carboxypeptidase B (CPB), which shows the same substrate specificity as TAFIa. If 1.5 - 6μM fibrinogen was clotted in the presence of 8U/mL CPB, a denser fibrin network was formed with thinner fibers (the median fiber diameter decreased from 138 - 144nm to 89 - 109nm as established with scanning electron microscopy). If clotting was initiated in the presence of 5 - 10μM arginine, a similar decrease in fiber diameter (82 -95nm) was measured. The fine structure of arginine-treated fibrin enhanced plasminogen activation by tPA, but slowed down lysis monitored using fluorescent tPA and confocal laser microscopy. However, if lysis was initiated with plasmin in CPB-treated fibrin, the rate of dissolution increased to a degree corresponding to doubling of the plasmin concentration. CONCLUSION The present data evidence that CPB activity generates fine-mesh fibrin which is more difficult to lyse by tPA, but conversely, CPB and plasmin together can stimulate fibrinolysis, possibly by enhancing plasmin diffusion.
Collapse
Affiliation(s)
- András Kovács
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - László Szabó
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Colin Longstaff
- Biotherapeutics, Haemostasis Section, National Institute for Biological Standards and Control, South Mimms, Potters Bar, UK
| | | | - Raymund Machovich
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Krasimir Kolev
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary.
| |
Collapse
|