1
|
Caetano CCS, Azamor T, Meyer NM, Onwubueke C, Calabrese CM, Calabrese LH, Visperas A, Piuzzi NS, Husni ME, Foo SS, Chen W. Mechanistic insights into bone remodelling dysregulation by human viral pathogens. Nat Microbiol 2024; 9:322-335. [PMID: 38316931 PMCID: PMC11045166 DOI: 10.1038/s41564-023-01586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/12/2023] [Indexed: 02/07/2024]
Abstract
Bone-related diseases (osteopathologies) associated with human virus infections have increased around the globe. Recent findings have highlighted the intricate interplay between viral infection, the host immune system and the bone remodelling process. Viral infections can disrupt bone homeostasis, contributing to conditions such as arthritis and soft tissue calcifications. Osteopathologies can occur after arbovirus infections such as chikungunya virus, dengue virus and Zika virus, as well as respiratory viruses, such as severe acute respiratory syndrome coronavirus 2 and enteroviruses such as Coxsackievirus B. Here we explore how human viruses dysregulate bone homeostasis, detailing viral factors, molecular mechanisms, host immune response changes and bone remodelling that ultimately result in osteopathologies. We highlight model systems and technologies to advance mechanistic understanding of viral-mediated bone alterations. Finally, we propose potential prophylactic and therapeutic strategies, introduce 'osteovirology' as a research field highlighting the underestimated roles of viruses in bone-related diseases, and discuss research avenues for further investigation.
Collapse
Affiliation(s)
- Camila C S Caetano
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tamiris Azamor
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nikki M Meyer
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Chineme Onwubueke
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Cassandra M Calabrese
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic, Cleveland, OH, USA
| | - Leonard H Calabrese
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic, Cleveland, OH, USA
| | - Anabelle Visperas
- Department of Orthopedic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Nicolas S Piuzzi
- Department of Orthopedic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - M Elaine Husni
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic, Cleveland, OH, USA
| | - Suan-Sin Foo
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Weiqiang Chen
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
2
|
Abstract
Respiratory diseases, including lung cancer, pulmonary fibrosis, asthma, and the recently emerging fatal coronavirus disease-19 (COVID-19), are the leading causes of illness and death worldwide. The increasing incidence and mortality rates have attracted much attention to the prevention and treatment of these conditions. Lipoic acid (LA), a naturally occurring organosulfur compound, is not only essential for mitochondrial aerobic metabolism but also shows therapeutic potential via certain pharmacological effects (e.g., antioxidative and anti-inflammatory effects). In recent years, accumulating evidence (animal experiments and in vitro studies) has suggested a role of LA in ameliorating many respiratory diseases (e.g., lung cancer, fibrosis, asthma, acute lung injury and smoking-induced lung injury). Therefore, this review will provide an overview of the present investigational evidence on the therapeutic effect of LA against respiratory diseases in vitro and in vivo. We also summarize the corresponding mechanisms of action to inspire further basic studies and clinical trials to confirm the health benefits of LA in the context of respiratory diseases.
Collapse
Key Words
- lipoic acid
- respiratory diseases
- antioxidation
- anti-inflammatory effects
- mechanism of action
- akt, protein kinase b;
- aif, apoptosis-inducing factor;
- ampk, adenosine monophosphate-activated protein kinase;
- α-sma, alpha-smooth muscle actin;
- bcl-2, b-cell lymphoma 2;
- cox-2, cyclooxygenase-2;
- dna, deoxyribonucleic acid;
- er, endoplasmic reticulum;
- erk, extracellular-regulated kinase;
- egfr, epidermal growth factor receptor;
- gr, glutathione reductase;
- gpx, glutathione peroxidase;
- grb2, growth factor receptor-bound protein 2;
- gsh, reduced glutathione;
- gssg, oxidized glutathione;
- hif, hypoxia-inducible factor;
- ho-1, heme oxygenase 1;
- keap-1, kelch-like ech-associated protein 1;
- ig-e, immunoglobulin e;
- il, interleukin
- oct-4, octamer-binding transcription factor 4;
- parp-1, poly (adp-ribose) polymerase-1;
- pdk1, phosphoinositide-dependent kinase-1;
- pdh, pyruvate dehydrogenase;
- pi3k, phosphoinositide 3-kinase;
- pge2, prostaglandin e2;
- pgc1α, peroxisome proliferator-activated receptor‑γ co-activator 1α;
- p70s6k, p70 ribosomal protein s6 kinase;
- fak, focal adhesion kinase;
- sod, superoxide dismutase;
- mapk, mitogen-activated protein kinase;
- mtor, mammalian target of rapamycin;
- nf-κb, nuclear factor-kappa b;
- no, nitric oxide;
- nox-4, nicotinamide adenine dinucleotide phosphate (nadph) oxidase-4;
- nqo1, nadph quinone oxidoreductase 1;
- tnf-α, tumor necrosis factor-α;
- tgf-β1, transforming growth factor beta-1;
- vegf, vascular endothelial growth factor;
Collapse
|
3
|
Trevisan E, Zabucchi G, Pascolo L, Pascotto E, Casarsa C, Lucattelli M, Lungarella G, Cavarra E, Bartalesi B, Zweyer M, Borelli V. Histopathological data of iron and calcium in the mouse lung after asbestos exposure. Data Brief 2016; 6:769-75. [PMID: 26909387 PMCID: PMC4744238 DOI: 10.1016/j.dib.2016.01.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/07/2016] [Accepted: 01/12/2016] [Indexed: 01/11/2023] Open
Abstract
This data article contains data related to the research article entitled, “Synchrotron X-ray microscopy reveals early calcium and iron interaction with crocidolite fibers in the lung of exposed mice” [1]. Asbestos fibers disrupt iron homeostasis in the human and mouse lung, leading to the deposition of iron (Fe) onto longer asbestos fibers which forms asbestos bodies (AB) [2]. Similar to Fe, calcium (Ca) is also deposited in the coats of the AB. This article presents data on iron and calcium in the mouse lung after asbestos exposure detected by histochemical evaluation.
Collapse
Affiliation(s)
- Elisa Trevisan
- Department of Life Science, University of Trieste, 34127 Trieste, Italy
| | - Giuliano Zabucchi
- Department of Life Science, University of Trieste, 34127 Trieste, Italy
| | - Lorella Pascolo
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy
| | - Ernesto Pascotto
- Servizio Diagnostica Veterinaria, University of Udine, 33100 Udine, Italy
| | - Claudia Casarsa
- Department of Life Science, University of Trieste, 34127 Trieste, Italy
| | - Monica Lucattelli
- Department of Life Science, Section of Experimental Pathology, University of Siena, 53100 Siena, Italy
| | - Giuseppe Lungarella
- Department of Life Science, Section of Experimental Pathology, University of Siena, 53100 Siena, Italy
| | - Eleonora Cavarra
- Department of Life Science, Section of Experimental Pathology, University of Siena, 53100 Siena, Italy
| | - Barbara Bartalesi
- Department of Life Science, Section of Experimental Pathology, University of Siena, 53100 Siena, Italy
| | - Marina Zweyer
- Dipartimento Universitario Clinico di Scienze Mediche, Chirurgiche e della Salute, Università di Trieste, 34149 Trieste, Italy
| | - Violetta Borelli
- Department of Life Science, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
4
|
A review of the effect of diet on cardiovascular calcification. Int J Mol Sci 2015; 16:8861-83. [PMID: 25906474 PMCID: PMC4425113 DOI: 10.3390/ijms16048861] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/19/2015] [Accepted: 04/07/2015] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular (CV) calcification is known as sub-clinical atherosclerosis and is recognised as a predictor of CV events and mortality. As yet there is no treatment for CV calcification and conventional CV risk factors are not consistently correlated, leaving clinicians uncertain as to optimum management for these patients. For this reason, a review of studies investigating diet and serum levels of macro- and micronutrients was carried out. Although there were few human studies of macronutrients, nevertheless transfats and simple sugars should be avoided, while long chain ω-3 fats from oily fish may be protective. Among the micronutrients, an intake of 800 μg/day calcium was beneficial in those without renal disease or hyperparathyroidism, while inorganic phosphorus from food preservatives and colas may induce calcification. A high intake of magnesium (≥380 mg/day) and phylloquinone (500 μg/day) proved protective, as did a serum 25(OH)D concentration of ≥75 nmol/L. Although oxidative damage appears to be a cause of CV calcification, the antioxidant vitamins proved to be largely ineffective, while supplementation of α-tocopherol may induce calcification. Nevertheless other antioxidant compounds (epigallocatechin gallate from green tea and resveratrol from red wine) were protective. Finally, a homocysteine concentration >12 µmol/L was predictive of CV calcification, although a plasma folate concentration of >39.4 nmol/L could both lower homocysteine and protect against calcification. In terms of a dietary programme, these recommendations indicate avoiding sugar and the transfats and preservatives found in processed foods and drinks and adopting a diet high in oily fish and vegetables. The micronutrients magnesium and vitamin K may be worthy of further investigation as a treatment option for CV calcification.
Collapse
|