1
|
Li S, Zhang J, Wang X, Wang X, Song Y, Song X, Wang X, Cao W, Zhao C, Qi J, Zheng X, Xing Y. Super-Enhancer Target Gene CBP/p300-Interacting Transactivator With Glu/Asp-Rich C-Terminal Domain, 2 Cooperates With Transcription Factor Forkhead Box J3 to Inhibit Pulmonary Vascular Remodeling. Cell Prolif 2025:e13817. [PMID: 39907030 DOI: 10.1111/cpr.13817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 01/03/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
The function of super-enhancers (SEs) in pulmonary hypertension (PH), especially in the proliferation of pulmonary artery smooth muscle cells (PASMCs), is currently unknown. We identified SEs-targeted genes in PASMCs with chromatin immunoprecipitation (ChIP)-sequence by H3K27ac antibody and proved that CBP/p300-interacting transactivator with Glu/Asp-rich C-terminal domain, 2 (CITED2) is an SEs-targeted gene through bioinformatics prediction, ChIP-PCR, dual-luciferase reporter gene assays and other experimental methods. We also found that the expression of CITED2 and the transcription factor Forkhead Box J3 (FOXJ3) was reduced in hypoxic mouse PASMCs. In addition, the expression of CITED2 and FOXJ3 also decreased in both the patients with idiopathic pulmonary arterial hypertension (iPAH) and the human PASMCs exposed to hypoxia. The decreased expression of CITED2 was reversed by co-transfection of FOXJ3 and SEs plasmids. Overexpressing of CITED2 attenuated the PASMCs proliferation induced by hypoxia. Lentiviral overexpression of CITED2 also reversed hypoxia-induced pulmonary hypertension mice model. Mechanically, the expression of CITED2 by affecting by FOXJ3, which binding with three SEs located in the about 2000 bp of TSS. In conclusion, we first identified that CITED2 is a kind of SEs-targeted gene, modulated by FOXJ3. The FOXJ3/SEs/CITED2 axis may become a new therapeutic target of PH.
Collapse
Affiliation(s)
- Songyue Li
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| | - Jingya Zhang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| | - Xu Wang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| | - Xinru Wang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| | - Yuyu Song
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| | - Xinyue Song
- Central Laboratory, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| | - Xiuli Wang
- Department of Pathophysiology, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| | - Weiwei Cao
- Department of Pharmaceutical Analysis, Harbin Medical University-Daqing, Heilongjiang, People's Republic of China
| | - Chong Zhao
- Department of Literature Retrieval, Harbin Medical University-Daqing, Heilongjiang, People's Republic of China
| | - Jing Qi
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| | - Xiaodong Zheng
- Department of Medical Genetics, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| | - Yan Xing
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| |
Collapse
|
2
|
Abbasi F, Nucci MR, Doron B, Ruskin R, Chien J, Watkins JC, Karnezis AN. Case Report: ESR1::CITED2 Fusion in a Malignant Uterine Tumor Resembling Ovarian Sex Cord Tumor. Int J Gynecol Pathol 2025:00004347-990000000-00220. [PMID: 39869077 DOI: 10.1097/pgp.0000000000001092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Uterine tumor resembling ovarian sex cord tumor (UTROSCT) is a rare, typically benign uterine tumor occurring over a wide age range (mean 52.4 yr). UTROSCTs often harbor translocations between ESR1 and nuclear receptor coactivators NCOA1-NCOA3. Here, we present a 21-yr-old woman with a 16 cm complex uterine mass on CT. Grossly, the tumor had an infiltrative appearance. Histologically, it consisted of mild to moderately atypical, spindled cells with ovoid nuclei, growing in fascicles and cords within fibrous to myxohyaline stroma, with tongue-like infiltration of the myometrium. Immunohistochemically, tumor cells were positive for AE1/AE3, ER, PR, vimentin, WT-1, and CD56, and negative for inhibin, calretinin, SMA, desmin, and CD10. Whole exome and whole transcriptome sequencing identified a pathogenic ESR1::CITED2 fusion. The tumor recurred twice (15 and 21 mo after initial surgery) in the abdomen and pelvis. Taken together, the findings suggest this tumor may represent a malignant UTROSCT variant with a novel translocation.
Collapse
Affiliation(s)
- Ferheen Abbasi
- School of Medicine, University of California Davis, Sacramento, California
| | - Marisa R Nucci
- Department of Pathology, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts
| | - Ben Doron
- Caris Life Sciences, Phoenix, Arizona
| | - Rachel Ruskin
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of California Davis Comprehensive Cancer Center
| | - Jeremy Chien
- Departments of Biochemistry and Molecular Medicine
| | - Jaclyn C Watkins
- Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, California
| | - Anthony N Karnezis
- Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, California
| |
Collapse
|
3
|
Lu X, Lan X, Fu X, Li J, Wu M, Xiao L, Zeng Y. Screening Preeclampsia Genes and the Effects of CITED2 on Trophoblastic Function. Int J Gen Med 2024; 17:3493-3509. [PMID: 39161403 PMCID: PMC11330746 DOI: 10.2147/ijgm.s475310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
Purpose Preeclampsia (PE) is a serious complication of obstetrics and represents a significant challenge in terms of understanding its underlying mechanism. It has been shown that a number of disorders involve dysregulation of the CBP/p300-interacting transactivator with glutamic acid/aspartic acid-rich carboxyl-terminal domain 2 (CITED2). However, the relationship between PE and CITED2 is still mostly unclear. This work aimed to confirm the hub genes linked to PE and explore the roles of CITED2 in trophoblast using experimental and bioinformatic methods. Methods To determine the hub genes, bioinformatics research was performed on two datasets from the Gene Expression Omnibus (GEO) public database. Immune infiltration analysis and enrichment analysis were also used to identify the related pathways and immune cells. PCR and WB were then used to validate the mRNA and protein levels of CITED2 in the PE samples. Finally, the expression of CITED2 was knocked down using siRNA to investigate the function of CITED2 in trophoblast development in vitro. Results The study's findings showed that the NOTCH signaling pathways, glycolysis, and hypoxia were the main areas of enrichment for the six PE-related genes that were tested. The results of immune infiltration suggest that activated NK cells and regulatory T cells may play an important role in this process. CITED2 was significantly upregulated in the PE placenta. In functional tests, the knockdown of CITED2 may enhance apoptosis while suppressing migration, invasion, and proliferation of cells. Conclusion This study offers important proof that CITED2 influences trophoblast cell function and may one day be a therapeutic target for PE.
Collapse
Affiliation(s)
- Xiujing Lu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Xi Lan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Xiaoqian Fu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Jing Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Min Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Lu Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Yachang Zeng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| |
Collapse
|
4
|
Kuna M, Soares MJ. Cited2 is a key regulator of placental development and plasticity. Bioessays 2024; 46:e2300118. [PMID: 38922923 PMCID: PMC11331489 DOI: 10.1002/bies.202300118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
The biology of trophoblast cell lineage development and placentation is characterized by the involvement of several known transcription factors. Central to the action of a subset of these transcriptional regulators is CBP-p300 interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2). CITED2 acts as a coregulator modulating transcription factor activities and affecting placental development and adaptations to physiological stressors. These actions of CITED2 on the trophoblast cell lineage and placentation are conserved across the mouse, rat, and human. Thus, aspects of CITED2 biology in hemochorial placentation can be effectively modeled in the mouse and rat. In this review, we present information on the conserved role of CITED2 in the biology of placentation and discuss the use of CITED2 as a tool to discover new insights into regulatory mechanisms controlling placental development.
Collapse
Affiliation(s)
- Marija Kuna
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Michael J. Soares
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS
- Center for Perinatal Research, Children’s Mercy Research Institute, Children’s Mercy, Kansas City, MO
| |
Collapse
|
5
|
Talukdar PD, Chatterji U. Transcriptional co-activators: emerging roles in signaling pathways and potential therapeutic targets for diseases. Signal Transduct Target Ther 2023; 8:427. [PMID: 37953273 PMCID: PMC10641101 DOI: 10.1038/s41392-023-01651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 11/14/2023] Open
Abstract
Specific cell states in metazoans are established by the symphony of gene expression programs that necessitate intricate synergic interactions between transcription factors and the co-activators. Deregulation of these regulatory molecules is associated with cell state transitions, which in turn is accountable for diverse maladies, including developmental disorders, metabolic disorders, and most significantly, cancer. A decade back most transcription factors, the key enablers of disease development, were historically viewed as 'undruggable'; however, in the intervening years, a wealth of literature validated that they can be targeted indirectly through transcriptional co-activators, their confederates in various physiological and molecular processes. These co-activators, along with transcription factors, have the ability to initiate and modulate transcription of diverse genes necessary for normal physiological functions, whereby, deregulation of such interactions may foster tissue-specific disease phenotype. Hence, it is essential to analyze how these co-activators modulate specific multilateral processes in coordination with other factors. The proposed review attempts to elaborate an in-depth account of the transcription co-activators, their involvement in transcription regulation, and context-specific contributions to pathophysiological conditions. This review also addresses an issue that has not been dealt with in a comprehensive manner and hopes to direct attention towards future research that will encompass patient-friendly therapeutic strategies, where drugs targeting co-activators will have enhanced benefits and reduced side effects. Additional insights into currently available therapeutic interventions and the associated constraints will eventually reveal multitudes of advanced therapeutic targets aiming for disease amelioration and good patient prognosis.
Collapse
Affiliation(s)
- Priyanka Dey Talukdar
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
6
|
Zafar A, Pong Ng H, Diamond-Zaluski R, Kim GD, Ricky Chan E, Dunwoodie SL, Smith JD, Mahabeleshwar GH. CITED2 inhibits STAT1-IRF1 signaling and atherogenesis. FASEB J 2021; 35:e21833. [PMID: 34365659 DOI: 10.1096/fj.202100792r] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 11/11/2022]
Abstract
Macrophages are the principal component of the innate immune system. They play very crucial and multifaceted roles in the pathogenesis of inflammatory vascular diseases. There is an increasing recognition that transcriptionally dynamic macrophages are the key players in the pathogenesis of inflammatory vascular diseases. In this context, the accumulation and aberrant activation of macrophages in the subendothelial layers govern atherosclerotic plaque development. Macrophage-mediated inflammation is an explicitly robust biological response that involves broad alterations in inflammatory gene expression. Thus, cell-intrinsic negative regulatory mechanisms must exist which can restrain inflammatory response in a spatiotemporal manner. In this study, we identified CBP/p300-interacting transactivator with glutamic acid/aspartic acid-rich carboxyl-terminal domain 2 (CITED2) as one such cell-intrinsic negative regulator of inflammation. Our in vivo studies show that myeloid-CITED2-deficient mice on the Apoe-/- background have larger atherosclerotic lesions on both control and high-fat/high-cholesterol diets. Our integrated transcriptomics and gene set enrichment analyses studies show that CITED2 deficiency elevates STAT1 and interferon regulatory factor 1 (IRF1) regulated pro-inflammatory gene expression in macrophages. At the molecular level, our studies identify that CITED2 deficiency elevates IFNγ-induced STAT1 transcriptional activity and STAT1 enrichment on IRF1 promoter in macrophages. More importantly, siRNA-mediated knockdown of IRF1 completely reversed elevated pro-inflammatory target gene expression in CITED2-deficient macrophages. Collectively, our study findings demonstrate that CITED2 restrains the STAT1-IRF1 signaling axis in macrophages and limits the development of atherosclerotic plaques.
Collapse
Affiliation(s)
- Atif Zafar
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Hang Pong Ng
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Rachel Diamond-Zaluski
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Gun-Dong Kim
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Ernest Ricky Chan
- Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sally L Dunwoodie
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,Faculties of Medicine and Science, UNSW Sydney, Sydney, NSW, Australia
| | - Jonathan D Smith
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | | |
Collapse
|
7
|
Abstract
Cbp/P300 interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) is a transcription co-factor that interacts with several other transcription factors and co-factors, and serves critical roles in fundamental cell processes, including proliferation, apoptosis, differentiation, migration and autophagy. The interacting transcription factors or co-factors of CITED2 include LIM homeobox 2, transcription factor AP-2, SMAD2/3, peroxisome proliferator-activated receptor γ, oestrogen receptor, MYC, Nucleolin and p300/CBP, which regulate downstream gene expression, and serve important roles in the aforementioned fundamental cell processes. Emerging evidence has demonstrated that CITED2 serves an essential role in embryonic and adult tissue stem cells, including hematopoietic stem cells and tendon-derived stem/progenitor cells. Additionally, CITED2 has been reported to function in different types of cancer. Although the functions of CITED2 in different tissues vary depending on the interaction partner, altered CITED2 expression or altered interactions with transcription factors or co-factors result in alterations of fundamental cell processes, and may affect stem cell maintenance or cancer cell survival. The aim of this review is to summarize the molecular mechanisms of CITED2 function and how it serves a role in stem cells and different types of cancer based on the currently available literature.
Collapse
|
8
|
Fernandes MT, Calado SM, Mendes-Silva L, Bragança J. CITED2 and the modulation of the hypoxic response in cancer. World J Clin Oncol 2020; 11:260-274. [PMID: 32728529 PMCID: PMC7360518 DOI: 10.5306/wjco.v11.i5.260] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/13/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
CITED2 (CBP/p300-interacting transactivator with Glu/Asp-rich C-terminal domain, 2) is a ubiquitously expressed protein exhibiting a high affinity for the CH1 domain of the transcriptional co-activators CBP/p300, for which it competes with hypoxia-inducible factors (HIFs). CITED2 is particularly efficient in the inhibition of HIF-1α-dependent transcription in different contexts, ranging from organ development and metabolic homeostasis to tissue regeneration and immunity, being also potentially involved in various other physiological processes. In addition, CITED2 plays an important role in inhibiting HIF in some diseases, including kidney and heart diseases and type 2-diabetes. In the particular case of cancer, CITED2 either functions by promoting or suppressing cancer development depending on the context and type of tumors. For instance, CITED2 overexpression promotes breast and prostate cancers, as well as acute myeloid leukemia, while its expression is downregulated to sustain colorectal cancer and hepatocellular carcinoma. In addition, the role of CITED2 in the maintenance of cancer stem cells reveals its potential as a target in non-small cell lung carcinoma and acute myeloid leukemia, for example. But besides the wide body of evidence linking both CITED2 and HIF signaling to carcinogenesis, little data is available regarding CITED2 role as a negative regulator of HIF-1α specifically in cancer. Therefore, comprehensive studies exploring further the interactions of these two important mediators in cancer-specific models are sorely needed and this can potentially lead to the development of novel targeted therapies.
Collapse
Affiliation(s)
- Mónica T Fernandes
- School of Health, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
| | - Sofia M Calado
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
| | - Leonardo Mendes-Silva
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
- Department of Biomedical Sciences and Medicine, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
| | - José Bragança
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
- Department of Biomedical Sciences and Medicine, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
| |
Collapse
|
9
|
CDK7 Inhibition is Effective in all the Subtypes of Breast Cancer: Determinants of Response and Synergy with EGFR Inhibition. Cells 2020; 9:cells9030638. [PMID: 32155786 PMCID: PMC7140476 DOI: 10.3390/cells9030638] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 02/07/2023] Open
Abstract
CDK7, a transcriptional cyclin-dependent kinase, is emerging as a novel cancer target. Triple-negative breast cancers (TNBC) but not estrogen receptor-positive (ER+) breast cancers have been reported to be uniquely sensitive to the CDK7 inhibitor THZ1 due to the inhibition of a cluster of TNBC-specific genes. However, bioinformatic analysis indicates that CDK7 RNA expression is associated with negative prognosis in all the major subtypes of breast cancer. To further elucidate the effects of CDK7 inhibition in breast cancer, we profiled a panel of cell lines representing different breast cancer subtypes. THZ1 inhibited cell growth in all subtypes (TNBC, HER2+, ER+, and HER2+/ER+) with no apparent subtype selectivity. THZ1 inhibited CDK7 activity and induced G1 arrest and apoptosis in all the tested cell lines, but THZ1 sensitivity did not correlate with CDK7 inhibition or CDK7 expression levels. THZ1 sensitivity across the cell line panel did not correlate with TNBC-specific gene expression but it was found to correlate with the differential inhibition of three genes: CDKN1B, MYC and transcriptional coregulator CITED2. Response to THZ1 also correlated with basal CITED2 protein expression, a potential marker of CDK7 inhibitor sensitivity. Furthermore, all of the THZ1-inhibited genes examined were inducible by EGF but THZ1 prevented this induction. THZ1 had synergistic or additive effects when combined with the EGFR inhibitor erlotinib, with no outward selectivity for a particular subtype of breast cancer. These results suggest a potential broad utility for CDK7 inhibitors in breast cancer therapy and the potential for combining CDK7 and EGFR inhibitors.
Collapse
|
10
|
Plasterer C, Tsaih SW, Peck AR, Chervoneva I, O’Meara C, Sun Y, Lemke A, Murphy D, Smith J, Ran S, Kovatich AJ, Hooke JA, Shriver CD, Hu H, Mitchell EP, Bergom C, Joshi A, Auer P, Prokop J, Rui H, Flister MJ. Neuronatin is a modifier of estrogen receptor-positive breast cancer incidence and outcome. Breast Cancer Res Treat 2019; 177:77-91. [DOI: 10.1007/s10549-019-05307-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/29/2019] [Indexed: 01/13/2023]
|
11
|
Tang J, Cui Q, Zhang D, Liao X, Zhu J, Wu G. An estrogen receptor (ER)-related signature in predicting prognosis of ER-positive breast cancer following endocrine treatment. J Cell Mol Med 2019; 23:4980-4990. [PMID: 31124293 PMCID: PMC6652714 DOI: 10.1111/jcmm.14338] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/26/2019] [Accepted: 04/04/2019] [Indexed: 12/26/2022] Open
Abstract
Quite a few estrogen receptor (ER)‐positive breast cancer patients receiving endocrine therapy are at risk of disease recurrence and death. ER‐related genes are involved in the progression and chemoresistance of breast cancer. In this study, we identified an ER‐related gene signature that can predict the prognosis of ER‐positive breast cancer patient receiving endocrine therapy. We collected RNA expression profiling from Gene Expression Omnibus database. An ER‐related signature was developed to separate patients into high‐risk and low‐risk groups. Patients in the low‐risk group had significantly better survival than those in the high‐risk group. ROC analysis indicated that this signature exhibited good diagnostic efficiency for the 1‐, 3‐ and 5‐year disease‐relapse events. Moreover, multivariate Cox regression analysis demonstrated that the ER‐related signature was an independent risk factor when adjusting for several clinical signatures. The prognostic value of this signature was validated in the validation sets. In addition, a nomogram was built and the calibration plots analysis indicated the good performance of this nomogram. In conclusion, combining with ER status, our results demonstrated that the ER‐related prognostic signature is a promising method for predicting the prognosis of ER‐positive breast cancer patients receiving endocrine therapy.
Collapse
Affiliation(s)
- Jianing Tang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuxia Cui
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dan Zhang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Liao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jian Zhu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Bayindir-Buchhalter I, Wolff G, Lerch S, Sijmonsma T, Schuster M, Gronych J, Billeter AT, Babaei R, Krunic D, Ketscher L, Spielmann N, Hrabe de Angelis M, Ruas JL, Müller-Stich BP, Heikenwalder M, Lichter P, Herzig S, Vegiopoulos A. Cited4 is a sex-biased mediator of the antidiabetic glitazone response in adipocyte progenitors. EMBO Mol Med 2019; 10:emmm.201708613. [PMID: 29973382 PMCID: PMC6079535 DOI: 10.15252/emmm.201708613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Most antidiabetic drugs treat disease symptoms rather than adipose tissue dysfunction as a key pathogenic cause in the metabolic syndrome and type 2 diabetes. Pharmacological targeting of adipose tissue through the nuclear receptor PPARg, as exemplified by glitazone treatments, mediates efficacious insulin sensitization. However, a better understanding of the context‐specific PPARg responses is required for the development of novel approaches with reduced side effects. Here, we identified the transcriptional cofactor Cited4 as a target and mediator of rosiglitazone in human and murine adipocyte progenitor cells, where it promoted specific sets of the rosiglitazone‐dependent transcriptional program. In mice, Cited4 was required for the proper induction of thermogenic expression by Rosi specifically in subcutaneous fat. This phenotype had high penetrance in females only and was not evident in beta‐adrenergically stimulated browning. Intriguingly, this specific defect was associated with reduced capacity for systemic thermogenesis and compromised insulin sensitization upon therapeutic rosiglitazone treatment in female but not male mice. Our findings on Cited4 function reveal novel unexpected aspects of the pharmacological targeting of PPARg.
Collapse
Affiliation(s)
- Irem Bayindir-Buchhalter
- DKFZ Junior Group Metabolism and Stem Cell Plasticity, German Cancer Research Center, Heidelberg, Germany
| | - Gretchen Wolff
- DKFZ Junior Group Metabolism and Stem Cell Plasticity, German Cancer Research Center, Heidelberg, Germany
| | - Sarah Lerch
- DKFZ Junior Group Metabolism and Stem Cell Plasticity, German Cancer Research Center, Heidelberg, Germany
| | - Tjeerd Sijmonsma
- Division Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maximilian Schuster
- DKFZ Junior Group Metabolism and Stem Cell Plasticity, German Cancer Research Center, Heidelberg, Germany
| | - Jan Gronych
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Adrian T Billeter
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Rohollah Babaei
- DKFZ Junior Group Metabolism and Stem Cell Plasticity, German Cancer Research Center, Heidelberg, Germany
| | - Damir Krunic
- Light Microscopy Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lars Ketscher
- Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Nadine Spielmann
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jorge L Ruas
- Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Beat P Müller-Stich
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Mathias Heikenwalder
- Division Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Stephan Herzig
- Helmholtz Center Munich, Institute for Diabetes and Cancer IDC, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexandros Vegiopoulos
- DKFZ Junior Group Metabolism and Stem Cell Plasticity, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
13
|
Huang S, Xu W, Hu P, Lakowski TM. Integrative Analysis Reveals Subtype-Specific Regulatory Determinants in Triple Negative Breast Cancer. Cancers (Basel) 2019; 11:cancers11040507. [PMID: 30974831 PMCID: PMC6521146 DOI: 10.3390/cancers11040507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/20/2022] Open
Abstract
Different breast cancer (BC) subtypes have unique gene expression patterns, but their regulatory mechanisms have yet to be fully elucidated. We hypothesized that the top upregulated (Yin) and downregulated (Yang) genes determine the fate of cancer cells. To reveal the regulatory determinants of these Yin and Yang genes in different BC subtypes, we developed a lasso regression model integrating DNA methylation (DM), copy number variation (CNV) and microRNA (miRNA) expression of 391 BC patients, coupled with miRNA–target interactions and transcription factor (TF) binding sites. A total of 25, 20, 15 and 24 key regulators were identified for luminal A, luminal B, Her2-enriched, and triple negative (TN) subtypes, respectively. Many of the 24 TN regulators were found to regulate the PPARA and FOXM1 pathways. The Yin Yang gene expression mean ratio (YMR) and combined risk score (CRS) signatures built with either the targets of or the TN regulators were associated with the BC patients’ survival. Previously, we identified FOXM1 and PPARA as the top Yin and Yang pathways in TN, respectively. These two pathways and their regulators could be further explored experimentally, which might help to identify potential therapeutic targets for TN.
Collapse
Affiliation(s)
- Shujun Huang
- College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; huangs12@myumanitoba (S.H.); (W.X.)
| | - Wayne Xu
- College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; huangs12@myumanitoba (S.H.); (W.X.)
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Research Institute in Oncology and Hematology, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Pingzhao Hu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Research Institute in Oncology and Hematology, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Correspondence: (P.H.); (T.M.L.); Tel.: +1-204-789-3229 (P.H.); +1-204-272-3173 (T.M.L.)
| | - Ted M. Lakowski
- College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; huangs12@myumanitoba (S.H.); (W.X.)
- Correspondence: (P.H.); (T.M.L.); Tel.: +1-204-789-3229 (P.H.); +1-204-272-3173 (T.M.L.)
| |
Collapse
|
14
|
Jayaraman S, Doucet M, Kominsky SL. Down-regulation of CITED2 attenuates breast tumor growth, vessel formation and TGF-β-induced expression of VEGFA. Oncotarget 2018; 8:6169-6178. [PMID: 28008154 PMCID: PMC5351621 DOI: 10.18632/oncotarget.14048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/13/2016] [Indexed: 12/27/2022] Open
Abstract
While we previously demonstrated that CITED2 expression in primary breast tumor tissues is elevated relative to normal mammary epithelium and inversely correlated with patient survival, its functional impact on primary tumor development and progression remained unknown. To address this issue, we examined the effect of CITED2 silencing on the growth of human breast cancer cell lines MDA-MB-231 and MDA-MB-468 following orthotopic administration in vivo. Here, we show that CITED2 silencing significantly attenuated MDA-MB-231 primary tumor growth concordant with reduced tumor vascularization, while MDA-MB-468 primary tumor growth and tumor vascularization remained unaffected. Correspondingly, expression of VEGFA was significantly reduced in shCITED2-expressing MDA-MB-231, but not MDA-MB-468 tumors. Consistent with the observed pattern of vascularization and VEGFA expression, we found that TGF-β stimulation induced expression of VEGFA and enhanced CITED2 recruitment to the VEGFA promoter in MDA-MA-231 cells, while failing to induce VEGFA expression in MDA-MB-468 cells. Further supporting its involvement in TGF-β-induced expression of VEGFA, CITED2 silencing prevented TGF-β induction of VEGFA expression in MDA-MB-231 cells. Collectively, these data indicate that CITED2 regulates primary breast tumor growth, likely by influencing tumor vasculature via TGF-β-dependent regulation of VEGFA.
Collapse
Affiliation(s)
- Swaathi Jayaraman
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michele Doucet
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Scott L Kominsky
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Jayaraman S, Doucet M, Kominsky SL. CITED2 attenuates macrophage recruitment concordant with the downregulation of CCL20 in breast cancer cells. Oncol Lett 2017; 15:871-878. [PMID: 29399152 PMCID: PMC5772916 DOI: 10.3892/ol.2017.7420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/20/2017] [Indexed: 12/18/2022] Open
Abstract
The transcriptional co-regulator Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain-2 (CITED2) may promote breast tumor growth; however, the mechanisms by which its effects are mediated remain to be fully elucidated. Tumor-associated macrophages serve an important function in tumor development and progression and are recruited by chemotactic factors produced by cells within the tumor microenvironment. The present study assessed the effects of CITED2 silencing on macrophage recruitment in two xenograft mouse models of human breast cancer, one in which tumor growth was sensitive to CITED2 silencing (MDA-MB-231) and one in which it was insensitive (MDA-MB-468). The present study identified that silencing CITED2 significantly attenuated macrophage infiltration in MDA-MB-231 but not MDA-MB-468 orthotopic tumors, concordant with its effect on tumor growth. Correspondingly, conditioned media obtained from CITED2-silenced MDA-MB-231 cells exhibited a significantly decreased ability to induce macrophage recruitment by Transwell migration assay, whereas the chemotactic effect of MDA-MB-468 conditioned media was unaffected. Examining the expression of macrophage chemoattractants within orthotopic tumors and tumor cell-conditioned media revealed a significant decrease in C-C motif chemokine ligand (CCL)20 mRNA and protein expression following CITED2-silencing in MDA-MB-231 cells, compared with that in cells transfected with scramble shRNA. However, mRNA and protein expression was unaffected by CITED2-silencing in MDA-MB-468 cells. Furthermore, chromatin immunoprecipitation analysis revealed that CITED2 was localized to the CCL20 promoter in MDA-MB-231 cells, suggesting that it serves a direct function in its regulation, which is consistent with the effect of CITED2 silencing on CCL20 expression. Lastly, neutralizing CCL20 in the conditioned media of MDA-MB-231 cells significantly inhibited macrophage recruitment. Collectively, these results suggest that CITED2 is involved in modulating macrophage recruitment, representing a novel mechanism through which it may influence tumor growth. This may be partly mediated by regulating tumor cell production of the chemokine CCL20.
Collapse
Affiliation(s)
- Swaathi Jayaraman
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michele Doucet
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Scott L Kominsky
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
16
|
Bottje W, Kong BW, Reverter A, Waardenberg AJ, Lassiter K, Hudson NJ. Progesterone signalling in broiler skeletal muscle is associated with divergent feed efficiency. BMC SYSTEMS BIOLOGY 2017; 11:29. [PMID: 28235404 PMCID: PMC5324283 DOI: 10.1186/s12918-017-0396-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/16/2017] [Indexed: 01/08/2023]
Abstract
Background We contrast the pectoralis muscle transcriptomes of broilers selected from within a single genetic line expressing divergent feed efficiency (FE) in an effort to improve our understanding of the mechanistic basis of FE. Results Application of a virtual muscle model to gene expression data pointed to a coordinated reduction in slow twitch muscle isoforms of the contractile apparatus (MYH15, TPM3, MYOZ2, TNNI1, MYL2, MYOM3, CSRP3, TNNT2), consistent with diminishment in associated slow machinery (myoglobin and phospholamban) in the high FE animals. These data are in line with the repeated transition from red slow to white fast muscle fibres observed in agricultural species selected on mass and FE. Surprisingly, we found that the expression of 699 genes encoding the broiler mitoproteome is modestly–but significantly–biased towards the high FE group, suggesting a slightly elevated mitochondrial content. This is contrary to expectation based on the slow muscle isoform data and theoretical physiological capacity arguments. Reassuringly, the extreme 40 most DE genes can successfully cluster the 12 individuals into the appropriate FE treatment group. Functional groups contained in this DE gene list include metabolic proteins (including opposing patterns of CA3 and CA4), mitochondrial proteins (CKMT1A), oxidative status (SEPP1, HIG2A) and cholesterol homeostasis (APOA1, INSIG1). We applied a differential network method (Regulatory Impact Factors) whose aim is to use patterns of differential co-expression to detect regulatory molecules transcriptionally rewired between the groups. This analysis clearly points to alterations in progesterone signalling (via the receptor PGR) as the major driver. We show the progesterone receptor localises to the mitochondria in a quail muscle cell line. Conclusions Progesterone is sometimes used in the cattle industry in exogenous hormone mixes that lead to a ~20% increase in FE. Because the progesterone receptor can localise to avian mitochondria, our data continue to point to muscle mitochondrial metabolism as an important component of the phenotypic expression of variation in broiler FE. Electronic supplementary material The online version of this article (doi:10.1186/s12918-017-0396-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Walter Bottje
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Byung-Whi Kong
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Antonio Reverter
- Agriculture, Commonwealth Science and Industrial Research Organisation, 306 Carmody Road, Brisbane, QLD, 4072, Australia
| | - Ashley J Waardenberg
- Agriculture, Commonwealth Science and Industrial Research Organisation, 306 Carmody Road, Brisbane, QLD, 4072, Australia.,Children's Medical Research Institute, University of Sydney, 214 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Kentu Lassiter
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Nicholas J Hudson
- School of Agriculture and Food Science, University of Queensland, Gatton, QLD, 4343, Australia.
| |
Collapse
|
17
|
Knockdown of Cbp/P300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 inhibits cell division and increases apoptosis in gastric cancer. J Surg Res 2016; 211:1-7. [PMID: 28501104 DOI: 10.1016/j.jss.2016.11.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/23/2016] [Accepted: 11/29/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cbp/P300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) is a pleiotropic protein associated with numerous cell functions, including transcription and differentiation. The role of CITED2 has been investigated in a number of malignancies; however, the roles of this protein in gastric cancers remain unclear. Therefore, we determined the role of CITED2 in gastric cancers. MATERIALS AND METHODS Gastric cancer cell lines (MKN74, MKN28, 7901, and AGS) were used to assess CITED2 transcript levels. Messenger RNA levels were determined using quantitative polymerase chain reaction. Lentiviral vectors containing CITED2 small interfering RNA were used to knockdown CITED2 expression. Cell proliferation was assessed with fluorescent imaging and 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide assays. Apoptosis and cell cycle stages were assessed through flow cytometry, and formation of colonies was determined using a fluorescent microscope. RESULTS All cell lines tested in this study expressed CITED2. The cell line expressing the highest levels of CITED2 (MKN74) showed significant knockdown of endogenous CITED2 expression on lentiviral infection. Cell proliferation was shown to be lower in CITED2 knockdown MKN74 cells. G1/S-phase cell cycle arrest was observed on silencing of CITED2 in MKN74 cells. A significant increase in apoptosis was observed on CITED2 knock down in MKN74 cells, while colony forming ability was significantly inhibited after knock down of CITED2. CONCLUSIONS CITED2 supports gastric cancer cell colony formation and proliferation while inhibiting apoptosis making it a potential gene therapy target for gastric cancer.
Collapse
|
18
|
Minemura H, Takagi K, Sato A, Takahashi H, Miki Y, Shibahara Y, Watanabe M, Ishida T, Sasano H, Suzuki T. CITED2 in breast carcinoma as a potent prognostic predictor associated with proliferation, migration and chemoresistance. Cancer Sci 2016; 107:1898-1908. [PMID: 27627783 PMCID: PMC5198946 DOI: 10.1111/cas.13081] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/26/2016] [Accepted: 09/09/2016] [Indexed: 12/20/2022] Open
Abstract
CITED2 (Cbp/p300‐interacting transactivator, with Glu/Asp‐rich carboxy‐terminal domain, 2) is a member of the CITED family and is involved in various cellular functions during development and differentiation. Mounting evidence suggests the importance of CITED in the progression of human malignancies, but the significance of CITED2 protein has not yet been examined in breast carcinoma. Therefore, in the present study, we examined the clinical significance and the biological functions of CITED2 in breast carcinoma by immunohistochemistry and in vitro study. CITED2 immunoreactivity was detected in breast carcinoma tissues, and it was significantly higher compared to those in morphologically normal mammary glands. CITED2 immunoreactivity was significantly associated with stage, pathological T factor, lymph node metastasis, histological grade, HER2 and Ki‐67, and inversely correlated with estrogen receptor. Moreover, the immunohistochemical CITED2 status was significantly associated with increased incidence of recurrence and breast cancer‐specific death of the breast cancer patients, and multivariate analyses demonstrated CITED2 status as an independent worse prognostic factor for disease‐free and breast cancer‐specific survival. Subsequent in vitro experiments showed that CITED2 expression significantly increased proliferation activity and migration property in MCF‐7and S KBR‐3 breast carcinoma cells. Moreover, CITED2 caused chemoresistance to epirubicin and 5‐fluorouracil, but not paclitaxel, in these cells, and it inhibited p53 accumulation after 5‐fluorouracil treatment in MCF‐7 cells. These results suggest that CITED2 plays important roles in the progression and chemoresistance of breast carcinoma and that CITED2 status is a potent prognostic factor in breast cancer patients.
Collapse
Affiliation(s)
- Hiroyuki Minemura
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ai Sato
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hikaru Takahashi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Miki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukiko Shibahara
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika Watanabe
- Department of Pathology, Tohoku University Hospital, Sendai, Japan
| | - Takanori Ishida
- Department of Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Pathology, Tohoku University Hospital, Sendai, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
19
|
Jayaraman S, Doucet M, Lau WM, Kominsky SL. CITED2 Modulates Breast Cancer Metastatic Ability through Effects on IKKα. Mol Cancer Res 2016; 14:730-9. [PMID: 27216153 PMCID: PMC4987170 DOI: 10.1158/1541-7786.mcr-16-0081] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/14/2016] [Indexed: 12/31/2022]
Abstract
UNLABELLED Previously, we identified the transcriptional coactivator CITED2 as a potential facilitator of bone metastasis using a murine mammary cancer model. Extending these studies to human breast cancer, it was observed that CITED2 mRNA expression was significantly elevated in patient specimens of metastatic breast cancer relative to primary tumors, with highest levels in metastasis to bone relative to non-bone sites. To further evaluate CITED2 functions in breast cancer metastasis, CITED2 expression was stably reduced in the human breast cancer cell lines MDA-MB-231 and MDA-MB-468, which are metastatic in animal models. While CITED2 knockdown had no effect on cell proliferation, cell migration and invasion were significantly reduced, as was the establishment of metastasis following intracardiac administration in athymic nude mice. To explore the mechanism behind these effects, gene expression following CITED2 knockdown in MDA-MB-231 cells by cDNA microarray was performed. As confirmed at the mRNA and protein levels in both MDA-MB-231 and MDA-MB-468 cells, expression of the NF-κB regulator IKKα was significantly reduced, along with several NF-κB targets with known roles in metastasis (OPN, MMP9, uPA, SPARC, IL11, and IL1β). Furthermore, ChIP assay revealed recruitment of CITED2 to the promoter of IKKα, indicating a direct role in regulating its expression. Consistent with reduced IKKα expression, CITED2 knockdown inhibited both canonical and noncanonical NF-κB signaling. Finally, restoration of IKKα expression following CITED2 knockdown in MDA-MB-231 and MDA-MB-468 cells rescued their invasive ability. Collectively, these data demonstrate that CITED2 modulates metastatic ability in human breast cancer cells, at least in part, through the regulation of IKKα. IMPLICATIONS The current study highlights the role of CITED2 in facilitating breast cancer metastasis, partly via regulation of IKKα. Mol Cancer Res; 14(8); 730-9. ©2016 AACR.
Collapse
Affiliation(s)
- Swaathi Jayaraman
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michele Doucet
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wen Min Lau
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Scott L Kominsky
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
20
|
Fang Y, Shang W, Wei DL, Zeng SM. Cited2 protein level in cumulus cells is a biomarker for human embryo quality and pregnancy outcome in one in vitro fertilization cycle. Fertil Steril 2016; 105:1351-1359.e4. [PMID: 26812245 DOI: 10.1016/j.fertnstert.2015.12.137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 12/01/2015] [Accepted: 12/29/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To determine whether the levels of CBP/p300 interacting transactivator with ED-rich tail 2 (Cited2) protein in cumulus cells (CCs) derived from patients undergoing IVF related to infertility factors, embryo quality, and clinical outcomes in one IVF cycle. DESIGN Retrospective analysis of human CCs. SETTING Public hospital and university. PATIENT(S) A total of 103 (conventional) IVF patients and 32 intracytoplasmic sperm injection patients. INTERVENTION(S) All CCs from each patient's oocytes were considered as one sample. The patients were divided into two groups according to whether the Cited2/β-actin levels in their CCs were above or below the mean level detected for all patients. MAIN OUTCOME MEASURE(S) Embryo quality and clinical outcomes of IVF patients. RESULT(S) The oocytes derived from the group of patients whose CCs showed lower Cited2 levels displayed higher fertilization, transferable embryo, and implantation rates. Moreover, the patients in this group were more likely to have a successful pregnancy outcome. Among different infertility factors, a total of 78.6% of patients with polycystic ovary syndrome had a higher Cited2 level in CCs. Additionally, patients with a lower basal FSH level belonged to the higher Cited2 levels group. The expression of two genes (phosphoenolpyruvate carboxykinase 1 [PCK1] and progesterone receptor [PR]) and the glucose content in CCs were also markedly increased in CCs derived from patients with higher Cited2 levels. CONCLUSION(S) The present findings imply that Cited2 level in CCs is associated with polycystic ovary syndrome, embryo quality, and pregnancy outcome of IVF patients.
Collapse
Affiliation(s)
- Yuan Fang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China; Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Wei Shang
- In Vitro Fertility Center, Assisted Reproductive Center of the Department of Gynecology and Obstetrics, China PLA Naval General Hospital, Beijing, People's Republic of China
| | - De-Li Wei
- In Vitro Fertility Center, Assisted Reproductive Center of the Department of Gynecology and Obstetrics, China PLA Naval General Hospital, Beijing, People's Republic of China
| | - Shen-Ming Zeng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
21
|
Hofvander J, Tayebwa J, Nilsson J, Magnusson L, Brosjö O, Larsson O, Vult von Steyern F, Mandahl N, Fletcher CDM, Mertens F. Recurrent PRDM10 gene fusions in undifferentiated pleomorphic sarcoma. Clin Cancer Res 2014; 21:864-9. [PMID: 25516889 DOI: 10.1158/1078-0432.ccr-14-2399] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Undifferentiated pleomorphic sarcoma (UPS) is defined as a sarcoma with cellular pleomorphism and no identifiable line of differentiation. It is typically a high-grade lesion with a metastatic rate of about one third. No tumor-specific rearrangement has been identified, and genetic markers that could be used for treatment stratification are lacking. We performed transcriptome sequencing (RNA-Seq) to search for novel gene fusions. EXPERIMENTAL DESIGN RNA-Seq, FISH, and/or various PCR methodologies were used to search for gene fusions and rearrangements of the PRDM10 gene in 84 soft tissue sarcomas. RESULTS Using RNA-Seq, two cases of UPS were found to display novel gene fusions, both involving the transcription factor PRDM10 as the 3' partner and either MED12 or CITED2 as the 5' partner gene. Further screening of 82 soft tissue sarcomas for rearrangements of the PRDM10 locus revealed one more UPS with a MED12/PRDM10 fusion. None of these genes has been implicated in neoplasia-associated gene fusions before. CONCLUSIONS Our results suggest that PRDM10 fusions are present in around 5% of UPS. Although the fusion-positive cases in our series showed the same nuclear pleomorphism and lack of differentiation as other UPS, it is noteworthy that all three were morphologically low grade and that none of the patients developed metastases. Thus, PRDM10 fusion-positive sarcomas may constitute a clinically important subset of UPS.
Collapse
Affiliation(s)
- Jakob Hofvander
- Department of Clinical Genetics, University and Regional Laboratories, Lund University, Lund, Sweden.
| | - Johnbosco Tayebwa
- Department of Clinical Genetics, University and Regional Laboratories, Lund University, Lund, Sweden
| | - Jenny Nilsson
- Department of Clinical Genetics, University and Regional Laboratories, Lund University, Lund, Sweden
| | - Linda Magnusson
- Department of Clinical Genetics, University and Regional Laboratories, Lund University, Lund, Sweden
| | - Otte Brosjö
- Department of Orthopedics, Karolinska University Hospital, Solna, Sweden
| | - Olle Larsson
- Department of Pathology, Karolinska University Hospital, Solna, Sweden
| | | | - Nils Mandahl
- Department of Clinical Genetics, University and Regional Laboratories, Lund University, Lund, Sweden
| | | | - Fredrik Mertens
- Department of Clinical Genetics, University and Regional Laboratories, Lund University, Lund, Sweden
| |
Collapse
|
22
|
Li XX, Zheng HT, Peng JJ, Huang LY, Shi DB, Liang L, Cai SJ. RNA-seq reveals determinants for irinotecan sensitivity/resistance in colorectal cancer cell lines. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:2729-2736. [PMID: 24966994 PMCID: PMC4069966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/12/2014] [Indexed: 06/03/2023]
Abstract
Irinotecan is a topoisomerase I inhibitor approved worldwide as a first- and second-line chemotherapy for advanced or recurrent colorectal cancer (CRC). Although irinotecan showed significant survival advantage for patients, a relatively low response rate and severe adverse effects demonstrated the urgent need for biomarkers searching to select the suitable patients who can benefit from irinotecan-based therapy and avoid the adverse effects. In present work, the irinotecan response (IC50 doses) of 20 CRC cell lines were correlated with the basal expression profiles investigated by RNA-seq to figure out genes responsible for irinotecan sensitivity/resistance. Genes negatively or positively correlated to irinotecan sensitivity were given after biocomputation, and 7 (CDC20, CTNNAL1, FZD7, CITED2, ABR, ARHGEF7, and RNMT) of them were validated in two CRC cell lines by quantitative real-time PCR, several of these 7 genes has been proposed to promote cancer cells proliferation and hence may confer CRC cells resistance to irinotecan. Our work might provide potential biomarkers and therapeutic targets for irinotecan sensitivity in CRC cells.
Collapse
Affiliation(s)
- Xin-Xiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, 200032, China
| | - Hong-Tu Zheng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, 200032, China
| | - Jun-Jie Peng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, 200032, China
| | - Li-Yong Huang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, 200032, China
| | - De-Bing Shi
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, 200032, China
| | - Lei Liang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, 200032, China
| | - San-Jun Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, 200032, China
| |
Collapse
|
23
|
Chen L, Qu X, Cao M, Zhou Y, Li W, Liang B, Li W, He W, Feng C, Jia X, He Y. Identification of breast cancer patients based on human signaling network motifs. Sci Rep 2013; 3:3368. [PMID: 24284521 PMCID: PMC3842546 DOI: 10.1038/srep03368] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 11/13/2013] [Indexed: 12/25/2022] Open
Abstract
Identifying breast cancer patients is crucial to the clinical diagnosis and therapy for this disease. Conventional gene-based methods for breast cancer diagnosis ignore gene-gene interactions and thus may lead to loss of power. In this study, we proposed a novel method to select classification features, called “Selection of Significant Expression-Correlation Differential Motifs” (SSECDM). This method applied a network motif-based approach, combining a human signaling network and high-throughput gene expression data to distinguish breast cancer samples from normal samples. Our method has higher classification performance and better classification accuracy stability than the mutual information (MI) method or the individual gene sets method. It may become a useful tool for identifying and treating patients with breast cancer and other cancers, thus contributing to clinical diagnosis and therapy for these diseases.
Collapse
Affiliation(s)
- Lina Chen
- 1] College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Hei Longjiang Province, China Postal code:150081 [2]
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|