1
|
Hu J, Leisegang MS, Looso M, Drekolia MK, Wittig J, Mettner J, Karantanou C, Kyselova A, Dumbovic G, Li X, Li Y, Guenther S, John D, Siragusa M, Zukunft S, Oo JA, Wittig I, Hille S, Weigert A, Knapp S, Brandes RP, Müller OJ, Papapetropoulos A, Sigala F, Dobreva G, Kojonazarov B, Fleming I, Bibli SI. Disrupted Binding of Cystathionine γ-Lyase to p53 Promotes Endothelial Senescence. Circ Res 2023; 133:842-857. [PMID: 37800327 DOI: 10.1161/circresaha.123.323084] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Advanced age is unequivocally linked to the development of cardiovascular disease; however, the mechanisms resulting in reduced endothelial cell regeneration remain poorly understood. Here, we investigated novel mechanisms involved in endothelial cell senescence that impact endothelial cell transcription and vascular repair after injury. METHODS Native endothelial cells were isolated from young (20±3.4 years) and aged (80±2.3 years) individuals and subjected to molecular analyses to assess global transcriptional and metabolic changes. In vitro studies were conducted using primary human and murine endothelial cells. A murine aortic re-endothelialization model was used to examine endothelial cell regenerative capacity in vivo. RESULTS RNA sequencing of native endothelial cells revealed that aging resulted in p53-mediated reprogramming to express senescence-associated genes and suppress glycolysis. Reduced glucose uptake and ATP contributed to attenuated assembly of the telomerase complex, which was required for endothelial cell proliferation. Enhanced p53 activity in aging was linked to its acetylation on K120 due to enhanced activity of the acetyltransferase MOZ (monocytic leukemic zinc finger). Mechanistically, p53 acetylation and translocation were, at least partially, attributed to the loss of the vasoprotective enzyme, CSE (cystathionine γ-lyase). CSE physically anchored p53 in the cytosol to prevent its nuclear translocation and CSE absence inhibited AKT (Protein kinase B)-mediated MOZ phosphorylation, which in turn increased MOZ activity and subsequently p53 acetylation. In mice, the endothelial cell-specific deletion of CSE activated p53, induced premature endothelial senescence, and arrested vascular repair after injury. In contrast, the adeno-associated virus 9-mediated re-expression of an active CSE mutant retained p53 in the cytosol, maintained endothelial glucose metabolism and proliferation, and prevented endothelial cell senescence. Adenoviral overexpression of CSE in native endothelial cells from aged individuals maintained low p53 activity and reactivated telomerase to revert endothelial cell senescence. CONCLUSIONS Aging-associated impairment of vascular repair is partly determined by the vasoprotective enzyme CSE.
Collapse
Affiliation(s)
- Jiong Hu
- Department of Histology and Embryology, School of Basic Medicine (J.H., X.L., Y.L.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Sino-German Laboratory of CardioPulmonary Science (J.H., I.F.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Matthias S Leisegang
- Institute for Cardiovascular Physiology (M.S.L., J.A.O., R.P.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mario Looso
- Bioinformatics Core Unit, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (M.L., S.G.)
- German Center for Cardiovascular Research (DZHK), partner site RheinMain, Frankfurt am Main (M.L., S.G., R.P.B., I.F., S.-I.B.)
| | - Maria-Kyriaki Drekolia
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Janina Wittig
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Janina Mettner
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Christina Karantanou
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anastasia Kyselova
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Gabrjela Dumbovic
- Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (G.D.)
| | - Xiaoming Li
- Department of Histology and Embryology, School of Basic Medicine (J.H., X.L., Y.L.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Yuanyuan Li
- Department of Histology and Embryology, School of Basic Medicine (J.H., X.L., Y.L.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Stefan Guenther
- Bioinformatics Core Unit, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (M.L., S.G.)
- German Center for Cardiovascular Research (DZHK), partner site RheinMain, Frankfurt am Main (M.L., S.G., R.P.B., I.F., S.-I.B.)
| | - David John
- Institute of Cardiovascular Regeneration (D.J.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mauro Siragusa
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sven Zukunft
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - James A Oo
- Institute for Cardiovascular Physiology (M.S.L., J.A.O., R.P.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ilka Wittig
- Sino-German Laboratory of CardioPulmonary Science (J.H., I.F.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Functional Proteomics, Institute for Cardiovascular Physiology (I.W.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Susanne Hille
- Department of Internal Medicine III, University of Kiel, Germany (S.H., O.J.M.)
| | - Andreas Weigert
- Institute of Biochemistry I (A.W.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry and Buchmann Institute for Molecular Life Sciences (S.K.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology (M.S.L., J.A.O., R.P.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), partner site RheinMain, Frankfurt am Main (M.L., S.G., R.P.B., I.F., S.-I.B.)
| | - Oliver J Müller
- Department of Internal Medicine III, University of Kiel, Germany (S.H., O.J.M.)
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany (O.J.M.)
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy (A.P.), National and Kapodistrian University of Athens, Greece
| | - Fragiska Sigala
- First Propedeutic Department of Surgery, Vascular Surgery Division (F.S.), National and Kapodistrian University of Athens, Greece
| | - Gergana Dobreva
- German Centre for Cardiovascular Research (DZHK), partner site Heidelberg, Germany (G.D.)
| | - Baktybek Kojonazarov
- Institute for Lung Health (ILH) (B.K.), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Member of the Excellence Cluster Cardio-Pulmonary Institute (CPI) (B.K.), Justus Liebig University, Giessen, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sofia-Iris Bibli
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), partner site RheinMain, Frankfurt am Main (M.L., S.G., R.P.B., I.F., S.-I.B.)
| |
Collapse
|
2
|
Goswami P, Šislerová L, Dobrovolná M, Havlík J, Šťastný J, Brázda V. Interaction of C-terminal p53 isoforms depends strongly upon DNA sequence and topology. Biochimie 2022; 208:93-99. [PMID: 36549455 DOI: 10.1016/j.biochi.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
The p53 protein is a key tumor suppressor and the most commonly mutated and down-regulated protein in human tumors. It functions mainly through interaction with DNA, and p53 acts as a transcription factor that recognizes the so-called p53 target sites on the promoters of various genes. P53 has been shown to exist as many isoforms, including three C-terminal isoforms that are produced by alternative splicing. Because the C-terminal domain is responsible for sequence-nonspecific binding and regulation of p53 binding, we have analyzed DNA recognition by these C-terminal isoforms. Using atomic force microscopy, we show for the first time that all C-terminal isoforms recognize superhelical DNA. It is particularly noteworthy that a sequence-specific p53 consensus binding site is bound by p53α and β isoforms with similar affinities, whilst p53α shows higher binding to a quadruplex sequence than both p53β and p53γ, and p53γ loses preferential binding to both the consensus binding sequence and the quadruplex-forming sequence. These results show the important role of the variable p53 C-terminal amino acid sequences for DNA recognition.
Collapse
Affiliation(s)
- Pratik Goswami
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic
| | - Lucie Šislerová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic; Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Michaela Dobrovolná
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic; Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Jan Havlík
- Department of Informatics, Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic
| | - Jiří Šťastný
- Department of Informatics, Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic; Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 616 69, Brno, Czech Republic
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic; Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic.
| |
Collapse
|
3
|
Bowater RP, Bohálová N, Brázda V. Interaction of Proteins with Inverted Repeats and Cruciform Structures in Nucleic Acids. Int J Mol Sci 2022; 23:ijms23116171. [PMID: 35682854 PMCID: PMC9180970 DOI: 10.3390/ijms23116171] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
Cruciforms occur when inverted repeat sequences in double-stranded DNA adopt intra-strand hairpins on opposing strands. Biophysical and molecular studies of these structures confirm their characterization as four-way junctions and have demonstrated that several factors influence their stability, including overall chromatin structure and DNA supercoiling. Here, we review our understanding of processes that influence the formation and stability of cruciforms in genomes, covering the range of sequences shown to have biological significance. It is challenging to accurately sequence repetitive DNA sequences, but recent advances in sequencing methods have deepened understanding about the amounts of inverted repeats in genomes from all forms of life. We highlight that, in the majority of genomes, inverted repeats are present in higher numbers than is expected from a random occurrence. It is, therefore, becoming clear that inverted repeats play important roles in regulating many aspects of DNA metabolism, including replication, gene expression, and recombination. Cruciforms are targets for many architectural and regulatory proteins, including topoisomerases, p53, Rif1, and others. Notably, some of these proteins can induce the formation of cruciform structures when they bind to DNA. Inverted repeat sequences also influence the evolution of genomes, and growing evidence highlights their significance in several human diseases, suggesting that the inverted repeat sequences and/or DNA cruciforms could be useful therapeutic targets in some cases.
Collapse
Affiliation(s)
- Richard P. Bowater
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK;
| | - Natália Bohálová
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic;
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Václav Brázda
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic;
- Correspondence:
| |
Collapse
|
4
|
Ou-Yang H, Yang SH, Chen W, Yang SH, Cidem A, Sung LY, Chen CM. Cruciform DNA Structures Act as Legible Templates for Accelerating Homologous Recombination in Transgenic Animals. Int J Mol Sci 2022; 23:3973. [PMID: 35409332 PMCID: PMC9000021 DOI: 10.3390/ijms23073973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
Inverted repeat (IR) DNA sequences compose cruciform structures. Some genetic disorders are the result of genome inversion or translocation by cruciform DNA structures. The present study examined whether exogenous DNA integration into the chromosomes of transgenic animals was related to cruciform DNA structures. Large imperfect cruciform structures were frequently predicted around predestinated transgene integration sites in host genomes of microinjection-based transgenic (Tg) animals (αLA-LPH Tg goat, Akr1A1eGFP/eGFP Tg mouse, and NFκB-Luc Tg mouse) or CRISPR/Cas9 gene-editing (GE) animals (αLA-AP1 GE mouse). Transgene cassettes were imperfectly matched with their predestinated sequences. According to the analyzed data, we proposed a putative model in which the flexible cruciform DNA structures acted as a legible template for DNA integration into linear DNAs or double-strand break (DSB) alleles. To demonstrate this model, artificial inverted repeat knock-in (KI) reporter plasmids were created to analyze the KI rate using the CRISPR/Cas9 system in NIH3T3 cells. Notably, the KI rate of the 5′ homologous arm inverted repeat donor plasmid (5′IR) with the ROSA gRNA group (31.5%) was significantly higher than the knock-in reporter donor plasmid (KIR) with the ROSA gRNA group (21.3%, p < 0.05). However, the KI rate of the 3′ inverted terminal repeat/inverted repeat donor plasmid (3′ITRIR) group was not different from the KIR group (23.0% vs. 22.0%). These results demonstrated that the legibility of the sequence with the cruciform DNA existing in the transgene promoted homologous recombination (HR) with a higher KI rate. Our findings suggest that flexible cruciform DNAs folded by IR sequences improve the legibility and accelerate DNA 3′-overhang integration into the host genome via homologous recombination machinery.
Collapse
Affiliation(s)
- Huan Ou-Yang
- Program in Translational Medicine, Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; (H.O.-Y.); (S.-H.Y.); (A.C.)
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei 106, Taiwan
| | - Shiao-Hsuan Yang
- Program in Translational Medicine, Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; (H.O.-Y.); (S.-H.Y.); (A.C.)
- Reproductive Medicine Center, Department of Gynecology, Changhua Christian Hospital, Changhua 515, Taiwan
| | - Wei Chen
- Division of Pulmonary and Critical Care Medicine, Chia-Yi Christian Hospital, Chiayi 600, Taiwan;
| | - Shang-Hsun Yang
- Department of Physiology, National Cheng Kung University, Tainan 701, Taiwan;
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Abdulkadir Cidem
- Program in Translational Medicine, Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; (H.O.-Y.); (S.-H.Y.); (A.C.)
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum 25250, Turkey
| | - Li-Ying Sung
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei 106, Taiwan
| | - Chuan-Mu Chen
- Program in Translational Medicine, Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; (H.O.-Y.); (S.-H.Y.); (A.C.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Rong-Hsing Translational Medicine Research Center, Taichung Veterans General Hospital, Taichung 407, Taiwan
| |
Collapse
|
5
|
Structural switching/polymorphism by sequential base substitution at quasi-palindromic SNP site (G → A) in LCR of human β-globin gene cluster. Int J Biol Macromol 2021; 201:216-225. [PMID: 34973267 DOI: 10.1016/j.ijbiomac.2021.12.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 11/20/2022]
Abstract
The human β-globin gene Locus Control Region (LCR), a dominant regulator of globin gene expression contains five tissue-specific DNase I-hypersensitive sites (HSs). A single nucleotide polymorphism (SNP) (A → G) present in HS4 region of locus control region (LCR), have shown a notable association between the G allele and the occurrence of β-thalassemia. This SNP site exhibiting a hairpin - duplex equilibrium manifested in A → B like DNA transition has previously been reported from this laboratory. Since, DNA is a dynamic and adaptable molecule, so any change of a single base within a primary DNA sequence can produce major biological consequences commonly manifested in genetic disorders such as sickle cell anemia and β-thalassemia. Herein, the differential behavior of sequential single base substitutions G → A on the quasi-palindromic sequence (d-TGGGGGCCCCA; HPG11) has been explored. A combination of native gel electrophoresis, circular dichroism (CD), and UV-thermal denaturation (Tm) techniques have been used to investigate the structural polymorphism associated with various variants of HPG11 i.e. HPG11A2 to HPG11A5. The CD spectra confirmed that all the HPG11 variants exhibit a hairpin - duplex equilibrium. Oligomer concentration dependence on CD spectra has been correlated with A → B DNA conformational transition. However, as revealed in gel electrophoresis, HPG11A2 → A5 exhibit the formation of a tetramolecular structure (four-way junction) at higher oligomer concentration. UV-melting studies also supported the melting of hairpin, duplex and four-way junction structure. This polymorphism pattern may possibly be significant for DNA-protein recognition, in the process of regulation of LCR in the β-globin gene.
Collapse
|
6
|
Ravichandran S, Razzaq M, Parveen N, Ghosh A, Kim KK. The effect of hairpin loop on the structure and gene expression activity of the long-loop G-quadruplex. Nucleic Acids Res 2021; 49:10689-10706. [PMID: 34450640 PMCID: PMC8501965 DOI: 10.1093/nar/gkab739] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/10/2021] [Accepted: 08/24/2021] [Indexed: 12/29/2022] Open
Abstract
G-quadruplex (G4), a four-stranded DNA or RNA structure containing stacks of guanine tetrads, plays regulatory roles in many cellular functions. So far, conventional G4s containing loops of 1–7 nucleotides have been widely studied. Increasing experimental evidence suggests that unconventional G4s, such as G4s containing long loops (long-loop G4s), play a regulatory role in the genome by forming a stable structure. Other secondary structures such as hairpins in the loop might thus contribute to the stability of long-loop G4s. Therefore, investigation of the effect of the hairpin-loops on the structure and function of G4s is required. In this study, we performed a systematic biochemical investigation of model G4s containing long loops with various sizes and structures. We found that the long-loop G4s are less stable than conventional G4s, but their stability increased when the loop forms a hairpin (hairpin-G4). We also verified the biological significance of hairpin-G4s by showing that hairpin-G4s present in the genome also form stable G4s and regulate gene expression as confirmed by in cellulo reporter assays. This study contributes to expanding the scope and diversity of G4s, thus facilitating future studies on the role of G4s in the human genome.
Collapse
Affiliation(s)
- Subramaniyam Ravichandran
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Maria Razzaq
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Nazia Parveen
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Ambarnil Ghosh
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| |
Collapse
|
7
|
Cruciform Formable Sequences within Pou5f1 Enhancer Are Indispensable for Mouse ES Cell Integrity. Int J Mol Sci 2021; 22:ijms22073399. [PMID: 33810223 PMCID: PMC8036336 DOI: 10.3390/ijms22073399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 01/04/2023] Open
Abstract
DNA can adopt various structures besides the B-form. Among them, cruciform structures are formed on inverted repeat (IR) sequences. While cruciform formable IRs (CFIRs) are sometimes found in regulatory regions of transcription, their function in transcription remains elusive, especially in eukaryotes. We found a cluster of CFIRs within the mouse Pou5f1 enhancer. Here, we demonstrate that this cluster or some member(s) plays an active role in the transcriptional regulation of not only Pou5f1, but also Sox2, Nanog, Klf4 and Esrrb. To clarify in vivo function of the cluster, we performed genome editing using mouse ES cells, in which each of the CFIRs was altered to the corresponding mirror repeat sequence. The alterations reduced the level of the Pou5f1 transcript in the genome-edited cell lines, and elevated those of Sox2, Nanog, Klf4 and Esrrb. Furthermore, transcription of non-coding RNAs (ncRNAs) within the enhancer was also upregulated in the genome-edited cell lines, in a similar manner to Sox2, Nanog, Klf4 and Esrrb. These ncRNAs are hypothesized to control the expression of these four pluripotency genes. The CFIRs present in the Pou5f1 enhancer seem to be important to maintain the integrity of ES cells.
Collapse
|
8
|
Evaluating the Influence of a G-Quadruplex Prone Sequence on the Transactivation Potential by Wild-Type and/or Mutant P53 Family Proteins through a Yeast-Based Functional Assay. Genes (Basel) 2021; 12:genes12020277. [PMID: 33672023 PMCID: PMC7919268 DOI: 10.3390/genes12020277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
P53, P63, and P73 proteins belong to the P53 family of transcription factors, sharing a common gene organization that, from the P1 and P2 promoters, produces two groups of mRNAs encoding proteins with different N-terminal regions; moreover, alternative splicing events at C-terminus further contribute to the generation of multiple isoforms. P53 family proteins can influence a plethora of cellular pathways mainly through the direct binding to specific DNA sequences known as response elements (REs), and the transactivation of the corresponding target genes. However, the transcriptional activation by P53 family members can be regulated at multiple levels, including the DNA topology at responsive promoters. Here, by using a yeast-based functional assay, we evaluated the influence that a G-quadruplex (G4) prone sequence adjacent to the p53 RE derived from the apoptotic PUMA target gene can exert on the transactivation potential of full-length and N-terminal truncated P53 family α isoforms (wild-type and mutant). Our results show that the presence of a G4 prone sequence upstream or downstream of the P53 RE leads to significant changes in the relative activity of P53 family proteins, emphasizing the potential role of structural DNA features as modifiers of P53 family functions at target promoter sites.
Collapse
|
9
|
Kamagata K, Itoh Y, Subekti DRG. How p53 Molecules Solve the Target DNA Search Problem: A Review. Int J Mol Sci 2020; 21:E1031. [PMID: 32033163 PMCID: PMC7037437 DOI: 10.3390/ijms21031031] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/11/2020] [Accepted: 01/31/2020] [Indexed: 12/14/2022] Open
Abstract
Interactions between DNA and DNA-binding proteins play an important role in many essential cellular processes. A key function of the DNA-binding protein p53 is to search for and bind to target sites incorporated in genomic DNA, which triggers transcriptional regulation. How do p53 molecules achieve "rapid" and "accurate" target search in living cells? The search dynamics of p53 were expected to include 3D diffusion in solution, 1D diffusion along DNA, and intersegmental transfer between two different DNA strands. Single-molecule fluorescence microscopy enabled the tracking of p53 molecules on DNA and the characterization of these dynamics quantitatively. Recent intensive single-molecule studies of p53 succeeded in revealing each of these search dynamics. Here, we review these studies and discuss the target search mechanisms of p53.
Collapse
Affiliation(s)
- Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; (Y.I.); (D.R.G.S.)
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Yuji Itoh
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; (Y.I.); (D.R.G.S.)
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Dwiky Rendra Graha Subekti
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; (Y.I.); (D.R.G.S.)
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
10
|
The Influence of Quadruplex Structure in Proximity to P53 Target Sequences on the Transactivation Potential of P53 Alpha Isoforms. Int J Mol Sci 2019; 21:ijms21010127. [PMID: 31878115 PMCID: PMC6982142 DOI: 10.3390/ijms21010127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022] Open
Abstract
p53 is one of the most studied tumor suppressor proteins that plays an important role in basic biological processes including cell cycle, DNA damage response, apoptosis, and senescence. The human TP53 gene contains alternative promoters that produce N-terminally truncated proteins and can produce several isoforms due to alternative splicing. p53 function is realized by binding to a specific DNA response element (RE), resulting in the transactivation of target genes. Here, we evaluated the influence of quadruplex DNA structure on the transactivation potential of full-length and N-terminal truncated p53α isoforms in a panel of S. cerevisiae luciferase reporter strains. Our results show that a G-quadruplex prone sequence is not sufficient for transcription activation by p53α isoforms, but the presence of this feature in proximity to a p53 RE leads to a significant reduction of transcriptional activity and changes the dynamics between co-expressed p53α isoforms.
Collapse
|
11
|
Bartas M, Brázda V, Červeň J, Pečinka P. Characterization of p53 Family Homologs in Evolutionary Remote Branches of Holozoa. Int J Mol Sci 2019; 21:ijms21010006. [PMID: 31861340 PMCID: PMC6981761 DOI: 10.3390/ijms21010006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/08/2019] [Accepted: 12/16/2019] [Indexed: 01/07/2023] Open
Abstract
The p53 family of transcription factors plays key roles in development, genome stability, senescence and tumor development, and p53 is the most important tumor suppressor protein in humans. Although intensively investigated for many years, its initial evolutionary history is not yet fully elucidated. Using bioinformatic and structure prediction methods on current databases containing newly-sequenced genomes and transcriptomes, we present a detailed characterization of p53 family homologs in remote members of the Holozoa group, in the unicellular clades Filasterea, Ichthyosporea and Corallochytrea. Moreover, we show that these newly characterized homologous sequences contain domains that can form structures with high similarity to the human p53 family DNA-binding domain, and some also show similarities to the oligomerization and SAM domains. The presence of these remote homologs demonstrates an ancient origin of the p53 protein family.
Collapse
Affiliation(s)
- Martin Bartas
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic; (M.B.)
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic;
| | - Jiří Červeň
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic; (M.B.)
| | - Petr Pečinka
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic; (M.B.)
- Correspondence: ; Tel.: +420-553-46-2318
| |
Collapse
|
12
|
The Rich World of p53 DNA Binding Targets: The Role of DNA Structure. Int J Mol Sci 2019; 20:ijms20225605. [PMID: 31717504 PMCID: PMC6888028 DOI: 10.3390/ijms20225605] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/29/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022] Open
Abstract
The tumor suppressor functions of p53 and its roles in regulating the cell cycle, apoptosis, senescence, and metabolism are accomplished mainly by its interactions with DNA. p53 works as a transcription factor for a significant number of genes. Most p53 target genes contain so-called p53 response elements in their promoters, consisting of 20 bp long canonical consensus sequences. Compared to other transcription factors, which usually bind to one concrete and clearly defined DNA target, the p53 consensus sequence is not strict, but contains two repeats of a 5′RRRCWWGYYY3′ sequence; therefore it varies remarkably among target genes. Moreover, p53 binds also to DNA fragments that at least partially and often completely lack this consensus sequence. p53 also binds with high affinity to a variety of non-B DNA structures including Holliday junctions, cruciform structures, quadruplex DNA, triplex DNA, DNA loops, bulged DNA, and hemicatenane DNA. In this review, we summarize information of the interactions of p53 with various DNA targets and discuss the functional consequences of the rich world of p53 DNA binding targets for its complex regulatory functions.
Collapse
|
13
|
Miura O, Ogake T, Yoneyama H, Kikuchi Y, Ohyama T. A strong structural correlation between short inverted repeat sequences and the polyadenylation signal in yeast and nucleosome exclusion by these inverted repeats. Curr Genet 2018; 65:575-590. [PMID: 30498953 PMCID: PMC6420913 DOI: 10.1007/s00294-018-0907-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 11/22/2022]
Abstract
DNA sequences that read the same from 5′ to 3′ in either strand are called inverted repeat sequences or simply IRs. They are found throughout a wide variety of genomes, from prokaryotes to eukaryotes. Despite extensive research, their in vivo functions, if any, remain unclear. Using Saccharomyces cerevisiae, we performed genome-wide analyses for the distribution, occurrence frequency, sequence characteristics and relevance to chromatin structure, for the IRs that reportedly have a cruciform-forming potential. Here, we provide the first comprehensive map of these IRs in the S. cerevisiae genome. The statistically significant enrichment of the IRs was found in the close vicinity of the DNA positions corresponding to polyadenylation [poly(A)] sites and ~ 30 to ~ 60 bp downstream of start codon-coding sites (referred to as ‘start codons’). In the former, ApT- or TpA-rich IRs and A-tract- or T-tract-rich IRs are enriched, while in the latter, different IRs are enriched. Furthermore, we found a strong structural correlation between the former IRs and the poly(A) signal. In the chromatin formed on the gene end regions, the majority of the IRs causes low nucleosome occupancy. The IRs in the region ~ 30 to ~ 60 bp downstream of start codons are located in the + 1 nucleosomes. In contrast, fewer IRs are present in the adjacent region downstream of start codons. The current study suggests that the IRs play similar roles in Escherichia coli and S. cerevisiae to regulate or complete transcription at the RNA level.
Collapse
Affiliation(s)
- Osamu Miura
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Toshihiro Ogake
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Hiroki Yoneyama
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Yo Kikuchi
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Takashi Ohyama
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan. .,Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.
| |
Collapse
|
14
|
Brázda V, Červeň J, Bartas M, Mikysková N, Coufal J, Pečinka P. The Amino Acid Composition of Quadruplex Binding Proteins Reveals a Shared Motif and Predicts New Potential Quadruplex Interactors. Molecules 2018; 23:E2341. [PMID: 30216987 PMCID: PMC6225207 DOI: 10.3390/molecules23092341] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/09/2018] [Accepted: 09/12/2018] [Indexed: 12/27/2022] Open
Abstract
The importance of local DNA structures in the regulation of basic cellular processes is an emerging field of research. Amongst local non-B DNA structures, G-quadruplexes are perhaps the most well-characterized to date, and their presence has been demonstrated in many genomes, including that of humans. G-quadruplexes are selectively bound by many regulatory proteins. In this paper, we have analyzed the amino acid composition of all seventy-seven described G-quadruplex binding proteins of Homo sapiens. Our comparison with amino acid frequencies in all human proteins and specific protein subsets (e.g., all nucleic acid binding) revealed unique features of quadruplex binding proteins, with prominent enrichment for glycine (G) and arginine (R). Cluster analysis with bootstrap resampling shows similarities and differences in amino acid composition of particular quadruplex binding proteins. Interestingly, we found that all characterized G-quadruplex binding proteins share a 20 amino acid long motif/domain (RGRGR GRGGG SGGSG GRGRG) which is similar to the previously described RG-rich domain (RRGDG RRRGG GGRGQ GGRGR GGGFKG) of the FRM1 G-quadruplex binding protein. Based on this protein fingerprint, we have predicted a new set of potential G-quadruplex binding proteins sharing this interesting domain rich in glycine and arginine residues.
Collapse
Affiliation(s)
- Václav Brázda
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 612 65 Brno, Czech Republic.
| | - Jiří Červeň
- Department of Biology and Ecology/Institute of Environmental Technologies, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic.
| | - Martin Bartas
- Department of Biology and Ecology/Institute of Environmental Technologies, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic.
| | - Nikol Mikysková
- Department of Biology and Ecology/Institute of Environmental Technologies, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic.
| | - Jan Coufal
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 612 65 Brno, Czech Republic.
| | - Petr Pečinka
- Department of Biology and Ecology/Institute of Environmental Technologies, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic.
| |
Collapse
|
15
|
Miura O, Ogake T, Ohyama T. Requirement or exclusion of inverted repeat sequences with cruciform-forming potential in Escherichia coli revealed by genome-wide analyses. Curr Genet 2018; 64:945-958. [PMID: 29484452 PMCID: PMC6060812 DOI: 10.1007/s00294-018-0815-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 12/31/2022]
Abstract
Inverted repeat (IR) sequences are DNA sequences that read the same from 5' to 3' in each strand. Some IRs can form cruciforms under the stress of negative supercoiling, and these IRs are widely found in genomes. However, their biological significance remains unclear. The aim of the current study is to explore this issue further. We constructed the first Escherichia coli genome-wide comprehensive map of IRs with cruciform-forming potential. Based on the map, we performed detailed and quantitative analyses. Here, we report that IRs with cruciform-forming potential are statistically enriched in the following five regions: the adjacent regions downstream of the stop codon-coding sites (referred to as the stop codons), on and around the positions corresponding to mRNA ends (referred to as the gene ends), ~ 20 to ~45 bp upstream of the start codon-coding sites (referred to as the start codons) within the 5'-UTR (untranslated region), ~ 25 to ~ 60 bp downstream of the start codons, and promoter regions. For the adjacent regions downstream of the stop codons and on and around the gene ends, most of the IRs with a repeat unit length of ≥ 8 bp and a spacer size of ≤ 8 bp were parts of the intrinsic terminators, regardless of the location, and presumably used for Rho-independent transcription termination. In contrast, fewer IRs were present in the small region preceding the start codons. In E. coli, IRs with cruciform-forming potential are actively placed or excluded in the regulatory regions for the initiation and termination of transcription and translation, indicating their deep involvement or influence in these processes.
Collapse
Affiliation(s)
- Osamu Miura
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Toshihiro Ogake
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Takashi Ohyama
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.
| |
Collapse
|
16
|
Savvateeva-Popova EV, Zhuravlev AV, Brázda V, Zakharov GA, Kaminskaya AN, Medvedeva AV, Nikitina EA, Tokmatcheva EV, Dolgaya JF, Kulikova DA, Zatsepina OG, Funikov SY, Ryazansky SS, Evgen‘ev MB. Drosophila Model for the Analysis of Genesis of LIM-kinase 1-Dependent Williams-Beuren Syndrome Cognitive Phenotypes: INDELs, Transposable Elements of the Tc1/ Mariner Superfamily and MicroRNAs. Front Genet 2017; 8:123. [PMID: 28979292 PMCID: PMC5611441 DOI: 10.3389/fgene.2017.00123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/04/2017] [Indexed: 12/18/2022] Open
Abstract
Genomic disorders, the syndromes with multiple manifestations, may occur sporadically due to unequal recombination in chromosomal regions with specific architecture. Therefore, each patient may carry an individual structural variant of DNA sequence (SV) with small insertions and deletions (INDELs) sometimes less than 10 bp. The transposable elements of the Tc1/mariner superfamily are often associated with hotspots for homologous recombination involved in human genetic disorders, such as Williams Beuren Syndromes (WBS) with LIM-kinase 1-dependent cognitive defects. The Drosophila melanogaster mutant agnts3 has unusual architecture of the agnostic locus harboring LIMK1: it is a hotspot of chromosome breaks, ectopic contacts, underreplication, and recombination. Here, we present the analysis of LIMK1-containing locus sequencing data in agnts3 and three D. melanogaster wild-type strains-Canton-S, Berlin, and Oregon-R. We found multiple strain-specific SVs, namely, single base changes and small INDEls. The specific feature of agnts3 is 28 bp A/T-rich insertion in intron 1 of LIMK1 and the insertion of mobile S-element from Tc1/mariner superfamily residing ~460 bp downstream LIMK1 3'UTR. Neither of SVs leads to amino acid substitutions in agnts3 LIMK1. However, they apparently affect the nucleosome distribution, non-canonical DNA structure formation and transcriptional factors binding. Interestingly, the overall expression of miRNAs including the biomarkers for human neurological diseases, is drastically reduced in agnts3 relative to the wild-type strains. Thus, LIMK1 DNA structure per se, as well as the pronounced changes in total miRNAs profile, probably lead to LIMK1 dysregulation and complex behavioral dysfunctions observed in agnts3 making this mutant a simple plausible Drosophila model for WBS.
Collapse
Affiliation(s)
- Elena V. Savvateeva-Popova
- Department of Neurogenetics, Pavlov Institute of Physiology, Russian Academy of SciencesSt. Petersburg, Russia
| | - Aleksandr V. Zhuravlev
- Department of Neurogenetics, Pavlov Institute of Physiology, Russian Academy of SciencesSt. Petersburg, Russia
| | - Václav Brázda
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics, Academy of Sciences of the Czech RepublicBrno, Czechia
| | - Gennady A. Zakharov
- Department of Neurogenetics, Pavlov Institute of Physiology, Russian Academy of SciencesSt. Petersburg, Russia
| | - Alena N. Kaminskaya
- Department of Neurogenetics, Pavlov Institute of Physiology, Russian Academy of SciencesSt. Petersburg, Russia
| | - Anna V. Medvedeva
- Department of Neurogenetics, Pavlov Institute of Physiology, Russian Academy of SciencesSt. Petersburg, Russia
| | - Ekaterina A. Nikitina
- Department of Neurogenetics, Pavlov Institute of Physiology, Russian Academy of SciencesSt. Petersburg, Russia
- Department of Human and Animal Anatomy and Physiology, Herzen State Pedagogical UniversitySt. Petersburg, Russia
| | - Elena V. Tokmatcheva
- Department of Neurogenetics, Pavlov Institute of Physiology, Russian Academy of SciencesSt. Petersburg, Russia
| | - Julia F. Dolgaya
- Department of Neurogenetics, Pavlov Institute of Physiology, Russian Academy of SciencesSt. Petersburg, Russia
| | - Dina A. Kulikova
- Department of Molecular Mechanisms of Development, Koltzov Institute of Developmental Biology, Russian Academy of SciencesMoscow, Russia
| | - Olga G. Zatsepina
- Department of Molecular Mechanisms of Biological Adaptation, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Sergei Y. Funikov
- Department of Molecular Mechanisms of Biological Adaptation, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Sergei S. Ryazansky
- Department of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of SciencesMoscow, Russia
| | - Michail B. Evgen‘ev
- Department of Molecular Mechanisms of Biological Adaptation, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| |
Collapse
|
17
|
Brázda V, Coufal J. Recognition of Local DNA Structures by p53 Protein. Int J Mol Sci 2017; 18:ijms18020375. [PMID: 28208646 PMCID: PMC5343910 DOI: 10.3390/ijms18020375] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/03/2017] [Indexed: 02/06/2023] Open
Abstract
p53 plays critical roles in regulating cell cycle, apoptosis, senescence and metabolism and is commonly mutated in human cancer. These roles are achieved by interaction with other proteins, but particularly by interaction with DNA. As a transcription factor, p53 is well known to bind consensus target sequences in linear B-DNA. Recent findings indicate that p53 binds with higher affinity to target sequences that form cruciform DNA structure. Moreover, p53 binds very tightly to non-B DNA structures and local DNA structures are increasingly recognized to influence the activity of wild-type and mutant p53. Apart from cruciform structures, p53 binds to quadruplex DNA, triplex DNA, DNA loops, bulged DNA and hemicatenane DNA. In this review, we describe local DNA structures and summarize information about interactions of p53 with these structural DNA motifs. These recent data provide important insights into the complexity of the p53 pathway and the functional consequences of wild-type and mutant p53 activation in normal and tumor cells.
Collapse
Affiliation(s)
- Václav Brázda
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 612 65 Brno, Czech Republic.
| | - Jan Coufal
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 612 65 Brno, Czech Republic.
| |
Collapse
|
18
|
Brázda V, Čechová J, Battistin M, Coufal J, Jagelská EB, Raimondi I, Inga A. The structure formed by inverted repeats in p53 response elements determines the transactivation activity of p53 protein. Biochem Biophys Res Commun 2017; 483:516-521. [DOI: 10.1016/j.bbrc.2016.12.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/17/2016] [Indexed: 10/20/2022]
|
19
|
Brázda V, Kolomazník J, Lýsek J, Hároníková L, Coufal J, Št'astný J. Palindrome analyser - A new web-based server for predicting and evaluating inverted repeats in nucleotide sequences. Biochem Biophys Res Commun 2016; 478:1739-45. [PMID: 27603574 DOI: 10.1016/j.bbrc.2016.09.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 10/21/2022]
Abstract
DNA cruciform structures play an important role in the regulation of natural processes including gene replication and expression, as well as nucleosome structure and recombination. They have also been implicated in the evolution and development of diseases such as cancer and neurodegenerative disorders. Cruciform structures are formed by inverted repeats, and their stability is enhanced by DNA supercoiling and protein binding. They have received broad attention because of their important roles in biology. Computational approaches to study inverted repeats have allowed detailed analysis of genomes. However, currently there are no easily accessible and user-friendly tools that can analyse inverted repeats, especially among long nucleotide sequences. We have developed a web-based server, Palindrome analyser, which is a user-friendly application for analysing inverted repeats in various DNA (or RNA) sequences including genome sequences and oligonucleotides. It allows users to search and retrieve desired gene/nucleotide sequence entries from the NCBI databases, and provides data on length, sequence, locations and energy required for cruciform formation. Palindrome analyser also features an interactive graphical data representation of the distribution of the inverted repeats, with options for sorting according to the length of inverted repeat, length of loop, and number of mismatches. Palindrome analyser can be accessed at http://bioinformatics.ibp.cz.
Collapse
Affiliation(s)
- Václav Brázda
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65, Brno, Czech Republic.
| | - Jan Kolomazník
- Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic
| | - Jiří Lýsek
- Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic
| | - Lucia Hároníková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65, Brno, Czech Republic
| | - Jan Coufal
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65, Brno, Czech Republic
| | - Jiří Št'astný
- Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic
| |
Collapse
|
20
|
Brázda V, Hároníková L, Liao JCC, Fridrichová H, Jagelská EB. Strong preference of BRCA1 protein to topologically constrained non-B DNA structures. BMC Mol Biol 2016; 17:14. [PMID: 27277344 PMCID: PMC4898351 DOI: 10.1186/s12867-016-0068-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 05/30/2016] [Indexed: 11/30/2022] Open
Abstract
Background The breast and ovarian cancer susceptibility gene BRCA1 encodes a multifunctional tumor suppressor protein BRCA1, which is involved in regulating cellular processes such as cell cycle, transcription, DNA repair, DNA damage response and chromatin remodeling. BRCA1 protein, located primarily in cell nuclei, interacts with multiple proteins and various DNA targets. It has been demonstrated that BRCA1 protein binds to damaged DNA and plays a role in the transcriptional regulation of downstream target genes. As a key protein in the repair of DNA double-strand breaks, the BRCA1-DNA binding properties, however, have not been reported in detail. Results In this study, we provided detailed analyses of BRCA1 protein (DNA-binding domain, amino acid residues 444–1057) binding to topologically constrained non-B DNA structures (e.g. cruciform, triplex and quadruplex). Using electrophoretic retardation assay, atomic force microscopy and DNA binding competition assay, we showed the greatest preference of the BRCA1 DNA-binding domain to cruciform structure, followed by DNA quadruplex, with the weakest affinity to double stranded B-DNA and single stranded DNA. While preference of the BRCA1 protein to cruciform structures has been reported previously, our observations demonstrated for the first time a preferential binding of the BRCA1 protein also to triplex and quadruplex DNAs, including its visualization by atomic force microscopy. Conclusions Our discovery highlights a direct BRCA1 protein interaction with DNA. When compared to double stranded DNA, such a strong preference of the BRCA1 protein to cruciform and quadruplex structures suggests its importance in biology and may thus shed insight into the role of these interactions in cell regulation and maintenance. Electronic supplementary material The online version of this article (doi:10.1186/s12867-016-0068-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Václav Brázda
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic.
| | - Lucia Hároníková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| | - Jack C C Liao
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic.,School of Medicine, University of Queensland, Brisbane, 4006, Australia
| | - Helena Fridrichová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| | - Eva B Jagelská
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| |
Collapse
|
21
|
A novel class I histone deacetylase inhibitor, I-7ab, induces apoptosis and arrests cell cycle progression in human colorectal cancer cells. Biomed Pharmacother 2015; 71:70-8. [DOI: 10.1016/j.biopha.2015.02.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 02/15/2015] [Indexed: 12/18/2022] Open
|
22
|
Bowater RP, Cobb AM, Pivonkova H, Havran L, Fojta M. Biophysical and electrochemical studies of protein–nucleic acid interactions. MONATSHEFTE FUR CHEMIE 2015. [DOI: 10.1007/s00706-014-1405-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Šebest P, Brázdová M, Fojta M, Pivoňková H. Differential salt-induced dissociation of the p53 protein complexes with circular and linear plasmid DNA substrates suggest involvement of a sliding mechanism. Int J Mol Sci 2015; 16:3163-77. [PMID: 25647416 PMCID: PMC4346886 DOI: 10.3390/ijms16023163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 01/26/2015] [Indexed: 01/30/2023] Open
Abstract
A study of the effects of salt conditions on the association and dissociation of wild type p53 with different ~3 kbp long plasmid DNA substrates (supercoiled, relaxed circular and linear, containing or lacking a specific p53 binding site, p53CON) using immunoprecipitation at magnetic beads is presented. Salt concentrations above 200 mM strongly affected association of the p53 protein to any plasmid DNA substrate. Strikingly different behavior was observed when dissociation of pre-formed p53-DNA complexes in increased salt concentrations was studied. While contribution from the p53CON to the stability of the p53-DNA complexes was detected between 100 and 170 mM KCl, p53 complexes with circular DNAs (but not linear) exhibited considerable resistance towards salt treatment for KCl concentrations as high as 2 M provided that the p53 basic C-terminal DNA binding site (CTDBS) was available for DNA binding. On the contrary, when the CTDBS was blocked by antibody used for immunoprecipitation, all p53-DNA complexes were completely dissociated from the p53 protein in KCl concentrations ≥200 mM under the same conditions. These observations suggest: (a) different ways for association and dissociation of the p53-DNA complexes in the presence of the CTDBS; and (b) a critical role for a sliding mechanism, mediated by the C-terminal domain, in the dissociation process.
Collapse
Affiliation(s)
- Peter Šebest
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno CZ-612 65, Czech Republic.
| | - Marie Brázdová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno CZ-612 65, Czech Republic.
| | - Miroslav Fojta
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno CZ-612 65, Czech Republic.
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno CZ-625 00, Czech Republic.
| | - Hana Pivoňková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno CZ-612 65, Czech Republic.
| |
Collapse
|
24
|
Ren X, Bai X, Zhang X, Li Z, Tang L, Zhao X, Li Z, Ren Y, Wei S, Wang Q, Liu C, Ji J. Quantitative nuclear proteomics identifies that miR-137-mediated EZH2 reduction regulates resveratrol-induced apoptosis of neuroblastoma cells. Mol Cell Proteomics 2014; 14:316-28. [PMID: 25505154 DOI: 10.1074/mcp.m114.041905] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Neuroblastoma is the most common pediatric extracranial solid tumor with a broad spectrum of clinical behavior and poor prognosis. Despite intensive multimodal therapy, ongoing clinical trials, and basic science investigations, neuroblastoma remains a complex medical challenge with a long-term survival rate less than 40%. In our study, we found that resveratrol (3, 5, 4'-trihydroxystilbene, RSV), a naturally occurring phytoalexin, possesses an anticancer activity through blocking cell growth and inducing apoptosis in neuroblastoma cell line Neuro-2a (N-2a) cells. Using stable isotope labeling with amino acids in cell culture (SILAC) and quantitative proteomic analysis, we found that 395 proteins were up-regulated and 302 proteins were down-regulated in the nucleus of N-2a cells treated with RSV. Among these, the polycomb protein histone methyltransferase EZH2 was reduced significantly, which is aberrantly overexpressed in neuroblastoma and crucial to maintain the malignant phenotype of neuroblastoma by epigenetic repression of multiple tumor suppressor genes. EZH2 reduction further led to decreased H3K27me3 level and reactivation of neuroblastoma tumor suppressor genes CLU and NGFR. Disruption EZH2 expression by RNA interference-mediated knockdown or pharmacologic inhibition with DZNep triggered cellular apoptosis in N-2a cells. We found that the up-regulation of miR-137 level was responsible for reduced EZH2 level in tumor suppression induced by RSV. Inhibition of miR-137 expression rescued the cellular apoptosis phenotypes, EZH2 reduction, and CLU and NGFR reactivation, associated with RSV treatment. Taken together, our findings present for the first time, an epigenetic mechanism involving miR-137-mediated EZH2 repression in RSV-induced apoptosis and tumor suppression of neuroblastoma, which would provide a key potential therapeutic target in neuroblastoma treatment.
Collapse
Affiliation(s)
- Xiaoqing Ren
- From the ‡State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China; ¶Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xue Bai
- From the ‡State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xuefei Zhang
- From the ‡State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zheyi Li
- From the ‡State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Lingfang Tang
- From the ‡State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xuyang Zhao
- From the ‡State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China; §Institute of System Biomedicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Zeyang Li
- From the ‡State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yanfei Ren
- From the ‡State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Shicheng Wei
- ¶Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; ‖Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School of Stomatology, Peking University, Beijing 100081, China
| | - Qingsong Wang
- From the ‡State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China;
| | - Cong Liu
- ‡‡Laboratory of Genome Stability, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Jianguo Ji
- From the ‡State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China; §Institute of System Biomedicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China;
| |
Collapse
|
25
|
DNA and RNA quadruplex-binding proteins. Int J Mol Sci 2014; 15:17493-517. [PMID: 25268620 PMCID: PMC4227175 DOI: 10.3390/ijms151017493] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 09/15/2014] [Accepted: 09/22/2014] [Indexed: 02/01/2023] Open
Abstract
Four-stranded DNA structures were structurally characterized in vitro by NMR, X-ray and Circular Dichroism spectroscopy in detail. Among the different types of quadruplexes (i-Motifs, minor groove quadruplexes, G-quadruplexes, etc.), the best described are G-quadruplexes which are featured by Hoogsteen base-paring. Sequences with the potential to form quadruplexes are widely present in genome of all organisms. They are found often in repetitive sequences such as telomeric ones, and also in promoter regions and 5' non-coding sequences. Recently, many proteins with binding affinity to G-quadruplexes have been identified. One of the initially portrayed G-rich regions, the human telomeric sequence (TTAGGG)n, is recognized by many proteins which can modulate telomerase activity. Sequences with the potential to form G-quadruplexes are often located in promoter regions of various oncogenes. The NHE III1 region of the c-MYC promoter has been shown to interact with nucleolin protein as well as other G-quadruplex-binding proteins. A number of G-rich sequences are also present in promoter region of estrogen receptor alpha. In addition to DNA quadruplexes, RNA quadruplexes, which are critical in translational regulation, have also been predicted and observed. For example, the RNA quadruplex formation in telomere-repeat-containing RNA is involved in interaction with TRF2 (telomere repeat binding factor 2) and plays key role in telomere regulation. All these fundamental examples suggest the importance of quadruplex structures in cell processes and their understanding may provide better insight into aging and disease development.
Collapse
|