1
|
Khan MZ, Zugaza JL, Torres Aleman I. The signaling landscape of insulin-like growth factor 1. J Biol Chem 2025; 301:108047. [PMID: 39638246 PMCID: PMC11748690 DOI: 10.1016/j.jbc.2024.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
The sheer amplitude of biological actions of insulin-like growth factor I (IGF-1) affecting all types of cells in all tissues suggests a vast signaling landscape for this ubiquitous humoral signal. While the canonical signaling pathways primarily involve the Ras/MAPK and PI3K/AKT cascades, the evolutionary conservation of insulin-like peptides (ILPs) and their pathways hints at the potential for novel functions to emerge over time. Indeed, the evolutionary trajectory of ILPs opens the possibility of either novel functions for these two pathways, novel downstream routes, or both. Evidence supporting this notion includes observations of neofunctionalization in bony fishes or crustaceans, and the involvement of ILPs pathways in invertebrate eusociality or in vertebrate bone physiology, respectively. Such evolutionary processes likely contribute to the rich diversity of ILPs signaling observed today. Moreover, the interplay between conserved signaling pathways, such as those implicated in aging (predominantly involving the PI3K-AKT route), and lesser known pathways, such as those mediated by biased G-protein coupled receptors and others even less known, may underpin the context-dependent actions characteristic of ILPs signaling. While canonical IGF-1 signaling is often assumed to account for the intracellular pathways utilized by this growth factor, a comprehensive analysis of all the pathways mediated by the IGF-1 receptor (IGF-1R) remains lacking. This review aims to explore both canonical and non-canonical routes of IGF-1R action across various cell types, offering a detailed examination of the mechanisms underlying IGF-1 signaling and highlighting the significant gaps in our current understanding.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Achucarro Basque Center for Neuroscience, Leioa, Spain; CIBERNED, Madrid, Spain
| | - Jose Luis Zugaza
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque Science Foundation, Bilbao, Spain
| | - Ignacio Torres Aleman
- Achucarro Basque Center for Neuroscience, Leioa, Spain; CIBERNED, Madrid, Spain; Ikerbasque Science Foundation, Bilbao, Spain.
| |
Collapse
|
2
|
Kraemer RR, Kraemer BR. The effects of peripheral hormone responses to exercise on adult hippocampal neurogenesis. Front Endocrinol (Lausanne) 2023; 14:1202349. [PMID: 38084331 PMCID: PMC10710532 DOI: 10.3389/fendo.2023.1202349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
Over the last decade, a considerable amount of new data have revealed the beneficial effects of exercise on hippocampal neurogenesis and the maintenance or improvement of cognitive function. Investigations with animal models, as well as human studies, have yielded novel understanding of the mechanisms through which endocrine signaling can stimulate neurogenesis, as well as the effects of exercise on acute and/or chronic levels of these circulating hormones. Considering the effects of aging on the decline of specific endocrine factors that affect brain health, insights in this area of research are particularly important. In this review, we discuss how different forms of exercise influence the peripheral production of specific endocrine factors, with particular emphasis on brain-derived neurotrophic factor, growth hormone, insulin-like growth factor-1, ghrelin, estrogen, testosterone, irisin, vascular endothelial growth factor, erythropoietin, and cortisol. We also describe mechanisms through which these endocrine responses to exercise induce cellular changes that increase hippocampal neurogenesis and improve cognitive function.
Collapse
Affiliation(s)
- Robert R. Kraemer
- Department of Kinesiology and Health Studies, Southeastern Louisiana University, Hammond, LA, United States
| | - Bradley R. Kraemer
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL, United States
| |
Collapse
|
3
|
Ou JC, Feng YH, Chen KY, Chiang YH, Hsu TI, Wu CC. Correlation of Insulin-Like Growth Factor 1 With Cognitive Functions in Mild Traumatic Brain Injury Patients. Neurotrauma Rep 2023; 4:751-760. [PMID: 38028275 PMCID: PMC10659011 DOI: 10.1089/neur.2023.0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Mild traumatic brain injury (mTBI) is a prevalent health concern with variable recovery trajectories, necessitating reliable prognostic markers. Insulin-like growth factor 1 (IGF-1) emerges as a potential candidate because of its role in cellular growth, repair, and neuroprotection. However, limited studies investigate IGF-1 as a prognostic marker in mTBI patients. This study aimed to explore the correlation of IGF-1 with cognitive functions assessed using the Wisconsin Card Sorting Test (WCST) in mTBI patients. We analyzed data from 295 mTBI and 200 healthy control participants, assessing demographic characteristics, injury causes, and IGF-1 levels. Cognitive functions were evaluated using the WCST. Correlation analyses and regression models were used to investigate the associations between IGF-1 levels, demographic factors, and WCST scores. Significant differences were observed between mTBI and control groups in the proportion of females and average education years. Falls and traffic accidents were identified as the primary causes of mTBI. The mTBI group demonstrated worse cognitive outcomes on the WCST, except for the "Learning to Learn" index. Correlation analyses revealed significant relationships between IGF-1 levels, demographic factors, and specific WCST scores. Regression models demonstrated that IGF-1, age, and education years significantly influenced various WCST scores, suggesting their roles as potential prognostic markers for cognitive outcomes in mTBI patients. We provide valuable insights into the potential correlation of IGF-1 with cognitive functions in mTBI patients, particularly in tasks requiring cognitive flexibility and problem solving.
Collapse
Affiliation(s)
- Ju-Chi Ou
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Kai-Yun Chen
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
- PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan
- International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yung-Hsiao Chiang
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Tsung-I Hsu
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
- PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan
- International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- National Health Research Institutes, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- PhD Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chung-Che Wu
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
4
|
Lu J, Li H, Zheng X, Liu Y, Zhao P. Small RNA sequencing analysis of exosomes derived from umbilical plasma in IUGR lambs. Commun Biol 2023; 6:943. [PMID: 37714996 PMCID: PMC10504244 DOI: 10.1038/s42003-023-05276-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/23/2023] [Indexed: 09/17/2023] Open
Abstract
During the summer, pregnant ewes experience heat stress, leading to the occurrence of IUGR lambs. This study aims to explore the biomarkers of exosomal miRNAs derived from umbilical plasma in both IUGR and normal Hu lambs. We establish a heat-stressed Hu sheep model during mid-late gestation and selected IUGR and normal lambs for analysis. Exosomes from umbilical plasma were separated and small RNA sequencing is used to identify differentially expressed miRNAs. Next, we utilize MiRanda to predict the target genes of the differentially expressed miRNAs. To further understand the biological significance of these miRNAs, we conduct GO and KEGG pathway enrichment analysis for their target genes. The study's findings indicate that oar-miR-411a-5p is significantly downregulated in exosomes derived from umbilical plasma of IUGR lambs, while oar-miR-200c is significantly upregulated in the HS-IUGR group (P < 0.05). Furthermore, GO and KEGG enrichment analysis demonstrate that the target genes are involved in the Wnt, TGF-beta, and Rap1 signaling pathways. miRNAs found in exosomes have the potential to be utilized as biomarkers for both the diagnosis and treatment of IUGR fetuses.
Collapse
Affiliation(s)
- Jiawei Lu
- College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Huixia Li
- College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China.
| | - Xiaomin Zheng
- Research Institute for Reproductive Medicine and Genetic Diseases, Wuxi Maternity and Child Health Hospital, Wuxi, 214002, Jiangsu, China.
| | - Yuan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Peng Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| |
Collapse
|
5
|
Arjunan A, Sah DK, Woo M, Song J. Identification of the molecular mechanism of insulin-like growth factor-1 (IGF-1): a promising therapeutic target for neurodegenerative diseases associated with metabolic syndrome. Cell Biosci 2023; 13:16. [PMID: 36691085 PMCID: PMC9872444 DOI: 10.1186/s13578-023-00966-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Neurodegenerative disorders are accompanied by neuronal degeneration and glial dysfunction, resulting in cognitive, psychomotor, and behavioral impairment. Multiple factors including genetic, environmental, metabolic, and oxidant overload contribute to disease progression. Recent evidences suggest that metabolic syndrome is linked to various neurodegenerative diseases. Metabolic syndrome (MetS) is known to be accompanied by symptoms such as hyperglycemia, abdominal obesity, hypertriglyceridemia, and hypertension. Despite advances in knowledge about the pathogenesis of neurodegenerative disorders, effective treatments to combat neurodegenerative disorders caused by MetS have not been developed to date. Insulin growth factor-1 (IGF-1) deficiency has been associated with MetS-related pathologies both in-vivo and in-vitro. IGF-1 is essential for embryonic and adult neurogenesis, neuronal plasticity, neurotropism, angiogenesis, metabolic function, and protein clearance in the brain. Here, we review the evidence for the potential therapeutic effects of IGF-1 in the neurodegeneration related to metabolic syndrome. We elucidate how IGF-1 may be involved in molecular signaling defects that occurs in MetS-related neurodegenerative disorders and highlight the importance of IGF-1 as a potential therapeutic target in MetS-related neurological diseases.
Collapse
Affiliation(s)
- Archana Arjunan
- grid.14005.300000 0001 0356 9399Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-Do 58128 Republic of Korea
| | - Dhiraj Kumar Sah
- grid.14005.300000 0001 0356 9399Department of Biochemistry, Chonnam National University Medical School, Hwasun, 58128 Republic of Korea ,grid.14005.300000 0001 0356 9399BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 Seoyangro, Hwasun, 58128 Republic of Korea
| | - Minna Woo
- grid.17063.330000 0001 2157 2938Division of Endocrinology and Metabolism, University Health Network and and Banting and Best Diabetes Centre, University of Toronto, Toronto, ON Canada
| | - Juhyun Song
- grid.14005.300000 0001 0356 9399Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-Do 58128 Republic of Korea ,grid.14005.300000 0001 0356 9399BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 Seoyangro, Hwasun, 58128 Republic of Korea
| |
Collapse
|
6
|
Turkunova ME, Barbitoff YA, Serebryakova EA, Polev DE, Berseneva OS, Bashnina EB, Baranov VS, Glotov OS, Glotov AS. Molecular Genetics and Pathogenesis of the Floating Harbor Syndrome: Case Report of Long-Term Growth Hormone Treatment and a Literature Review. Front Genet 2022; 13:846101. [PMID: 35664296 PMCID: PMC9157637 DOI: 10.3389/fgene.2022.846101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/11/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction: Floating Harbor syndrome (FHS) is an extremely rare disorder, with slightly more than a hundred cases reported worldwide. FHS is caused by heterozygous mutations in the SRCAP gene; however, little is known about the pathogenesis of FHS or the effectiveness of its treatment. Methods: Whole-exome sequencing (WES) was performed for the definitive molecular diagnosis of the disease. Identified variants were validated using Sanger sequencing. In addition, systematic literature and public data on genetic variation in SRCAP and the effects of growth hormone (GH) treatment was conducted. Results: We herein report the first case of FHS in the Russian Federation. The male proband presented with most of the typical phenotypic features of FHS, including short stature, skeletal and facial features, delayed growth and bone age, high pitched voice, and intellectual impairment. The proband also had partial growth hormone deficiency. We report the history of treatment of the proband with GH, which resulted in modest improvement in growth prior to puberty. WES revealed a pathogenic c.7466C>G (p.Ser2489*) mutation in the last exon of the FHS-linked SRCAP gene. A systematic literature review and analysis of available genetic variation datasets highlighted an unusual distribution of pathogenic variants in SRCAP and confirmed the lack of pathogenicity for variants outside of exons 33 and 34. Finally, we suggested a new model of FHS pathogenesis which provides possible basis for the dominant negative nature of FHS-causing mutations and explains limited effects of GH treatment in FHS. Conclusion: Our findings expand the number of reported FHS cases and provide new insights into disease genetics and the efficiency of GH therapy for FHS patients.
Collapse
Affiliation(s)
- Mariia E. Turkunova
- Federal State Budget Institution of Higher Education “North-Western State Medical University Named After I.I Mechnikov” Under the Ministry of Public Health of the Russian Federation, Saint-Petersburg, Russia
| | - Yury A. Barbitoff
- Department of Genomic Medicine, D.O.Ott Research Institute of Obstetrics, Gynaecology and Reproductology, St. Petersburg, Russia
- Bioinformatics Institute, St. Petersburg, Russia
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia
| | - Elena A. Serebryakova
- Department of Genomic Medicine, D.O.Ott Research Institute of Obstetrics, Gynaecology and Reproductology, St. Petersburg, Russia
- City Center for Medical Genetics, St. Petersburg, Russia
| | - Dmitrii E. Polev
- Department of Genomic Medicine, D.O.Ott Research Institute of Obstetrics, Gynaecology and Reproductology, St. Petersburg, Russia
| | - Olga S. Berseneva
- Federal State Budget Institution of Higher Education “North-Western State Medical University Named After I.I Mechnikov” Under the Ministry of Public Health of the Russian Federation, Saint-Petersburg, Russia
| | - Elena B. Bashnina
- Federal State Budget Institution of Higher Education “North-Western State Medical University Named After I.I Mechnikov” Under the Ministry of Public Health of the Russian Federation, Saint-Petersburg, Russia
| | - Vladislav S. Baranov
- Department of Genomic Medicine, D.O.Ott Research Institute of Obstetrics, Gynaecology and Reproductology, St. Petersburg, Russia
| | - Oleg S. Glotov
- Department of Genomic Medicine, D.O.Ott Research Institute of Obstetrics, Gynaecology and Reproductology, St. Petersburg, Russia
- Children’s Scientific and Clinical Center for Infectious Diseases of the Federal Medical and Biological Agency, St. Petersburg, Russia
| | - Andrey S. Glotov
- Department of Genomic Medicine, D.O.Ott Research Institute of Obstetrics, Gynaecology and Reproductology, St. Petersburg, Russia
- Laboratory of Biobanking and Genomic Medicine of Institute of Translation Biomedicine, St. Petersburg State University, Saint-Petersburg, Russia
- *Correspondence: Andrey S. Glotov,
| |
Collapse
|
7
|
Esposito P, Picciotto D, Battaglia Y, Costigliolo F, Viazzi F, Verzola D. Myostatin: Basic biology to clinical application. Adv Clin Chem 2021; 106:181-234. [PMID: 35152972 DOI: 10.1016/bs.acc.2021.09.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Myostatin is a member of the transforming growth factor (TGF)-β superfamily. It is expressed by animal and human skeletal muscle cells where it limits muscle growth and promotes protein breakdown. Its effects are influenced by complex mechanisms including transcriptional and epigenetic regulation and modulation by extracellular binding proteins. Due to its actions in promoting muscle atrophy and cachexia, myostatin has been investigated as a promising therapeutic target to counteract muscle mass loss in experimental models and patients affected by different muscle-wasting conditions. Moreover, growing evidence indicates that myostatin, beyond to regulate skeletal muscle growth, may have a role in many physiologic and pathologic processes, such as obesity, insulin resistance, cardiovascular and chronic kidney disease. In this chapter, we review myostatin biology, including intracellular and extracellular regulatory pathways, and the role of myostatin in modulating physiologic processes, such as muscle growth and aging. Moreover, we discuss the most relevant experimental and clinical evidence supporting the extra-muscle effects of myostatin. Finally, we consider the main strategies developed and tested to inhibit myostatin in clinical trials and discuss the limits and future perspectives of the research on myostatin.
Collapse
Affiliation(s)
- Pasquale Esposito
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Daniela Picciotto
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Yuri Battaglia
- Nephrology and Dialysis Unit, St. Anna University Hospital, Ferrara, Italy
| | - Francesca Costigliolo
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesca Viazzi
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Daniela Verzola
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
8
|
High Expression of COL17A1 Predicts Poor Prognosis and Promotes the Tumor Progression via NF- κB Pathway in Pancreatic Adenocarcinoma. JOURNAL OF ONCOLOGY 2020; 2020:8868245. [PMID: 33381179 PMCID: PMC7758145 DOI: 10.1155/2020/8868245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/23/2020] [Accepted: 12/05/2020] [Indexed: 11/17/2022]
Abstract
COL17A1 (collagen type XVII alpha 1 chain) is known to be upregulated and has a prognostic role in many malignancies, as well as contributing to cell proliferation, apoptosis, and invasion. However, little knowledge is available on the expression and prognostic value of COL17A1 in pancreatic adenocarcinoma (PDAC). In our study, we searched the public database and found that mRNA and protein levels of COL17A1 are commonly upregulated in PDAC tissues. The immunohistochemical analysis conducted by us revealed enhanced expression of COL17A1 protein in 169 PDAC samples compared with that in 67 adjacent normal tissues. We also observed a significantly positive correlation between COL17A1 expression and lymph node metastasis (p < 0.0001), TNM clinical stage (p < 0.0001), and pathology differentiation (p < 0.01). The KM-plot results indicated that PDAC patients with a high COL17A1 expression have a poorer overall survival (p < 0.001) than those with a low COL17A1 expression. The result of the Cox regression analysis of multivariate data suggested COL17A1 is an independent prognostic indicator of PDAC patients' overall survival. CCK-8, wound healing, and transwell assays suggested that COL17A1 knockdown markedly inhibited tumor proliferation and invasion in PDAC cells, and cells with COL17A1 overexpression had a prominently higher proliferative and invasive capacity. Knockdown of COL17A1 significantly upregulated the apoptosis rate. We deduce that upregulated COL17A1 activated the NF-κB pathway in PDAC cells. In summary, our studies showed the prognostic value of COL17A1 in PDAC and that COL17A1 may act as a molecular therapeutic target for PDAC treatment.
Collapse
|
9
|
Mu M, Gao P, Yang Q, He J, Wu F, Han X, Guo S, Qian Z, Song C. Alveolar Epithelial Cells Promote IGF-1 Production by Alveolar Macrophages Through TGF-β to Suppress Endogenous Inflammatory Signals. Front Immunol 2020; 11:1585. [PMID: 32793225 PMCID: PMC7385185 DOI: 10.3389/fimmu.2020.01585] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
To maintain alveolar gas exchange, the alveolar surface has to limit unnecessary inflammatory responses. This involves crosstalk between alveolar epithelial cells (AECs) and alveolar macrophages (AMs) in response to damaging factors. We recently showed that insulin-like growth factor (IGF)-1 regulates the phagocytosis of AECs. AMs secrete IGF-1 into the bronchoalveolar lavage fluid (BALF) in response to inflammatory stimuli. However, whether AECs regulate the production of IGF-1 by AMs in response to inflammatory signals remains unclear, as well as the role of IGF-1 in controlling the alveolar balance in the crosstalk between AMs and AECs under inflammatory conditions. In this study, we demonstrated that IGF-1 was upregulated in BALF and lung tissues of acute lung injury (ALI) mice, and that the increased IGF-1 was mainly derived from AMs. In vitro experiments showed that the production and secretion of IGF-1 by AMs as well as the expression of TGF-β were increased in LPS-stimulated AEC-conditioned medium (AEC-CM). Pharmacological blocking of TGF-β in AECs and addition of TGF-β neutralizing antibody to AEC-CM suggested that this AEC-derived cytokine mediates the increased production and secretion of IGF-1 from AMs. Blocking TGF-β synthesis or treatment with TGF-β neutralizing antibody attenuated the increase of IGF-1 in BALF in ALI mice. TGF-β induced the production of IGF-1 by AMs through the PI3K/Akt signaling pathway. IGF-1 prevented LPS-induced p38 MAPK activation and the expression of the inflammatory factors MCP-1, TNF-α, and IL-1β in AECs. However, IGF-1 upregulated PPARγ to increase the phagocytosis of apoptotic cells by AECs. Intratracheal instillation of IGF-1 decreased the number of polymorphonuclear neutrophils in BALF of ALI model mice, reduced alveolar congestion and edema, and suppressed inflammatory cell infiltration in lung tissues. These results elucidated a mechanism by which AECs used TGF-β to regulate IGF-1 production from AMs to attenuate endogenous inflammatory signals during alveolar inflammation.
Collapse
Affiliation(s)
- Mimi Mu
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Peiyu Gao
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Qian Yang
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Jing He
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Fengjiao Wu
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Xue Han
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Shujun Guo
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Zhongqing Qian
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Chuanwang Song
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| |
Collapse
|
10
|
Nartey MN, Peña-Castillo L, LeGrow M, Doré J, Bhattacharya S, Darby-King A, Carew SJ, Yuan Q, Harley CW, McLean JH. Learning-induced mRNA alterations in olfactory bulb mitral cells in neonatal rats. ACTA ACUST UNITED AC 2020; 27:209-221. [PMID: 32295841 PMCID: PMC7164515 DOI: 10.1101/lm.051177.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/11/2020] [Indexed: 12/20/2022]
Abstract
In the olfactory bulb, a cAMP/PKA/CREB-dependent form of learning occurs in the first week of life that provides a unique mammalian model for defining the epigenetic role of this evolutionarily ancient plasticity cascade. Odor preference learning in the week-old rat pup is rapidly induced by a 10-min pairing of odor and stroking. Memory is demonstrable at 24 h, but not 48 h, posttraining. Using this paradigm, pups that showed peppermint preference 30 min posttraining were sacrificed 20 min later for laser microdissection of odor-encoding mitral cells. Controls were given odor only. Microarray analysis revealed that 13 nonprotein-coding mRNAs linked to mRNA translation and splicing and 11 protein-coding mRNAs linked to transcription differed with odor preference training. MicroRNA23b, a translation inhibitor of multiple plasticity-related mRNAs, was down-regulated. Protein-coding transcription was up-regulated for Sec23b, Clic2, Rpp14, Dcbld1, Magee2, Mstn, Fam229b, RGD1566265, and Mgst2. Gng12 and Srcg1 mRNAs were down-regulated. Increases in Sec23b, Clic2, and Dcbld1 proteins were confirmed in mitral cells in situ at the same time point following training. The protein-coding changes are consistent with extracellular matrix remodeling and ryanodine receptor involvement in odor preference learning. A role for CREB and AP1 as triggers of memory-related mRNA regulation is supported. The small number of gene changes identified in the mitral cell input/output link for 24 h memory will facilitate investigation of the nature, and reversibility, of changes supporting temporally restricted long-term memory.
Collapse
Affiliation(s)
- Michaelina N Nartey
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| | - Lourdes Peña-Castillo
- Department of Computer Science, Memorial University of Newfoundland, St. John's, Newfoundland A1B3X5, Canada
| | - Megan LeGrow
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| | - Jules Doré
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| | - Sriya Bhattacharya
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| | - Andrea Darby-King
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| | - Samantha J Carew
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| | - Qi Yuan
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| | - Carolyn W Harley
- Department of Psychology, Memorial University of Newfoundland, St. John's, Newfoundland A1B3X9, Canada
| | - John H McLean
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| |
Collapse
|
11
|
Tan L, Bogush N, Naib H, Perry J, Calvert JW, Martin DIK, Graham RM, Naqvi N, Husain A. Redox activation of JNK2α2 mediates thyroid hormone-stimulated proliferation of neonatal murine cardiomyocytes. Sci Rep 2019; 9:17731. [PMID: 31776360 PMCID: PMC6881338 DOI: 10.1038/s41598-019-53705-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022] Open
Abstract
Mitochondria-generated reactive oxygen species (mROS) are frequently associated with DNA damage and cell cycle arrest, but physiological increases in mROS serve to regulate specific cell functions. T3 is a major regulator of mROS, including hydrogen peroxide (H2O2). Here we show that exogenous thyroid hormone (T3) administration increases cardiomyocyte numbers in neonatal murine hearts. The mechanism involves signaling by mitochondria-generated H2O2 (mH2O2) acting via the redox sensor, peroxiredoxin-1, a thiol peroxidase with high reactivity towards H2O2 that activates c-Jun N-terminal kinase-2α2 (JNK2α2). JNK2α2, a relatively rare member of the JNK family of mitogen-activated protein kinases (MAPK), phosphorylates c-Jun, a component of the activator protein 1 (AP-1) early response transcription factor, resulting in enhanced insulin-like growth factor 1 (IGF-1) expression and activation of proliferative ERK1/2 signaling. This non-canonical mechanism of MAPK activation couples T3 actions on mitochondria to cell cycle activation. Although T3 is regarded as a maturation factor for cardiomyocytes, these studies identify a novel redox pathway that is permissive for T3-mediated cardiomyocyte proliferation—this because of the expression of a pro-proliferative JNK isoform that results in growth factor elaboration and ERK1/2 cell cycle activation.
Collapse
Affiliation(s)
- Lin Tan
- Department of Medicine (Cardiology), Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nikolay Bogush
- Department of Medicine (Cardiology), Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hussain Naib
- Department of Medicine (Cardiology), Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jennifer Perry
- Department of Animal Resources, Emory University School of Medicine, Atlanta, Georgia, USA
| | - John W Calvert
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David I K Martin
- Children's Hospital Oakland Research Institute, Oakland, California, USA
| | - Robert M Graham
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Nawazish Naqvi
- Department of Medicine (Cardiology), Emory University School of Medicine, Atlanta, Georgia, USA.
| | - Ahsan Husain
- Department of Medicine (Cardiology), Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
12
|
Kim Y, Yang DS, Katti P, Glancy B. Protein composition of the muscle mitochondrial reticulum during postnatal development. J Physiol 2019; 597:2707-2727. [PMID: 30919448 PMCID: PMC6826232 DOI: 10.1113/jp277579] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/11/2019] [Indexed: 01/24/2023] Open
Abstract
KEY POINTS Muscle mitochondrial networks changed from a longitudinal, fibre parallel orientation to a perpendicular configuration during postnatal development. Mitochondrial dynamics, mitophagy and calcium uptake proteins were abundant during early postnatal development. Mitochondrial biogenesis and oxidative phosphorylation proteins were upregulated throughout muscle development. Postnatal muscle mitochondrial network formation is accompanied by a change in protein expression profile from mitochondria designed for co-ordinated cellular assembly to mitochondria highly specialized for cellular energy metabolism. ABSTRACT Striated muscle mitochondria form connected networks capable of rapid cellular energy distribution. However, the mitochondrial reticulum is not formed at birth and the mechanisms driving network development remain unclear. In the present study, we aimed to establish the network formation timecourse and protein expression profile during postnatal development of the murine muscle mitochondrial reticulum. Two-photon microscopy was used to observe mitochondrial network orientation in tibialis anterior (TA) muscles of live mice at postnatal days (P) 1, 7, 14, 21 and 42, respectively. All muscle fibres maintained a longitudinal, fibre parallel mitochondrial network orientation early in development (P1-7). Mixed networks were most common at P14 but, by P21, almost all fibres had developed the perpendicular mitochondrial orientation observed in mature, glycolytic fibres. Tandem mass tag proteomics were then applied to examine changes in 6869 protein abundances in developing TA muscles. Mitochondrial proteins increased by 32% from P1 to P42. In addition, both nuclear- and mitochondrial-DNA encoded oxidative phosphorylation (OxPhos) components were increased during development, whereas OxPhos assembly factors decreased. Although mitochondrial dynamics and mitophagy were induced at P1-7, mitochondrial biogenesis was enhanced after P14. Moreover, calcium signalling proteins and the mitochondrial calcium uniporter had the highest expression early in postnatal development. In conclusion, mitochondrial networks transform from a fibre parallel to perpendicular orientation during the second and third weeks after birth in murine glycolytic skeletal muscle. This structural transition is accompanied by a change in protein expression profile from mitochondria designed for co-ordinated cellular assembly to mitochondria highly specialized for cellular energy metabolism.
Collapse
Affiliation(s)
- Yuho Kim
- National Heart, Lung, and Blood Institute National Institutes of HealthBethesdaMDUSA
| | - Daniel S. Yang
- National Heart, Lung, and Blood Institute National Institutes of HealthBethesdaMDUSA
| | - Prasanna Katti
- National Heart, Lung, and Blood Institute National Institutes of HealthBethesdaMDUSA
| | - Brian Glancy
- National Heart, Lung, and Blood Institute National Institutes of HealthBethesdaMDUSA
- National Institute of Arthritis and Musculoskeletal and Skin DiseasesNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
13
|
Grade CVC, Mantovani CS, Alvares LE. Myostatin gene promoter: structure, conservation and importance as a target for muscle modulation. J Anim Sci Biotechnol 2019; 10:32. [PMID: 31044074 PMCID: PMC6477727 DOI: 10.1186/s40104-019-0338-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Myostatin (MSTN) is one of the key factors regulating myogenesis. Because of its role as a negative regulator of muscle mass deposition, much interest has been given to its protein and, in recent years, several studies have analysed MSTN gene regulation. This review discusses the MSTN gene promoter, focusing on its structure in several animal species, both vertebrate and invertebrate. We report the important binding sites considering their degree of phylogenetic conservation and roles they play in the promoter activity. Finally, we discuss recent studies focusing on MSTN gene regulation via promoter manipulation and the potential applications they have both in medicine and agriculture.
Collapse
Affiliation(s)
- Carla Vermeulen Carvalho Grade
- 1Universidade Federal da Integração Latino-Americana, UNILA, Instituto Latino-Americano de Ciências da Vida e da Natureza, Avenida Tarquínio Joslin dos Santos, 1000, Foz do Iguaçu, PR CEP 85870-901 Brazil
| | - Carolina Stefano Mantovani
- 2Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas - UNICAMP, Rua Monteiro Lobato, 255, Campinas, SP CEP 13083-862 Brazil
| | - Lúcia Elvira Alvares
- 2Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas - UNICAMP, Rua Monteiro Lobato, 255, Campinas, SP CEP 13083-862 Brazil
| |
Collapse
|
14
|
Meng K, Wang X, He Y, Yang J, Wang H, Zhang Y, Quan F. The Wilms tumor gene (WT1) (+/−KTS) isoforms regulate steroidogenesis by modulating the PI3K/AKT and ERK1/2 pathways in bovine granulosa cells†. Biol Reprod 2019; 100:1344-1355. [DOI: 10.1093/biolre/ioz003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/02/2018] [Accepted: 01/09/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Kai Meng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Xiaomei Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Yuanyuan He
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Jiashu Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Hengqin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| |
Collapse
|
15
|
Ogundele OM, Pardo J, Francis J, Goya RG, Lee CC. A Putative Mechanism of Age-Related Synaptic Dysfunction Based on the Impact of IGF-1 Receptor Signaling on Synaptic CaMKIIα Phosphorylation. Front Neuroanat 2018; 12:35. [PMID: 29867375 PMCID: PMC5960681 DOI: 10.3389/fnana.2018.00035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 04/18/2018] [Indexed: 01/13/2023] Open
Abstract
Insulin-like growth factor 1 receptor (IGF-1R) signaling regulates the activity and phosphorylation of downstream kinases linked to inflammation, neurodevelopment, aging and synaptic function. In addition to the control of Ca2+ currents, IGF-1R signaling modulates the activity of calcium-calmodulin-dependent kinase 2 alpha (CaMKIIα) and mitogen activated protein kinase (MAPK/ErK) through multiple signaling pathways. These proteins (CaMKIIα and MAPK) regulate Ca2+ movement and long-term potentiation (LTP). Since IGF-1R controls the synaptic activity of Ca2+, CaMKIIα and MAPK signaling, the possible mechanism through which an age-dependent change in IGF-1R can alter the synaptic expression and phosphorylation of these proteins in aging needs to be investigated. In this study, we evaluated the relationship between an age-dependent change in brain IGF-1R and phosphorylation of CaMKIIα/MAPK. Furthermore, we elucidated possible mechanisms through which dysregulated CaMKIIα/MAPK interaction may be linked to a change in neurotransmitter processing and synaptic function. Male C57BL/6 VGAT-Venus mice at postnatal days 80 (P80), 365 and 730 were used to study age-related neural changes in two brain regions associated with cognitive function: hippocampus and prefrontal cortex (PFC). By means of high throughput confocal imaging and quantitative immunoblotting, we evaluated the distribution and expression of IGF-1, IGF-1R, CaMKIIα, p-CaMKIIα, MAPK and p-MAPK in whole brain lysate, hippocampus and cortex. Furthermore, we compared protein expression patterns and regional changes at P80, P365 and P730. Ultimately, we determined the relative phosphorylation pattern of CaMKIIα and MAPK through quantification of neural p-CaMKIIα and p-MAPK/ErK, and IGF-1R expression for P80, P365 and P730 brain samples. In addition to a change in synaptic function, our results show a decrease in neural IGF-1/IGF-1R expression in whole brain, hippocampus and cortex of aged mice. This was associated with a significant upregulation of phosphorylated neural MAPK (p-MAPK) and decrease in total brain CaMKIIα (i.e., CaMKIIα and p-CaMKIIα) in the aged brain. Taken together, we showed that brain aging is associated with a change in neural IGF-1/IGF-1R expression and may be linked to a change in phosphorylation of synaptic kinases (CaMKIIα and MAPK) that are involved in the modulation of LTP.
Collapse
Affiliation(s)
- Olalekan M. Ogundele
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Joaquin Pardo
- Institute for Biochemical Research of La Plata, School of Medicine, National University of La Plata, La Plata, Argentina
| | - Joseph Francis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Rodolfo G. Goya
- Institute for Biochemical Research of La Plata, School of Medicine, National University of La Plata, La Plata, Argentina
| | - Charles C. Lee
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
16
|
Steven A, Seliger B. Control of CREB expression in tumors: from molecular mechanisms and signal transduction pathways to therapeutic target. Oncotarget 2018; 7:35454-65. [PMID: 26934558 PMCID: PMC5085243 DOI: 10.18632/oncotarget.7721] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/26/2016] [Indexed: 12/11/2022] Open
Abstract
The cyclic AMP response element binding (CREB) protein has pleiotropic activities in physiologic processes. Due to its central position downstream of many growth signaling pathways CREB has the ability to influence cell survival, growth and differentiation of normal, but also of tumor cells suggesting an oncogenic potential of CREB. Indeed, increased CREB expression and activation is associated with tumor progression, chemotherapy resistance and reduced patients' survival. We summarize here the different cellular functions of CREB in tumors of distinct histology as well as its use as potential prognostic marker. In addition, the underlying molecular mechanisms to achieve constitutive activation of CREB including structural alterations, such as gene amplification and chromosomal translocation, and deregulation, which could occur at the transcriptional, post-transcriptional and post-translational level, will be described. Since downregulation of CREB by different strategies resulted in inhibition of cell proliferation, invasion and induction of apoptosis, the role of CREB as a promising target for cancer therapy will be also discussed.
Collapse
Affiliation(s)
- André Steven
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
17
|
Grade CVC, Mantovani CS, Fontoura MA, Yusuf F, Brand-Saberi B, Alvares LE. CREB, NF-Y and MEIS1 conserved binding sites are essential to balance Myostatin promoter/enhancer activity during early myogenesis. Mol Biol Rep 2017; 44:419-427. [PMID: 28956216 DOI: 10.1007/s11033-017-4126-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 09/08/2017] [Indexed: 12/27/2022]
Abstract
Myostatin (MSTN) is a strong inhibitor of skeletal muscle growth in human and other vertebrates. Its transcription is controlled by a proximal promoter/enhancer (Mstn P/E) containing a TATA box besides CREB, NF-Y, MEIS1 and FXR transcription factor binding sites (TFBSs), which are conserved throughout evolution. The aim of this work was to investigate the role of these TFBSs on Mstn P/E activity and evaluate the potential of their putative ligands as Mstn trans regulators. Mstn P/E mutant constructs were used to establish the role of conserved TFBSs using dual-luciferase assays. Expression analyses were performed by RT-PCR and in situ hybridization in C2C12 myoblasts and E10.5 mouse embryos, respectively. Our results revealed that CREB, NF-Y and MEIS1 sites are required to balance Mstn P/E activity, keeping Mstn transcription within basal levels during myoblast proliferation. Furthermore, our data showed that NF-Y site is essential, although not sufficient, to mediate Mstn P/E transcriptional activity. In turn, CREB and MEIS1 binding sites seem to depend on the presence of NF-Y site to induce Mstn P/E. FXR appears not to confer any effect on Mstn P/E activity, except in the absence of all other conserved TFBS. Accordingly, expression studies pointed to CREB, NF-Y and MEIS1 but not to FXR factors as possible regulators of Mstn transcription in the myogenic context. Altogether, our findings indicated that CREB, NF-Y and MEIS1 conserved sites are essential to control basal Mstn transcription during early myogenesis, possibly by interacting with these or other related factors.
Collapse
Affiliation(s)
- Carla Vermeulen Carvalho Grade
- Department of Biochemistry and Tissue Biology, State University of Campinas - UNICAMP, Rua Charles Darwin s/n, Campinas, CEP 13083-863, Brazil.,Latin American Institute of Natural and Life Sciences, Federal University of the Latin American Integration - UNILA, Avenida Tarquínio Joslin dos Santos 1000, Foz do Iguaçu, CEP 85870-901, Brazil
| | - Carolina Stefano Mantovani
- Department of Biochemistry and Tissue Biology, State University of Campinas - UNICAMP, Rua Charles Darwin s/n, Campinas, CEP 13083-863, Brazil
| | - Marina Alves Fontoura
- Department of Biochemistry and Tissue Biology, State University of Campinas - UNICAMP, Rua Charles Darwin s/n, Campinas, CEP 13083-863, Brazil
| | - Faisal Yusuf
- Department of Anatomy and Molecular Embryology, Ruhr-Universität Bochum - RUB, Universitätsstr. 150 - MA 5/158, 44801, Bochum, Germany
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr-Universität Bochum - RUB, Universitätsstr. 150 - MA 5/158, 44801, Bochum, Germany
| | - Lúcia Elvira Alvares
- Department of Biochemistry and Tissue Biology, State University of Campinas - UNICAMP, Rua Charles Darwin s/n, Campinas, CEP 13083-863, Brazil.
| |
Collapse
|
18
|
Hughes MA, Downs RM, Webb GW, Crocker CL, Kinsey ST, Baumgarner BL. Acute high-caffeine exposure increases autophagic flux and reduces protein synthesis in C2C12 skeletal myotubes. J Muscle Res Cell Motil 2017; 38:201-214. [PMID: 28634643 PMCID: PMC5660649 DOI: 10.1007/s10974-017-9473-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/06/2017] [Indexed: 11/30/2022]
Abstract
Caffeine is a highly catabolic dietary stimulant. High caffeine concentrations (1-10 mM) have previously been shown to inhibit protein synthesis and increase protein degradation in various mammalian cell lines. The purpose of this study was to examine the effect of short-term caffeine exposure on cell signaling pathways that regulate protein metabolism in mammalian skeletal muscle cells. Fully differentiated C2C12 skeletal myotubes either received vehicle (DMSO) or 5 mM caffeine for 6 h. Our analysis revealed that caffeine promoted a 40% increase in autolysosome formation and a 25% increase in autophagic flux. In contrast, caffeine treatment did not significantly increase the expression of the skeletal muscle specific ubiquitin ligases MAFbx and MuRF1 or 20S proteasome activity. Caffeine treatment significantly reduced mTORC1 signaling, total protein synthesis and myotube diameter in a CaMKKβ/AMPK-dependent manner. Further, caffeine promoted a CaMKII-dependent increase in myostatin mRNA expression that did not significantly contribute to the caffeine-dependent reduction in protein synthesis. Our results indicate that short-term caffeine exposure significantly reduced skeletal myotube diameter by increasing autophagic flux and promoting a CaMKKβ/AMPK-dependent reduction in protein synthesis.
Collapse
Affiliation(s)
- M A Hughes
- Division of Natural Sciences and Engineering, University of South Carolina Upstate, Spartanburg, SC, 29303, USA
| | - R M Downs
- Division of Natural Sciences and Engineering, University of South Carolina Upstate, Spartanburg, SC, 29303, USA
| | - G W Webb
- Division of Natural Sciences and Engineering, University of South Carolina Upstate, Spartanburg, SC, 29303, USA
| | - C L Crocker
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, 28403-5915, USA
| | - S T Kinsey
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, 28403-5915, USA
| | - Bradley L Baumgarner
- Division of Natural Sciences and Engineering, University of South Carolina Upstate, Spartanburg, SC, 29303, USA.
| |
Collapse
|
19
|
IGF-I stimulates ERβ and aromatase expression via IGF1R/PI3K/AKT-mediated transcriptional activation in endometriosis. J Mol Med (Berl) 2016; 94:887-97. [DOI: 10.1007/s00109-016-1396-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/20/2016] [Accepted: 02/09/2016] [Indexed: 10/22/2022]
|
20
|
Wu X, Ji P, Zhang L, Bu G, Gu H, Wang X, Xiong Y, Zuo B. The Expression of Porcine Prdx6 Gene Is Up-Regulated by C/EBPβ and CREB. PLoS One 2015; 10:e0144851. [PMID: 26659441 PMCID: PMC4699452 DOI: 10.1371/journal.pone.0144851] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/24/2015] [Indexed: 12/18/2022] Open
Abstract
Peroxiredoxin6 (Prdx6) is one of the peroxiredoxin (Prdxs) family members that play an important role in maintaining cell homeostasis. Our previous studies demonstrated that Prdx6 was significantly associated with pig meat quality, especially meat tenderness. However, the transcriptional regulation of porcine Prdx6 remains unclear. In this study, we determined the transcription start site (TSS) of porcine Prdx6 gene by 5' rapid-amplification of cDNA ends (5' RACE). Several regulatory elements including CCAAT/enhancer-binding proteinβ (C/EBPβ), Myogenic Differentiation (MyoD), cAMP response element binding protein (CREB), stimulating protein1 (Sp1) and heat shock factor (HSF) binding sites were found by computational analyses together with luciferase reporter system. Overexpression and RNA interference experiments showed that C/EBPβ or CREB could up-regulate the expression of porcine Prdx6 gene at both mRNA and protein level. Electrophoretic mobility shift assays (EMSA) and chromatin immunoprecipitation assays (ChIP) confirmed that C/EBPβ and CREB could interact with Prdx6 promoter. Immuoprecipitation results also showed that C/EBPβ could interact with Prdx6 in vivo. Taken together, our findings identified C/EBPβ and CREB as the important regulators of porcine Prdx6 gene expression, and offered clues for further investigation of Prdx6 gene function.
Collapse
Affiliation(s)
- Xinyu Wu
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Panlong Ji
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Liang Zhang
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Guowei Bu
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Hao Gu
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Xiaojing Wang
- Department of Basic Veterinary Physiology and Biochemistry Laboratory, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yuanzhu Xiong
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Bo Zuo
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- * E-mail:
| |
Collapse
|
21
|
Feng R, Ma X, Ma J, Jia H, Ma B, Xu L, Liu A. Positive effect of IGF-1 injection on gastrocnemius of rat during distraction osteogenesis. J Orthop Res 2015; 33:1424-32. [PMID: 25452218 DOI: 10.1002/jor.22796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 01/27/2015] [Indexed: 02/04/2023]
Abstract
Distraction osteogenesis (DO) is used to form new bone between bone segments to lengthen the callus. Skeletal muscles frequently fail to adapt to distraction, which causes complications. Insulin-like growth factor-1 (IGF-1) has been implicated as a central regulator of muscle repair. We hypothesized that IGF-1 injection could reduce muscle complications in DO. A total of 102 Sprague-Dawley rats received DO or did not were randomly assigned into saline, IGF-1 and normal groups. On the day before the distraction, the rats in the IGF-1 group were injected with IGF-1. The gastrocnemius muscles of the rats were harvested at the 0, 1st, 4th, 7th, and 10th days of distraction. The weight of the muscles, cross-sectional area (CSA) of the muscle fibers, collagen volume fraction (CVF), maximum limit load (MLL), maximum contraction forces, and gene expression of Akt, MyoD, myogenin, myostatin, and collagen I were analyzed. The results indicated that IGF-1 injection had increased the weights, CSA of the muscle fibers, MLL and force generation of the gastrocnemius. Also, Akt, MyoD, and myogenin were upregulated, and myostatin was downregulated in the IGF-1 group. Injection of IGF-1 could attenuate the gastrocnemius atrophy, prevent fibrosis, increase MLL, and regulate the related mRNA.
Collapse
Affiliation(s)
- Rui Feng
- Biomechanics Labs of Orthopaedics Research Institute, Tianjin Hospital Heping Branch, 122 Munan Street, Heping District, Tianjin, 300050, China.,Tianjin Medical University, No. 22 Qixiangtai Street, Heping District, Tianjin, 300052, China
| | - Xinlong Ma
- Biomechanics Labs of Orthopaedics Research Institute, Tianjin Hospital Heping Branch, 122 Munan Street, Heping District, Tianjin, 300050, China
| | - Jianxiong Ma
- Biomechanics Labs of Orthopaedics Research Institute, Tianjin Hospital Heping Branch, 122 Munan Street, Heping District, Tianjin, 300050, China
| | - Haobo Jia
- Biomechanics Labs of Orthopaedics Research Institute, Tianjin Hospital Heping Branch, 122 Munan Street, Heping District, Tianjin, 300050, China.,Tianjin Medical University, No. 22 Qixiangtai Street, Heping District, Tianjin, 300052, China
| | - Baoyi Ma
- Biomechanics Labs of Orthopaedics Research Institute, Tianjin Hospital Heping Branch, 122 Munan Street, Heping District, Tianjin, 300050, China
| | - Liyan Xu
- Biomechanics Labs of Orthopaedics Research Institute, Tianjin Hospital Heping Branch, 122 Munan Street, Heping District, Tianjin, 300050, China.,Tianjin Medical University, No. 22 Qixiangtai Street, Heping District, Tianjin, 300052, China
| | - Aifeng Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No. 314, Anshan Road, Nankai District, Tianjin, 300193, China
| |
Collapse
|
22
|
Retamales A, Zuloaga R, Valenzuela CA, Gallardo-Escarate C, Molina A, Valdés JA. Insulin-like growth factor-1 suppresses the Myostatin signaling pathway during myogenic differentiation. Biochem Biophys Res Commun 2015; 464:596-602. [PMID: 26151859 DOI: 10.1016/j.bbrc.2015.07.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/02/2015] [Indexed: 12/25/2022]
Abstract
Myogenic differentiation is a complex and well-coordinated process for generating mature skeletal muscle fibers. This event is autocrine/paracrine regulated by growth factors, principally Myostatin (MSTN) and Insulin-like Growth Factor-1 (IGF-1). Myostatin, a member of the transforming growth factor-β superfamily, is a negative regulator of skeletal muscle growth in vertebrates that exerts its inhibitory function by activating Smad transcription factors. In contrast, IGF-1 promotes the differentiation of skeletal myoblasts by activating the PI3K/Akt signaling pathway. This study reports on a novel functional crosstalk between the IGF-1 and MSTN signaling pathways, as mediated through interaction between PI3K/Akt and Smad3. Stimulation of skeletal myoblasts with MSTN resulted in a transient increase in the pSmad3:Smad3 ratio and Smad-dependent transcription. Moreover, MSTN inhibited myod gene expression and myoblast fusion in an Activin receptor-like kinase/Smad3-dependent manner. Preincubation of skeletal myoblasts with IGF-1 blocked MSTN-induced Smad3 activation, promoting myod expression and myoblast differentiation. This inhibitory effect of IGF-1 on the MSTN signaling pathway was dependent on IGF-1 receptor, PI3K, and Akt activities. Finally, immunoprecipitation assay analysis determined that IGF-1 pretreatment increased Akt and Smad3 interaction. These results demonstrate that the IGF-1/PI3K/Akt pathway may inhibit MSTN signaling during myoblast differentiation, providing new insight to existing knowledge on the complex crosstalk between both growth factors.
Collapse
Affiliation(s)
- A Retamales
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - R Zuloaga
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - C A Valenzuela
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - C Gallardo-Escarate
- Laboratory of Biotechnology and Aquatic Genomics, Universidad de Concepción, Concepción, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción, Chile
| | - A Molina
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción, Chile
| | - J A Valdés
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción, Chile.
| |
Collapse
|
23
|
Eskandari N, Bastan R, Esfahani SHZ, Peachell PT. The effect of cyclic nucleotide analog drugs on the mediators release from basophils. Adv Biomed Res 2015; 4:125. [PMID: 26261827 PMCID: PMC4513324 DOI: 10.4103/2277-9175.158040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/12/2014] [Indexed: 11/25/2022] Open
Abstract
Background: The cyclic nucleotides, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), are intracellular second messengers that play an important role in modulating inflammatory cells involved in allergic diseases. In general, cAMP suppresses the activity of immune and inflammatory cells. We aim to evaluate the roles of cAMP and cGMP in regulating basophil activity. Materials and Methods: Basophil-enriched preparations were incubated with analogs and then challenged with anti-IgE or IL-3 (4 or 24 hours). Supernatants were assayed for histamine, IL-4, and IL-13 release. The effects of Sp-8-CPT-cAMPS and Sp-8-CPT-cGMPS on IL-3-dependent mediator release from basophils were determined. The cells were pre-incubated with an analog and then incubated with IL-3 for 24 hours. Results: Sp-8-CPT-cAMPS was an effective (P < 0.05) inhibitor of IL-4, IL-13, and histamine release from basophils. However, paradoxically, Sp-8-CPT-cGMPS enhanced histamine release and IL-13 generation, but by contrast, had little effect on IL-4 generation. Sp-8-CPT-cGMPS inhibited cytokine generation, but enhanced the release of histamine release to a modest extent. Conclusion: This study shows that the cAMP/protein kinase A (PKA) pathway may be inhibitory to the IgE- and non-IgE-dependent release of mediators from basophils.
Collapse
Affiliation(s)
- Nahid Eskandari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Seyyed Hamid Zarkesh Esfahani
- Department of Immunology, Cellular and Molecular Immunology Research Center, Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Peter T Peachell
- Department of Respiratory Medicine, University of Sheffield, United Kingdom
| |
Collapse
|
24
|
Tagliaferri C, Wittrant Y, Davicco MJ, Walrand S, Coxam V. Muscle and bone, two interconnected tissues. Ageing Res Rev 2015; 21:55-70. [PMID: 25804855 DOI: 10.1016/j.arr.2015.03.002] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/15/2015] [Accepted: 03/18/2015] [Indexed: 12/31/2022]
Abstract
As bones are levers for skeletal muscle to exert forces, both are complementary and essential for locomotion and individual autonomy. In the past decades, the idea of a bone-muscle unit has emerged. Numerous studies have confirmed this hypothesis from in utero to aging works. Space flight, bed rest as well as osteoporosis and sarcopenia experimentations have allowed to accumulate considerable evidence. Mechanical loading is a key mechanism linking both tissues with a central promoting role of physical activity. Moreover, the skeletal muscle secretome accounts various molecules that affect bone including insulin-like growth factor-1 (IGF-1), basic fibroblast growth factor (FGF-2), interleukin-6 (IL-6), IL-15, myostatin, osteoglycin (OGN), FAM5C, Tmem119 and osteoactivin. Even though studies on the potential effects of bone on muscle metabolism are sparse, few osteokines have been identified. Prostaglandin E2 (PGE2) and Wnt3a, which are secreted by osteocytes, osteocalcin (OCN) and IGF-1, which are produced by osteoblasts and sclerostin which is secreted by both cell types, might impact skeletal muscle cells. Cartilage and adipose tissue are also likely to participate to this control loop and should not be set aside. Indeed, chondrocytes are known to secrete Dickkopf-1 (DKK-1) and Indian hedgehog (Ihh) and adipocytes produce leptin, adiponectin and IL-6, which potentially modulate bone and muscle metabolisms. The understanding of this system will enable to define new levers to prevent/treat sarcopenia and osteoporosis at the same time. These strategies might include nutritional interventions and physical exercise.
Collapse
|
25
|
Shen X, Xi G, Wai C, Clemmons DR. The coordinate cellular response to insulin-like growth factor-I (IGF-I) and insulin-like growth factor-binding protein-2 (IGFBP-2) is regulated through vimentin binding to receptor tyrosine phosphatase β (RPTPβ). J Biol Chem 2015; 290:11578-90. [PMID: 25787077 DOI: 10.1074/jbc.m114.620237] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Indexed: 12/16/2022] Open
Abstract
Insulin-like growth factor-binding protein-2 (IGFBP-2) functions coordinately with IGF-I to stimulate cellular proliferation and differentiation. IGFBP-2 binds to receptor tyrosine phosphatase β (RPTPβ), and this binding in conjunction with IGF-I receptor stimulation induces RPTPβ polymerization leading to phosphatase and tensin homolog inactivation, AKT stimulation, and enhanced cell proliferation. To determine the mechanism by which RPTPβ polymerization is regulated, we analyzed the protein(s) that associated with RPTPβ in response to IGF-I and IGFBP-2 in vascular smooth muscle cells. Proteomic experiments revealed that IGF-I stimulated the intermediate filament protein vimentin to bind to RPTPβ, and knockdown of vimentin resulted in failure of IGFBP-2 and IGF-I to stimulate RPTPβ polymerization. Knockdown of IGFBP-2 or inhibition of IGF-IR tyrosine kinase disrupted vimentin/RPTPβ association. Vimentin binding to RPTPβ was mediated through vimentin serine phosphorylation. The serine threonine kinase PKCζ was recruited to vimentin in response to IGF-I and inhibition of PKCζ activation blocked these signaling events. A cell-permeable peptide that contained the vimentin phosphorylation site disrupted vimentin/RPTPβ association, and IGF-I stimulated RPTPβ polymerization and AKT activation. Integrin-linked kinase recruited PKCζ to SHPS-1-associated vimentin in response to IGF-I and inhibition of integrin-linked kinase/PKCζ association reduced vimentin serine phosphorylation. PKCζ stimulation of vimentin phosphorylation required high glucose and vimentin/RPTPβ-association occurred only during hyperglycemia. Disruption of vimetin/RPTPβ in diabetic mice inhibited RPTPβ polymerization, vimentin serine phosphorylation, and AKT activation in response to IGF-I, whereas nondiabetic mice showed no difference. The induction of vimentin phosphorylation is important for IGFBP-2-mediated enhancement of IGF-I-stimulated proliferation during hyperglycemia, and it coordinates signaling between these two receptor-linked signaling systems.
Collapse
Affiliation(s)
- Xinchun Shen
- the College of Food Science and Engineering/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Gang Xi
- From the Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599 and
| | - Christine Wai
- From the Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599 and
| | - David R Clemmons
- From the Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599 and
| |
Collapse
|
26
|
Gentilin E, Di Pasquale C, Rossi M, Tagliati F, Gagliano T, Rossi R, Pelizzo M, Merante Boschin I, degli Uberti EC, Zatelli MC. Igf-I influences everolimus activity in medullary thyroid carcinoma. Front Endocrinol (Lausanne) 2015; 6:63. [PMID: 25999915 PMCID: PMC4419838 DOI: 10.3389/fendo.2015.00063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/10/2015] [Indexed: 11/17/2022] Open
Abstract
CONTEXT Medullary thyroid carcinoma (MTC) is a rare tumor originating from thyroid parafollicular C cells. It has been previously demonstrated that insulin-like growth factor I (IGF-I) protects MTC from the effects of antiproliferative drugs. Everolimus, an mTOR inhibitor, has shown potent antiproliferative effects in a human MTC cell line, TT, and in two human MTC primary cultures. OBJECTIVE To verify whether IGF-I may influence the effects of everolimus in a group of human MTC primary cultures. DESIGN We collected 18 MTCs that were dispersed in primary cultures, treated without or with 10 nM-1 μM everolimus and/or 50 nM IGF-I. Cell viability was evaluated after 48 h, and calcitonin (CT) secretion was assessed after a 6 h incubation. IGF-I receptor downstream signaling protein expression profile was also investigated. RESULTS Everolimus significantly reduced cell viability in eight MTC [by ~20%; P < 0.01 vs. control; everolimus-responders (E-R) MTCs], while cell viability did not change in 10 MTCs [everolimus-non-responders (E-NR) MTCs]. In E-R MTCs, IGF-I blocked the antiproliferative effects of everolimus that did not affect CT secretion, but blocked the stimulatory effects of IGF-I on this parameter. IGF-I receptor downstream signaling proteins were expressed at higher levels in E-NR MTC as compared to E-R MTCs. CONCLUSION IGF-I protects a subset of MTC primary cultures from the antiproliferative effects of everolimus and stimulates CT secretion by an mTOR mediated pathway that, in turn, may represent a therapeutic target in the treatment of aggressive MTCs.
Collapse
Affiliation(s)
- Erica Gentilin
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Laboratorio in rete del Tecnopolo “Tecnologie delle Terapie Avanzate” (LTTA), University of Ferrara, Ferrara, Italy
| | - Carmelina Di Pasquale
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Martina Rossi
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Federico Tagliati
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Teresa Gagliano
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberta Rossi
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Mariarosa Pelizzo
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Padova, Italy
| | - Isabella Merante Boschin
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Padova, Italy
| | - Ettore C. degli Uberti
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Laboratorio in rete del Tecnopolo “Tecnologie delle Terapie Avanzate” (LTTA), University of Ferrara, Ferrara, Italy
| | - Maria Chiara Zatelli
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Laboratorio in rete del Tecnopolo “Tecnologie delle Terapie Avanzate” (LTTA), University of Ferrara, Ferrara, Italy
- *Correspondence: Maria Chiara Zatelli, Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, Via Savonarola 9, Ferrara 44100, Italy,
| |
Collapse
|
27
|
Selective CREB-dependent cyclin expression mediated by the PI3K and MAPK pathways supports glioma cell proliferation. Oncogenesis 2014; 3:e108. [PMID: 24979279 PMCID: PMC4150215 DOI: 10.1038/oncsis.2014.21] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/29/2014] [Accepted: 05/15/2014] [Indexed: 12/22/2022] Open
Abstract
The cyclic-AMP response element binding (CREB) protein has been shown to have a pivotal role in cell survival and cell proliferation. Transgenic rodent models have revealed a role for CREB in higher-order brain functions, such as memory and drug addiction behaviors. CREB overexpression in transgenic animals imparts oncogenic properties on cells in various tissues, and aberrant CREB expression is associated with tumours. It is the central position of CREB, downstream from key developmental and growth signalling pathways, which gives CREB this ability to influence a spectrum of cellular activities, such as cell survival, growth and differentiation, in both normal and cancer cells. We show that CREB is highly expressed and constitutively activated in patient glioma tissue and that this activation closely correlates with tumour grade. The mechanism by which CREB regulates glioblastoma (GBM) tumour cell proliferation involves activities downstream from both the mitogen-activated protein kinase and phosphoinositide 3-kinase (PI3K) pathways that then modulate the expression of three key cell cycle factors, cyclin B, D and proliferating cell nuclear antigen (PCNA). Cyclin D1 is highly CREB-dependent, whereas cyclin B1 and PCNA are co-regulated by both CREB-dependent and -independent mechanisms. The precise regulatory network involved appears to differ depending on the tumour-suppressor phosphatase and tensin homolog status of the GBM cells, which in turn allows CREB to regulate the activity of the PI3K itself. Given that CREB sits at the hub of key cancer cell signalling pathways, understanding the role of glioma-specific CREB function may lead to improved novel combinatorial anti-tumour therapies, which can complement existing PI3K-specific drugs undergoing early phase clinical trials.
Collapse
|