1
|
Shibata O, Kamimura K, Tanaka Y, Ogawa K, Owaki T, Oda C, Morita S, Kimura A, Abe H, Ikarashi S, Hayashi K, Yokoo T, Terai S. Establishment of a pancreatic cancer animal model using the pancreas-targeted hydrodynamic gene delivery method. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:342-352. [PMID: 35474735 PMCID: PMC9018811 DOI: 10.1016/j.omtn.2022.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/27/2022] [Indexed: 11/29/2022]
Abstract
This research developed an easy-to-use, reproducible pancreatic cancer animal model utilizing pancreas-targeted hydrodynamic gene delivery to deliver human pancreatic cancer-related genes to the pancreas of wild-type rats. KRAS G12D -induced pancreatic intraepithelial neoplasia lesions showed malignant transformation in the main pancreatic duct at 4 weeks and developed acinar-to-ductal metaplasia, which led to pancreatic ductal adenocarcinoma within 5 weeks, and the gene combination of KRAS G12D and YAP enhanced these effects. The repeat hydrodynamic gene delivery of KRAS G12D + YAP combination at 4 weeks showed acinar-to-ductal metaplasia in all rats and pancreatic ductal adenocarcinoma in 80% of rats 1 week later. Metastatic tumors in the liver, lymph nodes, and subcutaneous lesions and nervous invasion were confirmed. KRAS G12D and YAP combined transfer contributes to the E- to N-cadherin switch in pancreatic ductal adenocarcinoma cells and to tumor metastases. This pancreatic cancer model will speed up pancreatic cancer research for novel treatments and biomarkers for early diagnosis.
Collapse
Affiliation(s)
- Osamu Shibata
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 1–757 Asahimachi–dori Chuo–ku, Niigata 951-8510, Japan
| | - Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 1–757 Asahimachi–dori Chuo–ku, Niigata 951-8510, Japan
- Department of General Medicine, Niigata University School of Medicine, Niigata, 1–757 Asahimachi–dori Chuo–ku, Niigata 951-8510, Japan
| | - Yuto Tanaka
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 1–757 Asahimachi–dori Chuo–ku, Niigata 951-8510, Japan
| | - Kohei Ogawa
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 1–757 Asahimachi–dori Chuo–ku, Niigata 951-8510, Japan
| | - Takashi Owaki
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 1–757 Asahimachi–dori Chuo–ku, Niigata 951-8510, Japan
| | - Chiyumi Oda
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 1–757 Asahimachi–dori Chuo–ku, Niigata 951-8510, Japan
| | - Shinichi Morita
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 1–757 Asahimachi–dori Chuo–ku, Niigata 951-8510, Japan
| | - Atsushi Kimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 1–757 Asahimachi–dori Chuo–ku, Niigata 951-8510, Japan
| | - Hiroyuki Abe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 1–757 Asahimachi–dori Chuo–ku, Niigata 951-8510, Japan
| | - Satoshi Ikarashi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 1–757 Asahimachi–dori Chuo–ku, Niigata 951-8510, Japan
| | - Kazunao Hayashi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 1–757 Asahimachi–dori Chuo–ku, Niigata 951-8510, Japan
| | - Takeshi Yokoo
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 1–757 Asahimachi–dori Chuo–ku, Niigata 951-8510, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 1–757 Asahimachi–dori Chuo–ku, Niigata 951-8510, Japan
| |
Collapse
|
2
|
Amberger M, Ivics Z. Latest Advances for the Sleeping Beauty Transposon System: 23 Years of Insomnia but Prettier than Ever: Refinement and Recent Innovations of the Sleeping Beauty Transposon System Enabling Novel, Nonviral Genetic Engineering Applications. Bioessays 2020; 42:e2000136. [PMID: 32939778 DOI: 10.1002/bies.202000136] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/29/2020] [Indexed: 12/13/2022]
Abstract
The Sleeping Beauty transposon system is a nonviral DNA transfer tool capable of efficiently mediating transposition-based, stable integration of DNA sequences of choice into eukaryotic genomes. Continuous refinements of the system, including the emergence of hyperactive transposase mutants and novel approaches in vectorology, greatly improve upon transposition efficiency rivaling viral-vector-based methods for stable gene insertion. Current developments, such as reversible transgenesis and proof-of-concept RNA-guided transposition, further expand on possible applications in the future. In addition, innate advantages such as lack of preferential integration into genes reduce insertional mutagenesis-related safety concerns while comparably low manufacturing costs enable widespread implementation. Accordingly, the system is recognized as a powerful and versatile tool for genetic engineering and is playing a central role in an ever-expanding number of gene and cell therapy clinical trials with the potential to become a key technology to meet the growing demand for advanced therapy medicinal products.
Collapse
Affiliation(s)
- Maximilian Amberger
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, D-63225, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, D-63225, Germany
| |
Collapse
|
3
|
Choi HJ, Lee HB, Jung S, Park HK, Jo W, Cho SM, Kim WJ, Son WC. Development of a Mouse Model of Prostate Cancer Using the Sleeping Beauty Transposon and Electroporation. Molecules 2018; 23:molecules23061360. [PMID: 29874846 PMCID: PMC6100630 DOI: 10.3390/molecules23061360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/20/2018] [Accepted: 06/01/2018] [Indexed: 01/12/2023] Open
Abstract
The Sleeping Beauty (SB) transposon system is non-viral and uses insertional mutagenesis, resulting in the permanent expression of transferred genes. Although the SB transposon is a useful method for establishing a mouse tumor model, there has been difficulty in using this method to generate tumors in the prostate. In the present study, electroporation was used to enhance the transfection efficiency of the SB transposon. To generate tumors, three constructs (a c-Myc expression cassette, a HRAS (HRas proto-oncogene, GTPase) expression cassette and a shRNA against p53) contained within the SB transposon plasmids were directly injected into the prostate. Electroporation was conducted on the injection site after the injection of the DNA plasmid. Following the tumorigenesis, the tumors were monitored by animal PET imaging and identified by gross observation. After this, the tumors were characterized by using histological and immunohistochemical techniques. The expression of the targeted genes was analyzed by Real-Time qRT-PCR. All mice subjected to the injection were found to have prostate tumors, which was supported by PSA immunohistochemistry. To our knowledge, this is the first demonstration of tumor induction in the mouse prostate using the electroporation-enhanced SB transposon system in combination with c-Myc, HRAS and p53. This model serves as a valuable resource for the future development of SB-induced mouse models of cancer.
Collapse
Affiliation(s)
- Hyun-Ji Choi
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, 05505 Seoul, Korea.
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| | - Han-Byul Lee
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, 05505 Seoul, Korea.
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| | - Sunyoung Jung
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, 05505 Seoul, Korea.
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| | - Hyun-Kyu Park
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, 05505 Seoul, Korea.
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| | - Woori Jo
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, 05505 Seoul, Korea.
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| | - Sung-Min Cho
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, 05505 Seoul, Korea.
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| | - Woo-Jin Kim
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| | - Woo-Chan Son
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, 05505 Seoul, Korea.
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| |
Collapse
|
4
|
Hou X, Du Y, Deng Y, Wu J, Cao G. Sleeping Beauty transposon system for genetic etiological research and gene therapy of cancers. Cancer Biol Ther 2015; 16:8-16. [PMID: 25455252 DOI: 10.4161/15384047.2014.986944] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Carcinogenesis is etiologically associated with somatic mutations of critical genes. Recently, a number of somatic mutations and key molecules have been found to be involved in functional networks affecting cancer progression. Suitable animal models are required to validate cancer-promoting or -inhibiting capacities of these mutants and molecules. Sleeping Beauty transposon system consists of a transposon that carries gene(s) of interest and a transposase that recognizes, excises, and reinserts genes in given location of the genome. It can create both gain-of-function and loss-of-function mutations, thus being frequently chosen to investigate the etiological mechanisms and gene therapy for cancers in animal models. In this review, we summarized current advances of Sleeping Beauty transposon system in revealing molecular mechanism of cancers and improving gene therapy. Understanding molecular mechanisms by which driver mutations contribute to carcinogenesis and metastasis may pave the way for the development of innovative prophylactic and therapeutic strategies against malignant diseases.
Collapse
Key Words
- 7, 12-dimethylbenzanthracene/12-O-tetradecanoylphorbol-13-acetate
- Alb-Cre, Albumin promoter-Cre
- CAG promoter, CMV enhancer/chicken β-actin promoter
- CAR, chimeric antigen receptor
- CIS, common insertion site
- CMV, chimeric cytomegalovirus
- CRC, colorectal cancer
- Cre, cyclization recombination enzyme
- DDE, Asp, Asp, Glu
- DMBA/TPA
- DR, direct orientation
- Fah, fumarylacetoacetate hydrolase gene
- GWAS, gnome wide analysis study
- HBV, Hepatitis B Virus
- HBx, HBV X protein
- HCC, hepatocellular carcinoma
- IRs, inverted repeat sequences
- LsL, loxP-stop-loxP
- MPNSTs, malignant peripheral nerve sheath tumor
- MSCV, murine stem cell virus
- PAI, Pro, Ala, Ile
- PBMCs, peripheral blood mononuclear cells
- RED, Arg, Glu, Asp
- RosaSBaseLsL, Cre-inducible SBase allele
- Rtl1, Retrotransposon-like 1
- SB, Sleeping Beauty
- SBase, Sleeping Beauty transposase
- Sleeping Beauty transposon system
- StatinAE, angiostatin-endostatin fusion gene
- Trp53, transformation related protein 53
- animal model
- driver
- gene function
- gene therapy
- malignant diseases
- sgRNA, single guide RNA
- shp53, short hairpin RNA against the Trp53 gene
- somatic mutation
Collapse
Affiliation(s)
- Xiaomei Hou
- a Department of Epidemiology ; Second Military Medical University ; Shanghai , China
| | | | | | | | | |
Collapse
|
5
|
Electroporation markedly improves Sleeping Beauty transposon-induced tumorigenesis in mice. Cancer Gene Ther 2014; 21:333-9. [PMID: 24992966 DOI: 10.1038/cgt.2014.33] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/31/2014] [Accepted: 06/02/2014] [Indexed: 11/08/2022]
Abstract
The Sleeping Beauty (SB) transposon system is an important tool for genetic studies. It is used to insert a gene of interest into the host chromosome, thus enabling permanent gene expression. However, this system is less useful in higher eukaryotes because the transposition frequency is low. Efforts to improve the efficacy of the SB transposon system have focused on the method of gene delivery, but although electroporation has recently attracted much attention as an in vivo gene delivery tool, the simultaneous use of electroporation and the SB transposon system has not been studied for gene transfer in mice. In this study, electroporation was used in a model of SB transposon-induced insertional tumorigenesis. Electroporation increased the rate of tumor development to three times that of the control group. There was no difference in phenotype between tumors induced with the SB transposon system alone and those induced by the SB transposon and electroporation. Electroporation therefore may be an efficient means of improving the efficacy of gene transfer via the SB transposon system.
Collapse
|