1
|
Cornelius RJ, Maeoka Y, Shinde U, McCormick JA. Familial Hyperkalemic Hypertension. Compr Physiol 2024; 14:5839-5874. [PMID: 39699086 DOI: 10.1002/cphy.c240004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The rare disease Familial Hyperkalemic Hypertension (FHHt) is caused by mutations in the genes encoding Cullin 3 (CUL3), Kelch-Like 3 (KLHL3), and two members of the With-No-Lysine [K] (WNK) kinase family, WNK1 and WNK4. In the kidney, these mutations ultimately cause hyperactivation of NCC along the renal distal convoluted tubule. Hypertension results from increased NaCl retention, and hyperkalemia by impaired K + secretion by downstream nephron segments. CUL3 and KLHL3 are now known to form a ubiquitin ligase complex that promotes proteasomal degradation of WNK kinases, which activate downstream kinases that phosphorylate and thus activate NCC. For CUL3, potent effects on the vasculature that contribute to the more severe hypertensive phenotype have also been identified. Here we outline the in vitro and in vivo studies that led to the discovery of the molecular pathways regulating NCC and vascular tone, and how FHHt-causing mutations disrupt these pathways. Potential mechanisms for variability in disease severity related to differential effects of each mutation on the kidney and vasculature are described, and other possible effects of the mutant proteins beyond the kidney and vasculature are explored. © 2024 American Physiological Society. Compr Physiol 14:5839-5874, 2024.
Collapse
Affiliation(s)
- Ryan J Cornelius
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Yujiro Maeoka
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Ujwal Shinde
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| | - James A McCormick
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
2
|
Ying S, Guo Q, Zhang C. KLHL3-dependent WNK4 degradation affected by potassium through the neddylation and autophagy pathway. BMC Nephrol 2023; 24:217. [PMID: 37481568 PMCID: PMC10362690 DOI: 10.1186/s12882-023-03257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/29/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND Studies reported that kelch-like protein 3 (KLHL3)-Cullin3(CUL3) E3 ligase ubiquitinated with-no-lysine kinase 4 (WNK4). Impaired WNK4 ubiquitination plays a key role in Familial hyperkalemic hypertension (FHHt, also called pseudohypoaldosteronism type II) which results from overaction of thiazide-sensitive sodium chloride cotransport (NCC). In addition, researchers have also found that dietary potassium deficiency activates NCC along the renal distal convoluted tubule (DCT). However, the underlying mechanism remains unclear about the relationship between potassium and WNK4. METHODS In the present study, we conducted in vitro and in vivo experiments to confirm that KLHL3-dependent WNK4 degradation is affected by potassium through the neddylation and autophagy pathway. In vitro, the WNK4 and KLHL3 plasmids were cotransfected into HEK293 cell lines by lipofectamine 2000, and then incubated with different potassium concentrations (1mmol/L and 10mmol/L) for 24 h, and further treated with MLN4924 or the autophagy inhibitor or both of MLN4924 and the autophagy inhibitor for another 24 h respectively. In vivo, we created mice that were fed with low or high potassium diets and then were injected MLN4924 in the experimental groups. The expression of WNK4, pWNK4, KLHL3, NEDD8, LC3 ,and P62 was detected by western blotting in vitro and vivo experiments. RESULTS We found that the abundance and phosphorylation of WNK4 increase when neddylation is inhibited both in vitro and vivo. Furthermore, the abundance of pWNK4, WNK4, NEDD8, and KLHL3 was increased in the low potassium (LK) group. Inhibiting autophagy can ameliorate the effect of potassium on the abundance and activity of WNK4 to some extent. CONCLUSION These findings suggest a complex regulation of potassium in the degradation of WNK4. Low potassium can activate WNK4, which may be related to neddylation and autophagy, but the mechanism needs to be further studied.
Collapse
Affiliation(s)
- Siqi Ying
- Department of Nephrology, Jing'an District Center Hospital of Shanghai, Fudan University, Shanghai, 200040, China
| | - Qin Guo
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Shi, China
| | - Chong Zhang
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Shi, China.
| |
Collapse
|
3
|
Taylor CA, Cobb MH. CCT and CCT-Like Modular Protein Interaction Domains in WNK Signaling. Mol Pharmacol 2022; 101:201-212. [PMID: 34312216 PMCID: PMC9092477 DOI: 10.1124/molpharm.121.000307] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/14/2021] [Indexed: 11/22/2022] Open
Abstract
The WNK [with no lysine (K)] kinases and their downstream effector kinases, oxidative stress responsive 1 (OSR1) and SPS/STE20-related proline-alanine-rich kinase (SPAK), have well established functions in the maintenance of cell volume and ion homeostasis. Mutations in these kinases have been linked to an inherited form of hypertension, neurologic defects, and other pathologies. A rapidly expanding body of evidence points to the involvement of WNKs in regulating multiple diverse cellular processes as well as the progression of some forms of cancer. How OSR1 and SPAK contribute to these processes is well understood in some cases but completely unknown in others. OSR1 and SPAK are targeted to both WNKs and substrates via their conserved C-terminal (CCT) protein interaction domains. Considerable effort has been put forth to understand the structure, function, and interaction specificity of the CCT domains in relation to WNK signaling, and multiple inhibitors of WNK signaling target these domains. The domains bind RFxV and RxFxV protein sequence motifs with the consensus sequence R-F-x-V/I or R-x-F-x-V/I, but residues outside the core motif also contribute to specificity. CCT interactions are required for OSR1 and SPAK activation and deactivation as well as cation-chloride cotransporter substrate phosphorylation. All four WNKs also contain CCT-like domains that have similar structures and conserved binding residues when compared with CCT domains, but their functions and interaction specificities are mostly unknown. A better understanding of the varied actions of these domains and their interactions will better define the known signaling mechanisms of the WNK pathway as well as uncover new ones. SIGNIFICANCE STATEMENT: WNK [with no lysine (K)] kinases and their downstream effector kinases, oxidative stress responsive 1 (OSR1) and SPS/STE20-related proline-alanine-rich kinase (SPAK), have been shown to be involved in an array of diverse cellular processes. Here we review the function of modular protein interaction domains found in OSR1 and SPAK as well as related domains found in WNKs.
Collapse
Affiliation(s)
- Clinton A Taylor
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
4
|
Tsilosani A, Gao C, Zhang W. Aldosterone-Regulated Sodium Transport and Blood Pressure. Front Physiol 2022; 13:770375. [PMID: 35197862 PMCID: PMC8859437 DOI: 10.3389/fphys.2022.770375] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Aldosterone is a major mineralocorticoid steroid hormone secreted by glomerulosa cells in the adrenal cortex. It regulates a variety of physiological responses including those to oxidative stress, inflammation, fluid disruption, and abnormal blood pressure through its actions on various tissues including the kidney, heart, and the central nervous system. Aldosterone synthesis is primarily regulated by angiotensin II, K+ concentration, and adrenocorticotrophic hormone. Elevated serum aldosterone levels increase blood pressure largely by increasing Na+ re-absorption in the kidney through regulating transcription and activity of the epithelial sodium channel (ENaC). This review focuses on the signaling pathways involved in aldosterone synthesis and its effects on Na+ reabsorption through ENaC.
Collapse
Affiliation(s)
- Akaki Tsilosani
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Chao Gao
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Wenzheng Zhang
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| |
Collapse
|
5
|
Meor Azlan NF, Koeners MP, Zhang J. Regulatory control of the Na-Cl co-transporter NCC and its therapeutic potential for hypertension. Acta Pharm Sin B 2021; 11:1117-1128. [PMID: 34094823 PMCID: PMC8144889 DOI: 10.1016/j.apsb.2020.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 02/08/2023] Open
Abstract
Hypertension is the largest risk factor for cardiovascular disease, the leading cause of mortality worldwide. As blood pressure regulation is influenced by multiple physiological systems, hypertension cannot be attributed to a single identifiable etiology. Three decades of research into Mendelian forms of hypertension implicated alterations in the renal tubular sodium handling, particularly the distal convoluted tubule (DCT)-native, thiazide-sensitive Na-Cl cotransporter (NCC). Altered functions of the NCC have shown to have profound effects on blood pressure regulation as illustrated by the over activation and inactivation of the NCC in Gordon's and Gitelman syndromes respectively. Substantial progress has uncovered multiple factors that affect the expression and activity of the NCC. In particular, NCC activity is controlled by phosphorylation/dephosphorylation, and NCC expression is facilitated by glycosylation and negatively regulated by ubiquitination. Studies have even found parvalbumin to be an unexpected regulator of the NCC. In recent years, there have been considerable advances in our understanding of NCC control mechanisms, particularly via the pathway containing the with-no-lysine [K] (WNK) and its downstream target kinases, SPS/Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress responsive 1 (OSR1), which has led to the discovery of novel inhibitory molecules. This review summarizes the currently reported regulatory mechanisms of the NCC and discusses their potential as therapeutic targets for treating hypertension.
Collapse
Key Words
- ATP, adenosine triphosphate
- Blood pressure regulation
- CCC, cation-coupled chloride cotransporters
- CCT, conserved carboxy-terminal
- CNI, calcineurin inhibitors
- CUL3, cullin 3
- CUL3/KLHL3-WNK-SPAK/OSR1
- Ca2+, calcium ion
- Cardiovascular disease
- DAG, diacylglycerol
- DCT, distal convoluted tubule
- DUSP, dual specificity phosphatases
- ECF, extracellular fluid
- ELISA, enzyme-bound immunosorbent analysis
- ERK, extracellular signal-regulated kinases
- EnaC, epithelial sodium channels
- GABA, gamma-aminobutyric acid
- HEK293, human embryonic kidney 293
- Hypertension
- I1, inhibitor 1
- K+, potassium ion
- KCC, potassium-chloride-cotransporters
- KLHL3, kelch-like 3
- KS-WNK1, kidney specific-WNK1
- Kinase inhibitors
- MAPK, mitogen-activated protein kinase
- MO25, mouse protein-25
- Membrane trafficking
- NCC, sodium–chloride cotransporters
- NKCC, sodium–potassium–chloride-cotransporter
- Na+, sodium ion
- NaCl, sodium chloride
- NaCl-cotransporter NCC
- OSR1, oxidative stress-responsive gene 1
- PCT, proximal convoluted tubule
- PHAII, pseudohypoaldosteronism type II
- PP, protein phosphatase
- PV, parvalbumin
- ROMK, renal outer medullary potassium
- RasGRP1, RAS guanyl-releasing protein 1
- SLC12, solute carrier 12
- SPAK, Ste20-related proline-alanine-rich-kinase
- TAL, thick ascending limb
- Therapeutic targets
- WNK, with-no-lysine kinases
- mDCT, mammalian DCT
- mRNA, messenger RNA
Collapse
Affiliation(s)
- Nur Farah Meor Azlan
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK
| | - Maarten P. Koeners
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK
| |
Collapse
|
6
|
Ostrosky-Frid M, Chávez-Canales M, Zhang J, Andrukhova O, Argaiz ER, Lerdo-de-Tejada F, Murillo-de-Ozores A, Sanchez-Navarro A, Rojas-Vega L, Bobadilla NA, Vazquez N, Castañeda-Bueno M, Alessi DR, Gamba G. Role of KLHL3 and dietary K + in regulating KS-WNK1 expression. Am J Physiol Renal Physiol 2021; 320:F734-F747. [PMID: 33682442 PMCID: PMC8174809 DOI: 10.1152/ajprenal.00575.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 02/08/2023] Open
Abstract
The physiological role of the shorter isoform of with no lysine kinase (WNK)1 that is exclusively expressed in the kidney (KS-WNK1), with particular abundance in the distal convoluted tubule, remains elusive. KS-WNK1, despite lacking the kinase domain, is nevertheless capable of stimulating the NaCl cotransporter, apparently through activation of WNK4. It has recently been shown that a less severe form of familial hyperkalemic hypertension featuring only hyperkalemia is caused by missense mutations in the WNK1 acidic domain that preferentially affect cullin 3 (CUL3)-Kelch-like protein 3 (KLHL3) E3-induced degradation of KS-WNK1 rather than that of full-length WNK1. Here, we show that full-length WNK1 is indeed less impacted by the CUL3-KLHL3 E3 ligase complex compared with KS-WNK1. We demonstrated that the unique 30-amino acid NH2-terminal fragment of KS-WNK1 is essential for its activating effect on the NaCl cotransporter and recognition by KLHL3. We identified specific amino acid residues in this region critical for the functional effect of KS-WNK1 and KLHL3 sensitivity. To further explore this, we generated KLHL3-R528H knockin mice that mimic human mutations causing familial hyperkalemic hypertension. These mice revealed that the KLHL3 mutation specifically increased expression of KS-WNK1 in the kidney. We also observed that in wild-type mice, the expression of KS-WNK1 was only detectable after exposure to a low-K+ diet. These findings provide new insights into the regulation and function of KS-WNK1 by the CUL3-KLHL3 complex in the distal convoluted tubule and indicate that this pathway is regulated by dietary K+ levels.NEW & NOTEWORTHY In this work, we demonstrated that the kidney-specific isoform of with no lysine kinase 1 (KS-WNK1) in the kidney is modulated by dietary K+ and activity of the ubiquitin ligase protein Kelch-like protein 3. We analyzed the role of different amino acid residues of KS-WNK1 in its activity against the NaCl cotransporter and sensitivity to Kelch-like protein 3.
Collapse
Affiliation(s)
- Mauricio Ostrosky-Frid
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- PECEM (MD/PhD), Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Chávez-Canales
- Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter, United Kingdom
| | - Olena Andrukhova
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Eduardo R Argaiz
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Fernando Lerdo-de-Tejada
- Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adrian Murillo-de-Ozores
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Andrea Sanchez-Navarro
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Lorena Rojas-Vega
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Norma A Bobadilla
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Norma Vazquez
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Dario R Alessi
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- PECEM (MD/PhD), Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
7
|
Murillo-de-Ozores AR, Rodríguez-Gama A, Carbajal-Contreras H, Gamba G, Castañeda-Bueno M. WNK4 kinase: from structure to physiology. Am J Physiol Renal Physiol 2021; 320:F378-F403. [PMID: 33491560 DOI: 10.1152/ajprenal.00634.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
With no lysine kinase-4 (WNK4) belongs to a serine-threonine kinase family characterized by the atypical positioning of its catalytic lysine. Despite the fact that WNK4 has been found in many tissues, the majority of its study has revolved around its function in the kidney, specifically as a positive regulator of the thiazide-sensitive NaCl cotransporter (NCC) in the distal convoluted tubule of the nephron. This is explained by the description of gain-of-function mutations in the gene encoding WNK4 that causes familial hyperkalemic hypertension. This disease is mainly driven by increased downstream activation of the Ste20/SPS1-related proline-alanine-rich kinase/oxidative stress responsive kinase-1-NCC pathway, which increases salt reabsorption in the distal convoluted tubule and indirectly impairs renal K+ secretion. Here, we review the large volume of information that has accumulated about different aspects of WNK4 function. We first review the knowledge on WNK4 structure and enumerate the functional domains and motifs that have been characterized. Then, we discuss WNK4 physiological functions based on the information obtained from in vitro studies and from a diverse set of genetically modified mouse models with altered WNK4 function. We then review in vitro and in vivo evidence on the different levels of regulation of WNK4. Finally, we go through the evidence that has suggested how different physiological conditions act through WNK4 to modulate NCC activity.
Collapse
Affiliation(s)
- Adrián Rafael Murillo-de-Ozores
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico.,Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan, Mexico City, Mexico
| | | | - Héctor Carbajal-Contreras
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico.,Combined Studies Program in Medicine MD/PhD (PECEM), Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan, Mexico City, Mexico, Mexico
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico.,Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico.,Combined Studies Program in Medicine MD/PhD (PECEM), Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan, Mexico City, Mexico, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico.,Combined Studies Program in Medicine MD/PhD (PECEM), Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan, Mexico City, Mexico, Mexico
| |
Collapse
|
8
|
Furusho T, Uchida S, Sohara E. The WNK signaling pathway and salt-sensitive hypertension. Hypertens Res 2020; 43:733-743. [PMID: 32286498 DOI: 10.1038/s41440-020-0437-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/19/2022]
Abstract
The distal nephron of the kidney has a central role in sodium and fluid homeostasis, and disruption of this homeostasis due to mutations of with-no-lysine kinase 1 (WNK1), WNK4, Kelch-like 3 (KLHL3), or Cullin 3 (CUL3) causes pseudohypoaldosteronism type II (PHAII), an inherited hypertensive disease. WNK1 and WNK4 activate the NaCl cotransporter (NCC) at the distal convoluted tubule through oxidative stress-responsive gene 1 (OSR1)/Ste20-related proline-alanine-rich kinase (SPAK), constituting the WNK-OSR1/SPAK-NCC phosphorylation cascade. The level of WNK protein is regulated through degradation by the CUL3-KLHL3 E3 ligase complex. In the normal state, the activity of WNK signaling in the kidney is physiologically regulated by sodium intake to maintain sodium homeostasis in the body. In patients with PHAII, however, because of the defective degradation of WNK kinases, NCC is constitutively active and not properly suppressed by a high salt diet, leading to abnormally increased salt reabsorption and salt-sensitive hypertension. Importantly, recent studies have demonstrated that potassium intake, insulin, and TNFα are also physiological regulators of WNK signaling, suggesting that they contribute to the salt-sensitive hypertension associated with a low potassium diet, metabolic syndrome, and chronic kidney disease, respectively. Moreover, emerging evidence suggests that WNK signaling also has some unique roles in metabolic, cardiovascular, and immunological organs. Here, we review the recent literature and discuss the molecular mechanisms of the WNK signaling pathway and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Taisuke Furusho
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
9
|
Abdel Khalek W, Rafael C, Loisel-Ferreira I, Kouranti I, Clauser E, Hadchouel J, Jeunemaitre X. Severe Arterial Hypertension from Cullin 3 Mutations Is Caused by Both Renal and Vascular Effects. J Am Soc Nephrol 2019; 30:811-823. [PMID: 30967423 DOI: 10.1681/asn.2017121307] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/27/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Mutations in four genes, WNK lysine deficient protein kinase 1 and 4 (WNK1 and WNK4), kelch like family member 3 (KLHL3), or Cullin 3 (CUL3), can result in familial hyperkalemic hypertension (FHHt), a rare Mendelian form of human arterial hypertension. Although all mutations result in an increased abundance of WNK1 or WNK4, all FHHt-causing CUL3 mutations, resulting in the skipping of exon 9, lead to a more severe phenotype. METHODS We created and compared two mouse models, one expressing the mutant Cul3 protein ubiquitously (pgk-Cul3∆9) and the other specifically in vascular smooth muscle cells (SM22-Cul3∆9). We conducted pharmacologic investigations on isolated aortas and generated stable and inducible HEK293 cell lines that overexpress the wild-type Cul3 or mutant Cul3 (Cul3∆9) protein. RESULTS As expected, pgk-Cul3∆9 mice showed marked hypertension with significant hyperkalemia, hyperchloremia and low renin. BP increased significantly in SM22-Cul3∆9 mice, independent of any measurable effect on renal transport. Only pgk-Cul3∆9 mice displayed increased expression of the sodium chloride cotransporter and phosphorylation by the WNK-SPAK kinases. Both models showed altered reactivity of isolated aortas to phenylephrine and acetylcholine, as well as marked acute BP sensitivity to the calcium channel blocker amlodipine. Aortas from SM22-Cul3∆9 mice showed increased expression of RhoA, a key molecule involved in regulation of vascular tone, compared with aortas from control mice. We also observed increased RhoA abundance and t 1/2 in Cul3∆9-expressing cells, caused by decreased ubiquitination. CONCLUSIONS Mutations in Cul3 cause severe hypertension by affecting both renal and vascular function, the latter being associated with activation of RhoA.
Collapse
Affiliation(s)
- Waed Abdel Khalek
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris, France.,Faculty of Medicine, University Paris-Descartes, Sorbonne Paris Cité, Paris, France
| | - Chloé Rafael
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris, France.,Faculty of Medicine, University Paris-Descartes, Sorbonne Paris Cité, Paris, France.,Institut National de la Santé et de la Recherche Médicale UMR_S1155, Tenon Hospital, Paris, France.,Faculty of Medicine, University Pierre and Marie Curie, Paris, France.,Faculty of Sciences, University Paris-Diderot, Sorbonne Paris Cité, Paris, France; and
| | - Irmine Loisel-Ferreira
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris, France.,Faculty of Medicine, University Paris-Descartes, Sorbonne Paris Cité, Paris, France
| | - Ilektra Kouranti
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris, France.,Faculty of Medicine, University Paris-Descartes, Sorbonne Paris Cité, Paris, France
| | - Eric Clauser
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris, France.,Faculty of Medicine, University Paris-Descartes, Sorbonne Paris Cité, Paris, France
| | - Juliette Hadchouel
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris, France; .,Faculty of Medicine, University Paris-Descartes, Sorbonne Paris Cité, Paris, France.,Institut National de la Santé et de la Recherche Médicale UMR_S1155, Tenon Hospital, Paris, France.,Faculty of Medicine, University Pierre and Marie Curie, Paris, France
| | - Xavier Jeunemaitre
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris, France; .,Faculty of Medicine, University Paris-Descartes, Sorbonne Paris Cité, Paris, France.,Department of Genetics, Hôpital Européen Georges Pompidou, Assistance Publique - Hôpitaux de Paris, Paris, France
| |
Collapse
|
10
|
Cornelius RJ, Zhang C, Erspamer KJ, Agbor LN, Sigmund CD, Singer JD, Yang CL, Ellison DH. Dual gain and loss of cullin 3 function mediates familial hyperkalemic hypertension. Am J Physiol Renal Physiol 2018; 315:F1006-F1018. [PMID: 29897280 PMCID: PMC6230741 DOI: 10.1152/ajprenal.00602.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 05/11/2018] [Accepted: 06/07/2018] [Indexed: 12/26/2022] Open
Abstract
Familial hyperkalemic hypertension is caused by mutations in with-no-lysine kinases (WNKs) or in proteins that mediate their degradation, kelch-like 3 (KLHL3) and cullin 3 (CUL3). Although the mechanisms by which WNK and KLHL3 mutations cause the disease are now clear, the effects of the disease-causing CUL3Δ403-459 mutation remain controversial. Possible mechanisms, including hyperneddylation, altered ubiquitin ligase activity, decreased association with the COP9 signalosome (CSN), and increased association with and degradation of KLHL3 have all been postulated. Here, we systematically evaluated the effects of Cul3Δ403-459 using cultured kidney cells. We first identified that the catalytically active CSN subunit jun activation domain-binding protein-1 (JAB1) does not associate with the deleted Cul3 4-helix bundle domain but instead with the adjacent α/β1 domain, suggesting that altered protein folding underlies the impaired binding. Inhibition of deneddylation with JAB1 siRNA increased Cul3 neddylation and decreased KLHL3 abundance, similar to the Cul3 mutant. We next determined that KLHL3 degradation has both ubiquitin ligase-dependent and -independent components. Proteasomal KLHL3 degradation was enhanced by Cul3Δ403-459; however, autophagic degradation was also upregulated by this Cul3 mutant. Finally, to evaluate whether deficient substrate adaptor was responsible for the disease, we restored KLHL3 to wild-type (WT) Cul3 levels. In the absence of WT Cul3, WNK4 was not degraded, demonstrating that Cul3Δ403-459 itself cannot degrade WNK4; conversely, when WT Cul3 was present, as in diseased humans, WNK4 degradation was restored. In conclusion, deletion of exon 9 from Cul3 generates a protein that is itself ubiquitin-ligase defective but also capable of enhanced autophagocytic KLHL3 degradation, thereby exerting dominant-negative effects on the WT allele.
Collapse
Affiliation(s)
- Ryan J Cornelius
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University , Portland, Oregon
| | - Chong Zhang
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Kayla J Erspamer
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University , Portland, Oregon
| | - Larry N Agbor
- Department of Pharmacology, UIHC Center for Hypertension Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Curt D Sigmund
- Department of Pharmacology, UIHC Center for Hypertension Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Jeffrey D Singer
- Department of Biology, Portland State University , Portland, Oregon
| | - Chao-Ling Yang
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University , Portland, Oregon
| | - David H Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University , Portland, Oregon
- Veterans Affairs Portland Health Care System, Portland, Oregon
| |
Collapse
|
11
|
Lin CM, Cheng CJ, Yang SS, Tseng MH, Yen MT, Sung CC, Lin SH. Generation and analysis of a mouse model of pseudohypoaldosteronism type II caused by KLHL3 mutation in BTB domain. FASEB J 2018; 33:1051-1061. [PMID: 30148674 DOI: 10.1096/fj.201801023r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Kelch-like 3 ( KLHL3) mutations contributed to the most common causative genes in patients with pseudohypoaldosteronism type II (PHAII); however, the molecular mechanisms of PHAII-causing mutations in BTB domain of KLHL3 in vivo have not been investigated. We generated and analyzed Klhl3 knock-in (KI) mice carrying a missense M131V mutation in the BTB domain (corresponding to human KLHL3 M78V mutation). Klhl3M131V/+ KI mice exhibited typical PHAII phenotype with an exaggerated diuretic response to hydrochlorothiazide. Their kidney tissues showed an unchanged KLHL3, decreased cullin 3 (Cul3), and increased with-no-lysine kinases (WNKs) WNK1 and WNK4 along with an enhanced downstream ste20-related proline/alanine-rich kinase/oxidative stress response kinase 1-N(K)CC phosphorylation. Their Cul3 protein in the cytosol of distal convoluted tubule cells was also significantly attenuated on immunogold-labeling electron microscopy. In microdissected renal tubules, Klhl3M131V/+ KI mice expressed high levels of Wnk4 mRNA in the distal nephron. In vitro coimmunoprecipitation showed the KLHL3 BTB domain mutation retained intact interaction with WNKs but reduced binding to Cul3, thus leading to the increased abundance of total WNKs. In summary, Klhl3M131V/+ KI mice feature typical PHAII with a simultaneous increase of WNK1 and WNK4 through the impaired KLHL3 BTB domain binding to Cul3.-Lin, C.-M., Cheng, C.-J., Yang, S.-S., Tseng, M.-H., Yen, M.-T., Sung, C.-C., Lin, S.-H. Generation and analysis of a mouse model of pseudohypoaldosteronism type II caused by KLHL3 mutation in BTB domain.
Collapse
Affiliation(s)
- Chien-Ming Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Pediatrics, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Jen Cheng
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Sung-Sen Yang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Min-Hua Tseng
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Division of Pediatric Nephrology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan; and
| | - Ming-Tso Yen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Division of Nephrology, Department of Medicine, Cathay General Hospital, Taipei, Taiwan
| | - Chih-Chien Sung
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hua Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
12
|
Ostrosky-Frid M, Castañeda-Bueno M, Gamba G. Regulation of the renal NaCl cotransporter by the WNK/SPAK pathway: lessons learned from genetically altered animals. Am J Physiol Renal Physiol 2018; 316:F146-F158. [PMID: 30089030 DOI: 10.1152/ajprenal.00288.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The renal thiazide-sensitive NaCl cotransporter (NCC) is the major salt transport pathway in the distal convoluted tubule of the mammalian nephron. NCC activity is critical for modulation of arterial blood pressure and serum potassium levels. Reduced activity of NCC in genetic diseases results in arterial hypotension and hypokalemia, while increased activity results in genetic diseases featuring hypertension and hyperkalemia. Several hormones and physiological conditions modulate NCC activity through a final intracellular complex pathway involving kinases and ubiquitin ligases. A substantial amount of work has been conducted to understand this pathway in the last 15 yr, but advances over the last 3 yr have helped to begin to understand how these regulatory proteins interact with each other and modulate the activity of this important cotransporter. In this review, we present the current model of NCC regulation by the Cullin 3 protein/Kelch-like 3 protein/with no lysine kinase/STE20-serine-proline alanine-rich kinase (CUL3/KELCH3-WNK-SPAK) pathway. We present a review of all genetically altered mice that have been used to translate most of the proposals made from in vitro experiments into in vivo observations that have helped to elucidate the model at the physiological level. Many questions have been resolved, but some others will require further models to be constructed. In addition, unexpected observations in mice have raised new questions and identified regulatory pathways that were previously unknown.
Collapse
Affiliation(s)
- Mauricio Ostrosky-Frid
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City, Mexico.,PECEM, Facultad de Medicina, Universidad Nacional Autónoma de México , Mexico City, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City, Mexico.,Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico.,Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| |
Collapse
|
13
|
WNK1 regulates skeletal muscle cell hypertrophy by modulating the nuclear localization and transcriptional activity of FOXO4. Sci Rep 2018; 8:9101. [PMID: 29904119 PMCID: PMC6002401 DOI: 10.1038/s41598-018-27414-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/31/2018] [Indexed: 01/10/2023] Open
Abstract
With-no-lysine (K) (WNK) kinases, which are mutated in the inherited form of hypertension pseudohypoaldosteronism type II, are essential regulators of membrane ion transporters. Here, we report that WNK1 positively regulates skeletal muscle cell hypertrophy via mediating the function of the pro-longevity transcription factor forkhead box protein O4 (FOXO4) independent of the conventional WNK signaling pathway linking SPS/STE20-related proline-alanine–rich kinase (SPAK)/oxidative stress response kinase 1 (OSR1) to downstream effector ion transporters. Small interfering RNA (siRNA)-mediated silencing of WNK1, but not SPAK/OSR1 kinases, induced myotube atrophy and remarkable increases in the mRNA expression of the muscle atrophy ubiquitin ligases MAFbx and MuRF1 in C2C12 mouse skeletal muscle cells. WNK1 silencing also increased FOXO4 nuclear localization, and co-transfection of Foxo4-targeted siRNA completely reversed the myotube atrophy and upregulation of atrogene transcription induced by WNK1 silencing. We further illustrated that WNK1 protein abundance in skeletal muscle was increased by chronic voluntary wheel running exercise (hypertrophic stimulus) and markedly decreased by adenine-induced chronic kidney disease (atrophic stimulus) in mice. These findings suggest that WNK1 is involved in the physiological regulation of mammalian skeletal muscle hypertrophy and atrophy via interactions with FOXO4. The WNK1-FOXO4 axis may be a potential therapeutic target in human diseases causing sarcopenia.
Collapse
|
14
|
Chung WY, Han JW, Heo W, Lee MG, Kim JY. Overexpression of WNK1 in POMC-expressing neurons reduces weigh gain via WNK4-mediated degradation of Kir6.2. Mol Cell Biochem 2018; 447:165-174. [PMID: 29392534 DOI: 10.1007/s11010-018-3301-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/24/2018] [Indexed: 10/18/2022]
Abstract
"With no lysine" (WNK) kinases have been shown to regulate various ion transporters in various tissues, but studies on the function of WNK kinases in the brain have been limited. In this study, we discovered that WNK1 and WNK4 in POMC-expressing neuronal cells in WNK1 overexpressed transgenic mice (WNK1 TG) decrease appetite via degradation of Kir6.2. Weight gain after 20 weeks of age was delayed in WNK1 TG mice as a result of reduced food intake. Expression of WNK1 and proopiomelanocortin (POMC) was higher in POMC-expressing neurons in the hypothalamus of WNK1 TG mice than in WT mice. Immunostaining of serial sections of the hypothalamus revealed that POMC-expressing neurons were smaller in WNK1 TG mice than in WT mice. In addition, expression of Kir6.2 was significantly reduced in WNK1 TG mice. Overexpression and knockdown of WNK4 demonstrated that WNK4 regulates protein expression of Kir6.2 via protein-protein interaction. Accordingly, reduced age-dependent weight gain of WNK1 TG mice seems to be related with the decreased Kir6.2 expression via WNK1- and WNK4-regulated protein stability of Kir6.2.
Collapse
Affiliation(s)
- Woo Young Chung
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 120-752, South Korea
| | - Jung Woo Han
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 120-752, South Korea
| | - Woon Heo
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 120-752, South Korea
| | - Min Goo Lee
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 120-752, South Korea
| | - Joo Young Kim
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 120-752, South Korea.
| |
Collapse
|
15
|
Ferdaus MZ, McCormick JA. Mechanisms and controversies in mutant Cul3-mediated familial hyperkalemic hypertension. Am J Physiol Renal Physiol 2018; 314:F915-F920. [PMID: 29361671 DOI: 10.1152/ajprenal.00593.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Autosomal dominant mutations in cullin-3 ( Cul3) cause the most severe form of familial hyperkalemic hypertension (FHHt). Cul3 mutations cause skipping of exon 9, which results in an internal deletion of 57 amino acids from the CUL3 protein (CUL3-∆9). The precise mechanism by which this altered form of CUL3 causes FHHt is controversial. CUL3 is a member of the cullin-RING ubiquitin ligase family that mediates ubiquitination and thus degradation of cellular proteins, including with-no-lysine [K] kinases (WNKs). In CUL3-∆9-mediated FHHt, proteasomal degradation of WNKs is abrogated, leading to overactivation of the WNK targets sterile 20/SPS-1 related proline/alanine-rich kinase and oxidative stress-response kinase-1, which directly phosphorylate and activate the thiazide-sensitive Na+-Cl- cotransporter. Several groups have suggested different mechanisms by which CUL3-∆9 causes FHHt. The majority of these are derived from in vitro data, but recently the Kurz group (Schumacher FR, Siew K, Zhang J, Johnson C, Wood N, Cleary SE, Al Maskari RS, Ferryman JT, Hardege I, Figg NL, Enchev R, Knebel A, O'Shaughnessy KM, Kurz T. EMBO Mol Med 7: 1285-1306, 2015) described the first mouse model of CUL3-∆9-mediated FHHt. Analysis of this model suggested that CUL3-∆9 is degraded in vivo, and thus Cul3 mutations cause FHHt by inducing haploinsufficiency. We recently directly tested this model but found that other dominant effects of CUL3-∆9 must contribute to the development of FHHt. In this review, we focus on our current knowledge of CUL3-∆9 action gained from in vitro and in vivo models that may help unravel this complex problem.
Collapse
Affiliation(s)
- Mohammed Z Ferdaus
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University , Portland, Oregon
| | - James A McCormick
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University , Portland, Oregon
| |
Collapse
|
16
|
Aggarwal A, Rodriguez-Buritica D. Monogenic Hypertension in Children: A Review With Emphasis on Genetics. Adv Chronic Kidney Dis 2017; 24:372-379. [PMID: 29229168 DOI: 10.1053/j.ackd.2017.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hypertension (HT) is a public health problem in children particularly related to the epidemic of overweight and obesity. Monogenic forms of HT are important in the differential diagnosis in children presenting with severe or refractory HT, who have a family history of early-onset HT, unusual physical examination findings, and/or characteristic hormonal and biochemical abnormalities. Most genetic defects in these disorders ultimately result in increased sodium transport in the distal nephron resulting in volume expansion and HT. Genetic testing, which is increasingly available, has diagnostic, therapeutic, and predictive implications for families affected by these rare conditions.
Collapse
|
17
|
Zhang J, Karimy JK, Delpire E, Kahle KT. Pharmacological targeting of SPAK kinase in disorders of impaired epithelial transport. Expert Opin Ther Targets 2017; 21:795-804. [PMID: 28679296 PMCID: PMC6081737 DOI: 10.1080/14728222.2017.1351949] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The mammalian SPS1-related proline/alanine-rich serine-threonine kinase SPAK (STK39) modulates ion transport across and between epithelial cells in response to environmental stimuli such osmotic stress and inflammation. Research over the last decade has established a central role for SPAK in the regulation of ion and water transport in the distal nephron, colonic crypts, and pancreatic ducts, and has implicated deregulated SPAK signaling in NaCl-sensitive hypertension, ulcerative colitis and Crohn's disease, and cystic fibrosis. Areas covered: We review recent advances in our understanding of the role of SPAK kinase in the regulation of epithelial transport. We highlight how SPAK signaling - including its upstream Cl- sensitive activators, the WNK kinases, and its downstream ion transport targets, the cation- Cl- cotransporters contribute to human disease. We discuss prospects for the pharmacotherapeutic targeting of SPAK kinase in specific human disorders that feature impaired epithelial homeostasis. Expert opinion: The development of novel drugs that antagonize the SPAK-WNK interaction, inhibit SPAK kinase activity, or disrupt SPAK kinase activation by interfering with its binding to MO25α/β could be useful adjuncts in essential hypertension, inflammatory colitis, and cystic fibrosis.
Collapse
Affiliation(s)
- Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratory, Exeter, EX4 4PS, UK
| | - Jason K. Karimy
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Eric Delpire
- Department of Anesthesiolgy, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kristopher T. Kahle
- Departments of Neurosurgery, Pediatrics, and Cellular & Molecular Physiology; and Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
18
|
Sasaki E, Susa K, Mori T, Isobe K, Araki Y, Inoue Y, Yoshizaki Y, Ando F, Mori Y, Mandai S, Zeniya M, Takahashi D, Nomura N, Rai T, Uchida S, Sohara E. KLHL3 Knockout Mice Reveal the Physiological Role of KLHL3 and the Pathophysiology of Pseudohypoaldosteronism Type II Caused by Mutant KLHL3. Mol Cell Biol 2017; 37:e00508-16. [PMID: 28052936 PMCID: PMC5359427 DOI: 10.1128/mcb.00508-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 10/17/2016] [Accepted: 12/29/2016] [Indexed: 01/06/2023] Open
Abstract
Mutations in the with-no-lysine kinase 1 (WNK1), WNK4, kelch-like 3 (KLHL3), and cullin3 (CUL3) genes are known to cause the hereditary disease pseudohypoaldosteronism type II (PHAII). It was recently demonstrated that this results from the defective degradation of WNK1 and WNK4 by the KLHL3/CUL3 ubiquitin ligase complex. However, the other physiological in vivo roles of KLHL3 remain unclear. Therefore, here we generated KLHL3-/- mice that expressed β-galactosidase (β-Gal) under the control of the endogenous KLHL3 promoter. Immunoblots of β-Gal and LacZ staining revealed that KLHL3 was expressed in some organs, such as brain. However, the expression levels of WNK kinases were not increased in any of these organs other than the kidney, where WNK1 and WNK4 increased in KLHL3-/- mice but not in KLHL3+/- mice. KLHL3-/- mice also showed PHAII-like phenotypes, whereas KLHL3+/- mice did not. This clearly demonstrates that the heterozygous deletion of KLHL3 was not sufficient to cause PHAII, indicating that autosomal dominant type PHAII is caused by the dominant negative effect of mutant KLHL3. We further demonstrated that the dimerization of KLHL3 can explain this dominant negative effect. These findings could help us to further understand the physiological roles of KLHL3 and the pathophysiology of PHAII caused by mutant KLHL3.
Collapse
Affiliation(s)
- Emi Sasaki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koichiro Susa
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayasu Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kiyoshi Isobe
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuya Araki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuichi Inoue
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuki Yoshizaki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Fumiaki Ando
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yutaro Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shintaro Mandai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Moko Zeniya
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daiei Takahashi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Naohiro Nomura
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tatemitsu Rai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
19
|
Mitani M, Furuichi M, Narumi S, Hasegawa T, Chiga M, Uchida S, Sato S. A patient with pseudohypoaldosteronism type II complicated by congenital hypopituitarism carrying a KLHL3 mutation. Clin Pediatr Endocrinol 2016; 25:127-134. [PMID: 27780982 PMCID: PMC5069541 DOI: 10.1297/cpe.25.127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/24/2016] [Indexed: 12/25/2022] Open
Abstract
Pseudohypoaldosteronism type II (PHA II) is a renal tubular disease that causes hyperkalemia, hypertension, and metabolic acidosis. Mutations in four genes (WNK4, WNK1, KLHL3, and CUL3) are known to cause PHA II. We report a patient with PHA II carrying a KLHL3 mutation, who also had congenital hypopituitarism. The patient, a 3-yr-old boy, experienced loss of consciousness at age 10 mo. He exhibited growth failure, hypertension, hyperkalemia, and metabolic acidosis. We diagnosed him as having PHA II because he had low plasma renin activity with normal plasma aldosterone level and a low transtubular potassium gradient. Further investigations revealed defective secretion of GH and gonadotropins and anterior pituitary gland hypoplasia. Genetic analyses revealed a previously known heterozygous KLHL3 mutation (p.Leu387Pro), but no mutation was detected in 27 genes associated with congenital hypopituitarism. He was treated with sodium restriction and recombinant human GH, which normalized growth velocity. This is the first report of a molecularly confirmed patient with PHA II complicated by congenital hypopituitarism. We speculate that both GH deficiency and metabolic acidosis contributed to growth failure. Endocrinological investigations will help to individualize the treatment of patients with PHA II presenting with growth failure.
Collapse
Affiliation(s)
- Marie Mitani
- Department of Pediatrics, Saitama City Hospital, Saitama, Japan; Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | | | - Satoshi Narumi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Tomonobu Hasegawa
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Motoko Chiga
- Department of Nephrology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinichi Uchida
- Department of Nephrology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seiji Sato
- Department of Pediatrics, Saitama City Hospital, Saitama, Japan
| |
Collapse
|
20
|
Dbouk HA, Huang CL, Cobb MH. Hypertension: the missing WNKs. Am J Physiol Renal Physiol 2016; 311:F16-27. [PMID: 27009339 PMCID: PMC4967160 DOI: 10.1152/ajprenal.00358.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 03/16/2016] [Indexed: 12/23/2022] Open
Abstract
The With no Lysine [K] (WNK) family of enzymes are central in the regulation of blood pressure. WNKs have been implicated in hereditary hypertension disorders, mainly through control of the activity and levels of ion cotransporters and channels. Actions of WNKs in the kidney have been heavily investigated, and recent studies have provided insight into not only the regulation of these enzymes but also how mutations in WNKs and their interacting partners contribute to hypertensive disorders. Defining the roles of WNKs in the cardiovascular system will provide clues about additional mechanisms by which WNKs can regulate blood pressure. This review summarizes recent developments in the regulation of the WNK signaling cascade and its role in regulation of blood pressure.
Collapse
Affiliation(s)
- Hashem A Dbouk
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Chou-Long Huang
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| |
Collapse
|
21
|
Ferdaus MZ, McCormick JA. The CUL3/KLHL3-WNK-SPAK/OSR1 pathway as a target for antihypertensive therapy. Am J Physiol Renal Physiol 2016; 310:F1389-96. [PMID: 27076645 DOI: 10.1152/ajprenal.00132.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/07/2016] [Indexed: 01/11/2023] Open
Abstract
Chronic high blood pressure (hypertension) is the most common disease in the Unites States. While several classes of drugs exist to treat it, many patients (up to 10 million Americans) respond poorly to therapy, even when multiple classes are used. Recent evidence suggests that a significant portion of patients will always remain hypertensive despite maximum therapy with the drugs currently available. Therefore, there is a pressing need to develop novel antihypertensive agents. One limitation has been the identification of new targets, a limitation that has been overcome by recent insights into the mechanisms underlying monogenic forms of hypertension. The disease familial hyperkalemic hypertension is caused by mutations in with-no-lysine (WNK) kinases 1 and 4 and in cullin-3 and kelch-like 3, components of an E3 ubiquitin ligase complex that promotes WNK kinase degradation. The study of the mechanisms by which this pathway regulates blood pressure has identified several candidates for the development of new antihypertensive agents. This pathway is particularly attractive since its inhibition may not only reduce renal sodium reabsorption along multiple segments but may also reduce vascular tone. Here, we will describe the mechanisms by which this pathway regulate blood pressure and discuss the potential of targeting it to develop new antihypertensive drugs.
Collapse
Affiliation(s)
- Mohammed Z Ferdaus
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - James A McCormick
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
22
|
Degradation by Cullin 3 and effect on WNK kinases suggest a role of KLHL2 in the pathogenesis of Familial Hyperkalemic Hypertension. Biochem Biophys Res Commun 2015; 469:44-48. [PMID: 26607111 DOI: 10.1016/j.bbrc.2015.11.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/16/2015] [Indexed: 11/21/2022]
Abstract
Mutations in WNK1 and WNK4, and in components of the Cullin-Ring Ligase system, kelch-like 3 (KLHL3) and Cullin 3 (CUL3), can cause the rare hereditary disease, Familial Hyperkalemic Hypertension (FHHt). The disease is characterized by overactivity of the renal sodium chloride cotransporter (NCC), which is phosphorylated and activated by the WNK-stimulated Ste20-type kinases, SPAK and OSR1. WNK kinases themselves can be targeted for ubiquitination and degradataion by the CUL3-KLHL3 E3 ubiquitin ligase complex. It is unclear, however, why there are significant differences in phenotypic severity among FHHt patients with mutations in different genes. It was reported that kelch-like 2 (KLHL2), a homolog of KLHL3, can also target WNK kinases for ubiquitation and degradation, and may play a special role in the systemic vasculature. Our recent study revealed the disease mutant CUL3 exhibits enhanced degradation of its adaptor protein KLHL3, potentially resulting in accumulation of WNK kinases secondarily. To investigate if KLHL2 plays a role in FHHt, we studied the effect of wild type and FHHt mutant CUL3 on degradation of KLHL2 and WNK kinase proteins in HEK293 cells. Although CUL3 facilitates KLHL2 degradation, the disease mutant CUL3 is more active in this regard. KLHL2 facilitated the degradation of wild type but not disease mutant WNK4 protein. These results suggest that KLHL2 likely plays a role in the pathogenesis of FHHt, and aggravates the phenotype caused by mutations in CUL3 and WNK4.
Collapse
|
23
|
Involvement of selective autophagy mediated by p62/SQSTM1 in KLHL3-dependent WNK4 degradation. Biochem J 2015; 472:33-41. [DOI: 10.1042/bj20150500] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 09/08/2015] [Indexed: 12/20/2022]
Abstract
WNK4 is degraded not only by proteasomes but also by p62–KLHL3-mediated selective autophagy, which may be involved in WNK regulation under certain pathophysiological conditions.
Collapse
|
24
|
Araki Y, Rai T, Sohara E, Mori T, Inoue Y, Isobe K, Kikuchi E, Ohta A, Sasaki S, Uchida S. Generation and analysis of knock-in mice carrying pseudohypoaldosteronism type II-causing mutations in the cullin 3 gene. Biol Open 2015; 4:1509-17. [PMID: 26490675 PMCID: PMC4728349 DOI: 10.1242/bio.013276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Pseudohypoaldosteronism type II (PHAII) is a hereditary hypertensive disease caused by mutations in four different genes: with-no-lysine kinases (WNK) 1 and 4, Kelch-like family member 3 (KLHL3), and cullin 3 (Cul3). Cul3 and KLHL3 form an E3 ligase complex that ubiquitinates and reduces the expression level of WNK4. PHAII-causing mutations in WNK4 and KLHL3 impair WNK4 ubiquitination. However, the molecular pathogenesis of PHAII caused by Cul3 mutations is unclear. In cultured cells and human leukocytes, PHAII-causing Cul3 mutations result in the skipping of exon 9, producing mutant Cul3 protein lacking 57 amino acids. However, whether this phenomenon occurs in the kidneys and is responsible for the pathogenesis of PHAII in vivo is unknown. We generated knock-in mice carrying a mutation in the C-terminus of intron 8 of Cul3, c.1207−1G>A, which corresponds to a PHAII-causing mutation in the human Cul3 gene. Heterozygous Cul3G(−1)A/+ knock-in mice did not exhibit PHAII phenotypes, and the skipping of exon 9 was not evident in their kidneys. However, the level of Cul3 mRNA expression in the kidneys of heterozygous knock-in mice was approximately half that of wild-type mice. Furthermore, homozygous knock-in mice were nonviable. It suggested that the mutant allele behaved like a knockout allele and did not produce Cul3 mRNA lacking exon 9. A reduction in Cul3 expression alone was not sufficient to develop PHAII in the knock-in mice. Our findings highlighted the pathogenic role of mutant Cul3 protein and provided insight to explain why PHAII-causing mutations in Cul3 cause kidney-predominant PHAII phenotypes. Summary: A knock-in mutation in intron 8 of Cul3 in mice led to decreased Cul3 protein expression. Decreased Cul3 protein expression alone did not cause pseudohypoaldosteronism type II (PHAII).
Collapse
Affiliation(s)
- Yuya Araki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-0034, Japan
| | - Tatemitsu Rai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-0034, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-0034, Japan
| | - Takayasu Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-0034, Japan
| | - Yuichi Inoue
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-0034, Japan
| | - Kiyoshi Isobe
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-0034, Japan
| | - Eriko Kikuchi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-0034, Japan
| | - Akihito Ohta
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-0034, Japan
| | - Sei Sasaki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-0034, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-0034, Japan
| |
Collapse
|
25
|
Schumacher FR, Siew K, Zhang J, Johnson C, Wood N, Cleary SE, Al Maskari RS, Ferryman JT, Hardege I, Yasmin, Figg NL, Enchev R, Knebel A, O'Shaughnessy KM, Kurz T. Characterisation of the Cullin-3 mutation that causes a severe form of familial hypertension and hyperkalaemia. EMBO Mol Med 2015; 7:1285-1306. [PMID: 26286618 PMCID: PMC4604684 DOI: 10.15252/emmm.201505444] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/17/2015] [Accepted: 07/21/2015] [Indexed: 02/05/2023] Open
Abstract
Deletion of exon 9 from Cullin-3 (CUL3, residues 403-459: CUL3(Δ403-459)) causes pseudohypoaldosteronism type IIE (PHA2E), a severe form of familial hyperkalaemia and hypertension (FHHt). CUL3 binds the RING protein RBX1 and various substrate adaptors to form Cullin-RING-ubiquitin-ligase complexes. Bound to KLHL3, CUL3-RBX1 ubiquitylates WNK kinases, promoting their ubiquitin-mediated proteasomal degradation. Since WNK kinases activate Na/Cl co-transporters to promote salt retention, CUL3 regulates blood pressure. Mutations in both KLHL3 and WNK kinases cause PHA2 by disrupting Cullin-RING-ligase formation. We report here that the PHA2E mutant, CUL3(Δ403-459), is severely compromised in its ability to ubiquitylate WNKs, possibly due to altered structural flexibility. Instead, CUL3(Δ403-459) auto-ubiquitylates and loses interaction with two important Cullin regulators: the COP9-signalosome and CAND1. A novel knock-in mouse model of CUL3(WT) (/Δ403-459) closely recapitulates the human PHA2E phenotype. These mice also show changes in the arterial pulse waveform, suggesting a vascular contribution to their hypertension not reported in previous FHHt models. These findings may explain the severity of the FHHt phenotype caused by CUL3 mutations compared to those reported in KLHL3 or WNK kinases.
Collapse
Affiliation(s)
- Frances-Rose Schumacher
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Keith Siew
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Jinwei Zhang
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Clare Johnson
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Nicola Wood
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Sarah E Cleary
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Raya S Al Maskari
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - James T Ferryman
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Iris Hardege
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Yasmin
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Nichola L Figg
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Axel Knebel
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Kevin M O'Shaughnessy
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Thimo Kurz
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
26
|
Sohara E, Uchida S. Kelch-like 3/Cullin 3 ubiquitin ligase complex and WNK signaling in salt-sensitive hypertension and electrolyte disorder. Nephrol Dial Transplant 2015; 31:1417-24. [DOI: 10.1093/ndt/gfv259] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 05/22/2015] [Indexed: 12/20/2022] Open
|
27
|
Park S, Ku SK, Ji HW, Choi JH, Shin DM. Ca(2+) is a Regulator of the WNK/OSR1/NKCC Pathway in a Human Salivary Gland Cell Line. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:249-55. [PMID: 25954130 PMCID: PMC4422965 DOI: 10.4196/kjpp.2015.19.3.249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 01/26/2015] [Accepted: 02/25/2015] [Indexed: 01/18/2023]
Abstract
Wnk kinase maintains cell volume, regulating various transporters such as sodium-chloride cotransporter, potassium-chloride cotransporter, and sodium-potassium-chloride cotransporter 1 (NKCC1) through the phosphorylation of oxidative stress responsive kinase 1 (OSR1) and STE20/SPS1-related proline/alanine-rich kinase (SPAK). However, the activating mechanism of Wnk kinase in specific tissues and specific conditions is broadly unclear. In the present study, we used a human salivary gland (HSG) cell line as a model and showed that Ca2+ may have a role in regulating Wnk kinase in the HSG cell line. Through this study, we found that the HSG cell line expressed molecules participating in the WNK-OSR1-NKCC pathway, such as Wnk1, Wnk4, OSR1, SPAK, and NKCC1. The HSG cell line showed an intracellular Ca2+ concentration ([Ca2+]i) increase in response to hypotonic stimulation, and the response was synchronized with the phosphorylation of OSR1. Interestingly, when we inhibited the hypotonically induced [Ca2+]i increase with nonspecific Ca2+ channel blockers such as 2-aminoethoxydiphenyl borate, gadolinium, and lanthanum, the phosphorylated OSR1 level was also diminished. Moreover, a cyclopiazonic acid-induced passive [Ca2+]i elevation was evoked by the phosphorylation of OSR1, and the amount of phosphorylated OSR1 decreased when the cells were treated with BAPTA, a Ca2+ chelator. Finally, through that process, NKCC1 activity also decreased to maintain the cell volume in the HSG cell line. These results indicate that Ca2+ may regulate the WNK-OSR1 pathway and NKCC1 activity in the HSG cell line. This is the first demonstration that indicates upstream Ca2+ regulation of the WNK-OSR1 pathway in intact cells.
Collapse
Affiliation(s)
- Soonhong Park
- Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 120-752, Korea
| | - Sang Kyun Ku
- Department of Oral Medicine, Yonsei University College of Dentistry, Seoul 120-752, Korea
| | - Hye Won Ji
- Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 120-752, Korea
| | - Jong-Hoon Choi
- Department of Oral Medicine, Yonsei University College of Dentistry, Seoul 120-752, Korea
| | - Dong Min Shin
- Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 120-752, Korea
| |
Collapse
|
28
|
Regulation of blood pressure and renal electrolyte balance by Cullin-RING ligases. Curr Opin Nephrol Hypertens 2015; 23:487-93. [PMID: 24992566 DOI: 10.1097/mnh.0000000000000049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW Efforts to explore the pathogenic mechanisms underlying hereditary hypertension caused by a single gene mutation have brought about conceptual advances in our understanding of blood pressure regulation. We here discuss a novel pathogenic mechanism underlying the hereditary hypertensive disease pseudohypoaldosteronism type II (PHAII), caused by mutations in three different genes encoding for Cullin-3, Kelch-like protein 3 (KLHL3), and with-no-lysine kinases (WNKs). RECENT FINDINGS In 2001, mutations in genes encoding for WNKs were identified as being responsible for PHAII. Recent advancements in genetics, in particular whole-exome sequencing, have revealed that mutations in two additional genes encoding for KLHL3 and Cyllin3 also cause PHAII. This discovery contributed to the clarification of the previously unknown regulatory mechanism of WNKs, namely WNK ubiquitination by the KLHL3-Cullin-3 E3 ligase complex. SUMMARY Levels of WNKs within cells are regulated via ubiquitination by the KLHL3-Cullin-3 E3 ligase complex and are important determinants of the activity of the WNK-oxidative stress-responsive gene 1 and Ste20-related proline-alanine-rich kinase-SLC12A transporter signaling cascade. The PHAII-causing mutations in WNK4, KLHL3, and Cullin-3 result in the decreased ubiquitination and increased abundance of WNK4 in the kidney, thereby activating the thiazide-sensitive NaCl cotransporter and causing PHAII.
Collapse
|
29
|
Alessi DR, Zhang J, Khanna A, Hochdörfer T, Shang Y, Kahle KT. The WNK-SPAK/OSR1 pathway: master regulator of cation-chloride cotransporters. Sci Signal 2014; 7:re3. [PMID: 25028718 DOI: 10.1126/scisignal.2005365] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The WNK-SPAK/OSR1 kinase complex is composed of the kinases WNK (with no lysine) and SPAK (SPS1-related proline/alanine-rich kinase) or the SPAK homolog OSR1 (oxidative stress-responsive kinase 1). The WNK family senses changes in intracellular Cl(-) concentration, extracellular osmolarity, and cell volume and transduces this information to sodium (Na(+)), potassium (K(+)), and chloride (Cl(-)) cotransporters [collectively referred to as CCCs (cation-chloride cotransporters)] and ion channels to maintain cellular and organismal homeostasis and affect cellular morphology and behavior. Several genes encoding proteins in this pathway are mutated in human disease, and the cotransporters are targets of commonly used drugs. WNKs stimulate the kinases SPAK and OSR1, which directly phosphorylate and stimulate Cl(-)-importing, Na(+)-driven CCCs or inhibit the Cl(-)-extruding, K(+)-driven CCCs. These coordinated and reciprocal actions on the CCCs are triggered by an interaction between RFXV/I motifs within the WNKs and CCCs and a conserved carboxyl-terminal docking domain in SPAK and OSR1. This interaction site represents a potentially druggable node that could be more effective than targeting the cotransporters directly. In the kidney, WNK-SPAK/OSR1 inhibition decreases epithelial NaCl reabsorption and K(+) secretion to lower blood pressure while maintaining serum K(+). In neurons, WNK-SPAK/OSR1 inhibition could facilitate Cl(-) extrusion and promote γ-aminobutyric acidergic (GABAergic) inhibition. Such drugs could have efficacy as K(+)-sparing blood pressure-lowering agents in essential hypertension, nonaddictive analgesics in neuropathic pain, and promoters of GABAergic inhibition in diseases associated with neuronal hyperactivity, such as epilepsy, spasticity, neuropathic pain, schizophrenia, and autism.
Collapse
Affiliation(s)
- Dario R Alessi
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Jinwei Zhang
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Arjun Khanna
- Department of Neurosurgery, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Thomas Hochdörfer
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Yuze Shang
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02115, USA. Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
30
|
Structural and biochemical characterization of the KLHL3-WNK kinase interaction important in blood pressure regulation. Biochem J 2014; 460:237-46. [PMID: 24641320 PMCID: PMC4019986 DOI: 10.1042/bj20140153] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
WNK1 [with no lysine (K)] and WNK4 regulate blood pressure by controlling the activity of ion co-transporters in the kidney. Groundbreaking work has revealed that the ubiquitylation and hence levels of WNK isoforms are controlled by a Cullin-RING E3 ubiquitin ligase complex (CRL3KLHL3) that utilizes CUL3 (Cullin3) and its substrate adaptor, KLHL3 (Kelch-like protein 3). Loss-of-function mutations in either CUL3 or KLHL3 cause the hereditary high blood pressure disease Gordon's syndrome by stabilizing WNK isoforms. KLHL3 binds to a highly conserved degron motif located within the C-terminal non-catalytic domain of WNK isoforms. This interaction is essential for ubiquitylation by CRL3KLHL3 and disease-causing mutations in WNK4 and KLHL3 exert their effects on blood pressure by disrupting this interaction. In the present study, we report on the crystal structure of the KLHL3 Kelch domain in complex with the WNK4 degron motif. This reveals an intricate web of interactions between conserved residues on the surface of the Kelch domain β-propeller and the WNK4 degron motif. Importantly, many of the disease-causing mutations inhibit binding by disrupting critical interface contacts. We also present the structure of the WNK4 degron motif in complex with KLHL2 that has also been reported to bind WNK4. This confirms that KLHL2 interacts with WNK kinases in a similar manner to KLHL3, but strikingly different to how another KLHL protein, KEAP1 (Kelch-like enoyl-CoA hydratase-associated protein 1), binds to its substrate NRF2 (nuclear factor-erythroid 2-related factor 2). The present study provides further insights into how Kelch-like adaptor proteins recognize their substrates and provides a structural basis for how mutations in WNK4 and KLHL3 lead to hypertension. WNK kinases regulate mammalian blood pressure. The level of WNK protein in a cell is regulated by the KLHL3–CUL3 ubiquitin ligase. We define the interaction between KLHL3 and WNK, identifying the WNK degron, and present the crystal structure of the KLHL3–WNK degron complex.
Collapse
|
31
|
Insights in cullin 3/WNK4 and its relationship to blood pressure regulation and electrolyte homeostasis. Cell Signal 2014; 26:1166-72. [DOI: 10.1016/j.cellsig.2014.01.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 01/31/2014] [Indexed: 11/18/2022]
|
32
|
Susa K, Sohara E, Rai T, Zeniya M, Mori Y, Mori T, Chiga M, Nomura N, Nishida H, Takahashi D, Isobe K, Inoue Y, Takeishi K, Takeda N, Sasaki S, Uchida S. Impaired degradation of WNK1 and WNK4 kinases causes PHAII in mutant KLHL3 knock-in mice. Hum Mol Genet 2014; 23:5052-60. [PMID: 24821705 DOI: 10.1093/hmg/ddu217] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pseudohypoaldosteronism type II (PHAII) is a hereditary disease characterized by salt-sensitive hypertension, hyperkalemia and metabolic acidosis, and genes encoding with-no-lysine kinase 1 (WNK1) and WNK4 kinases are known to be responsible. Recently, Kelch-like 3 (KLHL3) and Cullin3, components of KLHL3-Cullin3 E3 ligase, were newly identified as responsible for PHAII. We have reported that WNK4 is the substrate of KLHL3-Cullin3 E3 ligase-mediated ubiquitination. However, WNK1 and Na-Cl cotransporter (NCC) were also reported to be a substrate of KLHL3-Cullin3 E3 ligase by other groups. Therefore, it remains unclear which molecule is the target(s) of KLHL3. To investigate the pathogenesis of PHAII caused by KLHL3 mutation, we generated and analyzed KLHL3(R528H/+) knock-in mice. KLHL3(R528H/+) knock-in mice exhibited salt-sensitive hypertension, hyperkalemia and metabolic acidosis. Moreover, the phosphorylation of NCC was increased in the KLHL3(R528H/+) mouse kidney, indicating that the KLHL3(R528H/+) knock-in mouse is an ideal mouse model of PHAII. Interestingly, the protein expression of both WNK1 and WNK4 was significantly increased in the KLHL3(R528H/+) mouse kidney, confirming that increases in these WNK kinases activated the WNK-OSR1/SPAK-NCC phosphorylation cascade in KLHL3(R528H/+) knock-in mice. To examine whether mutant KLHL3 R528H can interact with WNK kinases, we measured the binding of TAMRA-labeled WNK1 and WNK4 peptides to full-length KLHL3 using fluorescence correlation spectroscopy, and found that neither WNK1 nor WNK4 bound to mutant KLHL3 R528H. Thus, we found that increased protein expression levels of WNK1 and WNK4 kinases cause PHAII by KLHL3 R528H mutation due to impaired KLHL3-Cullin3-mediated ubiquitination.
Collapse
Affiliation(s)
- Koichiro Susa
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo, Tokyo 113-8519, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo, Tokyo 113-8519, Japan
| | - Tatemitsu Rai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo, Tokyo 113-8519, Japan
| | - Moko Zeniya
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo, Tokyo 113-8519, Japan
| | - Yutaro Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo, Tokyo 113-8519, Japan
| | - Takayasu Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo, Tokyo 113-8519, Japan
| | - Motoko Chiga
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo, Tokyo 113-8519, Japan
| | - Naohiro Nomura
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo, Tokyo 113-8519, Japan
| | - Hidenori Nishida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo, Tokyo 113-8519, Japan
| | - Daiei Takahashi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo, Tokyo 113-8519, Japan
| | - Kiyoshi Isobe
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo, Tokyo 113-8519, Japan
| | - Yuichi Inoue
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo, Tokyo 113-8519, Japan
| | - Kenta Takeishi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo, Tokyo 113-8519, Japan
| | - Naoki Takeda
- Division of Transgenic Technology, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo Chuo Kumamoto, Kumamoto 860-0811, Japan
| | - Sei Sasaki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo, Tokyo 113-8519, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo, Tokyo 113-8519, Japan
| |
Collapse
|
33
|
Uchida S, Sohara E, Rai T, Sasaki S. Regulation of with-no-lysine kinase signaling by Kelch-like proteins. Biol Cell 2014; 106:45-56. [PMID: 24313290 PMCID: PMC4162998 DOI: 10.1111/boc.201300069] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 12/03/2013] [Indexed: 12/17/2022]
Abstract
In 2001, with-no-lysine (WNK) kinases were identified as the genes responsible for the human hereditary hypertensive disease pseudohypoaldosteronism type II (PHAII). It took a further 6 years to clarify that WNK kinases participate in a signaling cascade with oxidative stress-responsive gene 1 (OSR1), Ste20-related proline-alanine-rich kinase (SPAK), and thiazide-sensitive NaCl cotransporter (NCC) in the kidney and the constitutive activation of this signaling cascade is the molecular basis of PHAII. Since this discovery, the WNK-OSR1/SPAK-NCC signaling cascade has been shown to be involved not only in PHAII but also in the regulation of blood pressure under normal and pathogenic conditions, such as hyperinsulinemia. However, the molecular mechanisms of WNK kinase regulation by dietary and hormonal factors and by PHAII-causing mutations remain poorly understood. In 2012, two additional genes responsible for PHAII, Kelch-like 3 (KLHL3) and Cullin3, were identified. At the time of their discovery, the molecular mechanisms underlying the interaction between these genes and their involvement in PHAII were unknown. Here we review the pathophysiological roles of the WNK signaling cascade clarified to date and introduce a new mechanism of WNK kinase regulation by KLHL3 and Cullin3, which provides insight on previously unknown mechanisms of WNK kinase regulation.
Collapse
Affiliation(s)
- Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | | | | | | |
Collapse
|