1
|
Luo X, Liang J, Lei X, Sun F, Gong M, Liu B, Zhou Z. C/EBPβ in Alzheimer's disease: An integrative regulator of pathological mechanisms. Brain Res Bull 2025; 221:111198. [PMID: 39788461 DOI: 10.1016/j.brainresbull.2025.111198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/22/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Alzheimer's disease (AD) stands as one of the most prevalent neurodegenerative disorders, characterized by a progressive decline in cognitive function, neuroinflammation, amyloid-beta (Aβ) plaques, and neurofibrillary tangles (NFTs). With the global aging population, the incidence of AD continues to rise, yet current therapeutic strategies remain limited in their ability to significantly alleviate cognitive impairments. Therefore, a deeper understanding of the molecular mechanisms underlying AD is imperative for the development of more effective treatments. In recent years, the transcription factor C/EBPβ has emerged as a pivotal regulator in several pathological processes of AD, including neuroinflammation, lipid metabolism, Aβ processing, and tau phosphorylation. Through intricate post-translational modifications, C/EBPβ modulates these processes and may influence the progression of AD on multiple fronts. This review systematically explores the multifaceted roles of C/EBPβ in the pathogenesis of AD, delving into its crucial involvement in neuroinflammation, Aβ production, tau pathology, and lipid metabolism dysregulation. Furthermore, we critically assess therapeutic strategies targeting C/EBPβ, examining the challenges and opportunities in regulating this factor. By synthesizing the latest research findings, we offer a more comprehensive understanding of the role of C/EBPβ in AD and discuss its potential as a therapeutic intervention target.
Collapse
Affiliation(s)
- Xiaoting Luo
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Junyi Liang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Xue Lei
- The First Hospital Affiliated to Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Fengqi Sun
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | | | - Bin Liu
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China.
| | - Zhongguang Zhou
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
2
|
C/EBPβ Regulates TFAM Expression, Mitochondrial Function and Autophagy in Cellular Models of Parkinson's Disease. Int J Mol Sci 2023; 24:ijms24021459. [PMID: 36674978 PMCID: PMC9865173 DOI: 10.3390/ijms24021459] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that results from the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Since there are only symptomatic treatments available, new cellular and molecular targets involved in the onset and progression of this disease are needed to develop effective treatments. CCAAT/Enhancer Binding Protein β (C/EBPβ) transcription factor levels are altered in patients with a variety of neurodegenerative diseases, suggesting that it may be a good therapeutic target for the treatment of PD. A list of genes involved in PD that can be regulated by C/EBPβ was generated by the combination of genetic and in silico data, the mitochondrial transcription factor A (TFAM) being among them. In this paper, we observed that C/EBPβ overexpression increased TFAM promoter activity. However, downregulation of C/EBPβ in different PD/neuroinflammation cellular models produced an increase in TFAM levels, together with other mitochondrial markers. This led us to propose an accumulation of non-functional mitochondria possibly due to the alteration of their autophagic degradation in the absence of C/EBPβ. Then, we concluded that C/EBPβ is not only involved in harmful processes occurring in PD, such as inflammation, but is also implicated in mitochondrial function and autophagy in PD-like conditions.
Collapse
|
3
|
Abstract
Ligand-activated nuclear receptors, including peroxisome proliferator-activated receptor alpha (PPARα), pregnane X receptor, and constitutive androstane receptor, were first identified as key regulators of the responses against chemical toxicants. However, numerous studies using mouse disease models and human samples have revealed critical roles for these receptors and others, such as PPARβ/δ, PPARγ, farnesoid X receptor (FXR), and liver X receptor (LXR), in maintaining nutrient/energy homeostasis in part through modulation of the gut-liver-adipose axis. Recently, disorders associated with disrupted nutrient/energy homeostasis, e.g., obesity, metabolic syndrome, and non-alcoholic fatty liver disease (NAFLD), are increasing worldwide. Notably, in NAFLD, a progressive subtype exists, designated as non-alcoholic steatohepatitis (NASH) that is characterized by typical histological features resembling alcoholic steatohepatitis (ASH), and NASH/ASH are recognized as major causes of hepatitis virus-unrelated liver cirrhosis and hepatocellular carcinoma. Since hepatic steatosis is basically caused by an imbalance between fat/energy influx and utilization, abnormal signaling of these nuclear receptors contribute to the pathogenesis of fatty liver disease. Standard therapeutic interventions have not been fully established for fatty liver disease, but some new agents that activate or inhibit nuclear receptor signaling have shown promise as possible therapeutic targets. In this review, we summarize recent findings on the roles of nuclear receptors in fatty liver disease and discuss future perspectives to develop promising pharmacological strategies targeting nuclear receptors for NAFLD/NASH.
Collapse
Affiliation(s)
- Naoki Tanaka
- Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan.
| | - Toshifumi Aoyama
- Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan
| | - Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Cave MC, Clair HB, Hardesty JE, Falkner KC, Feng W, Clark BJ, Sidey J, Shi H, Aqel BA, McClain CJ, Prough RA. Nuclear receptors and nonalcoholic fatty liver disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1083-1099. [PMID: 26962021 DOI: 10.1016/j.bbagrm.2016.03.002] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 02/08/2023]
Abstract
Nuclear receptors are transcription factors which sense changing environmental or hormonal signals and effect transcriptional changes to regulate core life functions including growth, development, and reproduction. To support this function, following ligand-activation by xenobiotics, members of subfamily 1 nuclear receptors (NR1s) may heterodimerize with the retinoid X receptor (RXR) to regulate transcription of genes involved in energy and xenobiotic metabolism and inflammation. Several of these receptors including the peroxisome proliferator-activated receptors (PPARs), the pregnane and xenobiotic receptor (PXR), the constitutive androstane receptor (CAR), the liver X receptor (LXR) and the farnesoid X receptor (FXR) are key regulators of the gut:liver:adipose axis and serve to coordinate metabolic responses across organ systems between the fed and fasting states. Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease and may progress to cirrhosis and even hepatocellular carcinoma. NAFLD is associated with inappropriate nuclear receptor function and perturbations along the gut:liver:adipose axis including obesity, increased intestinal permeability with systemic inflammation, abnormal hepatic lipid metabolism, and insulin resistance. Environmental chemicals may compound the problem by directly interacting with nuclear receptors leading to metabolic confusion and the inability to differentiate fed from fasting conditions. This review focuses on the impact of nuclear receptors in the pathogenesis and treatment of NAFLD. Clinical trials including PIVENS and FLINT demonstrate that nuclear receptor targeted therapies may lead to the paradoxical dissociation of steatosis, inflammation, fibrosis, insulin resistance, dyslipidemia and obesity. Novel strategies currently under development (including tissue-specific ligands and dual receptor agonists) may be required to separate the beneficial effects of nuclear receptor activation from unwanted metabolic side effects. The impact of nuclear receptor crosstalk in NAFLD is likely to be profound, but requires further elucidation. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
Affiliation(s)
- Matthew C Cave
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA; The KentuckyOne Health Jewish Hospital Liver Transplant Program, Louisville, KY 40202, USA.
| | - Heather B Clair
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Josiah E Hardesty
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - K Cameron Falkner
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Wenke Feng
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Barbara J Clark
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Jennifer Sidey
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Hongxue Shi
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Bashar A Aqel
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Scottsdale, AZ 85054, USA
| | - Craig J McClain
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA; The KentuckyOne Health Jewish Hospital Liver Transplant Program, Louisville, KY 40202, USA
| | - Russell A Prough
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
5
|
Roman TS, Marvelle AF, Fogarty MP, Vadlamudi S, Gonzalez AJ, Buchkovich ML, Huyghe JR, Fuchsberger C, Jackson AU, Wu Y, Civelek M, Lusis AJ, Gaulton KJ, Sethupathy P, Kangas AJ, Soininen P, Ala-Korpela M, Kuusisto J, Collins FS, Laakso M, Boehnke M, Mohlke KL. Multiple Hepatic Regulatory Variants at the GALNT2 GWAS Locus Associated with High-Density Lipoprotein Cholesterol. Am J Hum Genet 2015; 97:801-15. [PMID: 26637976 PMCID: PMC4678431 DOI: 10.1016/j.ajhg.2015.10.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 10/28/2015] [Indexed: 11/24/2022] Open
Abstract
Genome-wide association studies (GWASs) have identified more than 150 loci associated with blood lipid and cholesterol levels; however, the functional and molecular mechanisms for many associations are unknown. We examined the functional regulatory effects of candidate variants at the GALNT2 locus associated with high-density lipoprotein cholesterol (HDL-C). Fine-mapping and conditional analyses in the METSIM study identified a single locus harboring 25 noncoding variants (r(2) > 0.7 with the lead GWAS variants) strongly associated with total cholesterol in medium-sized HDL (e.g., rs17315646, p = 3.5 × 10(-12)). We used luciferase reporter assays in HepG2 cells to test all 25 variants for allelic differences in regulatory enhancer activity. rs2281721 showed allelic differences in transcriptional activity (75-fold [T] versus 27-fold [C] more than the empty-vector control), as did a separate 780-bp segment containing rs4846913, rs2144300, and rs6143660 (49-fold [AT(-) haplotype] versus 16-fold [CC(+) haplotype] more). Using electrophoretic mobility shift assays, we observed differential CEBPB binding to rs4846913, and we confirmed this binding in a native chromatin context by performing chromatin-immunoprecipitation (ChIP) assays in HepG2 and Huh-7 cell lines of differing genotypes. Additionally, sequence reads in HepG2 DNase-I-hypersensitivity and CEBPB ChIP-seq signals spanning rs4846913 showed significant allelic imbalance. Allelic-expression-imbalance assays performed with RNA from primary human hepatocyte samples and expression-quantitative-trait-locus (eQTL) data in human subcutaneous adipose tissue samples confirmed that alleles associated with increased HDL-C are associated with a modest increase in GALNT2 expression. Together, these data suggest that at least rs4846913 and rs2281721 play key roles in influencing GALNT2 expression at this HDL-C locus.
Collapse
Affiliation(s)
- Tamara S Roman
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Amanda F Marvelle
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marie P Fogarty
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Swarooparani Vadlamudi
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Arlene J Gonzalez
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Martin L Buchkovich
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeroen R Huyghe
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Christian Fuchsberger
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anne U Jackson
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ying Wu
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mete Civelek
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biomedical Engineering, Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Aldons J Lusis
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Deparment of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kyle J Gaulton
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Praveen Sethupathy
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Antti J Kangas
- Computational Medicine, Institute of Health Sciences, University of Oulu, 90014 Oulu, Finland
| | - Pasi Soininen
- Computational Medicine, Institute of Health Sciences, University of Oulu, 90014 Oulu, Finland; Nuclear Magnetic Resonance Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, 70211 Kuopio, Finland
| | - Mika Ala-Korpela
- Computational Medicine, Institute of Health Sciences, University of Oulu, 90014 Oulu, Finland; Nuclear Magnetic Resonance Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, 70211 Kuopio, Finland; Oulu University Hospital, 90220 Oulu, Finland; Computational Medicine, School of Social and Community Medicine and Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
| | - Johanna Kuusisto
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland
| | - Francis S Collins
- National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Wang K. Molecular mechanisms of hepatic apoptosis regulated by nuclear factors. Cell Signal 2014; 27:729-38. [PMID: 25499978 DOI: 10.1016/j.cellsig.2014.11.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 11/21/2014] [Indexed: 12/11/2022]
Abstract
Apoptosis is a prominent characteristic in the pathogenesis of liver disease. The mechanism of hepatic apoptosis is not well understood. Hepatic apoptosis alters relative levels of nuclear factors such as Foxa2, NF-κB, C/EBPβ, and p53. Regulation of nuclear factors modulates the degree of hepatic apoptosis and the progression of liver disease. Nuclear factors have distinctive mechanisms to mediate hepatic apoptosis. The modification of nuclear factors is a novel therapeutic strategy for liver disease as demonstrated by pre-clinical models and clinical trials.
Collapse
Affiliation(s)
- Kewei Wang
- Departments of Surgery, University of Illinois College of Medicine, Peoria, IL 61605, USA.
| |
Collapse
|