1
|
He Z, He J, Xie K. KLF4 transcription factor in tumorigenesis. Cell Death Discov 2023; 9:118. [PMID: 37031197 PMCID: PMC10082813 DOI: 10.1038/s41420-023-01416-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/10/2023] Open
Abstract
Krüppel-like transcriptional factor is important in maintaining cellular functions. Deletion of Krüppel-like transcriptional factor usually causes abnormal embryonic development and even embryonic death. KLF4 is a prominent member of this family, and embryonic deletion of KLF4 leads to alterations in skin permeability and postnatal death. In addition to its important role in embryo development, it also plays a critical role in inflammation and malignancy. It has been investigated that KLF4 has a regulatory role in a variety of cancers, including lung, breast, prostate, colorectal, pancreatic, hepatocellular, ovarian, esophageal, bladder and brain cancer. However, the role of KLF4 in tumorigenesis is complex, which may link to its unique structure with both transcriptional activation and transcriptional repression domains, and to the regulation of its upstream and downstream signaling molecules. In this review, we will summarize the structural and functional aspects of KLF4, with a focus on KLF4 as a clinical biomarker and therapeutic target in different types of tumors.
Collapse
Affiliation(s)
- Zhihong He
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China
- The South China University of Technology Comprehensive Cancer Center, Guangdong, China
| | - Jie He
- The Second Affiliated Hospital and Guangzhou First People's Hospital, South China University of Technology School of Medicine, Guangdong, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China.
- The South China University of Technology Comprehensive Cancer Center, Guangdong, China.
| |
Collapse
|
2
|
BMP Signaling Pathway in Dentin Development and Diseases. Cells 2022; 11:cells11142216. [PMID: 35883659 PMCID: PMC9317121 DOI: 10.3390/cells11142216] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/27/2022] Open
Abstract
BMP signaling plays an important role in dentin development. BMPs and antagonists regulate odontoblast differentiation and downstream gene expression via canonical Smad and non-canonical Smad signaling pathways. The interaction of BMPs with their receptors leads to the formation of complexes and the transduction of signals to the canonical Smad signaling pathway (for example, BMP ligands, receptors, and Smads) and the non-canonical Smad signaling pathway (for example, MAPKs, p38, Erk, JNK, and PI3K/Akt) to regulate dental mesenchymal stem cell/progenitor proliferation and differentiation during dentin development and homeostasis. Both the canonical Smad and non-canonical Smad signaling pathways converge at transcription factors, such as Dlx3, Osx, Runx2, and others, to promote the differentiation of dental pulp mesenchymal cells into odontoblasts and downregulated gene expressions, such as those of DSPP and DMP1. Dysregulated BMP signaling causes a number of tooth disorders in humans. Mutation or knockout of BMP signaling-associated genes in mice results in dentin defects which enable a better understanding of the BMP signaling networks underlying odontoblast differentiation and dentin formation. This review summarizes the recent advances in our understanding of BMP signaling in odontoblast differentiation and dentin formation. It includes discussion of the expression of BMPs, their receptors, and the implicated downstream genes during dentinogenesis. In addition, the structures of BMPs, BMP receptors, antagonists, and dysregulation of BMP signaling pathways associated with dentin defects are described.
Collapse
|
3
|
Wei W, Zhou YJ, Shen JL, Lu L, Lv XR, Lu TT, Xu PT, Xue XH. The Compatibility of Alisma and Atractylodes Affects the Biological Behaviours of VSMCs by Inhibiting the miR-128-5p/p21 Gene. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7617258. [PMID: 35845581 PMCID: PMC9283034 DOI: 10.1155/2022/7617258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
Abstract
Objective The compatibility of Alisma and Atractylodes (AA) has been estimated to exhibit antiatherosclerotic effects, but the mechanism remains unclear. This study aimed to identify the role of AA in oxidized low-density lipoprotein (ox-LDL)-induced vascular smooth muscle cell (VSMC) behaviours and to explore the effects of microRNAs (miRNAs). Methods A scratch wound-healing assay was used to detect the migration of VSMCs, and immunocytochemistry and western blotting for SM22ɑ were used to evaluate phenotypic transformation. Bromodeoxyuridine (BrdU) immunocytochemistry and flow cytometry were applied to detect the proliferation of VSMCs. miRNA microarray profiling was performed using Lianchuan biological small RNA sequencing analysis. VSMCs were transfected with the miR-128-5p mimic and inhibitor, and the migration, phenotypic modulation, and proliferation of VSMCs were investigated. The 3'UTR-binding sequence site of miR-128-5p on the p21 gene was predicted and assessed by luciferase assays. Result AA and the extracellular regulated protein kinase 1/2 (ERK1/2) blocker U0126 markedly inhibited migration, elevated smooth muscle 22α (SM22α) expression, repressed VSMC proliferation, elevated miR-466f-3p and miR-425-3p expression, and suppressed miR-27a-5p and miR-128-5p expression in ox-LDL-induced VSMCs. miR-128-5p targets the tissue inhibitor of metalloproteinases (TIMPs), silent information regulator 2 (SIRT2), peroxisome proliferator-activated receptor (PPAR), and p21 genes, which are linked to the behaviours of VSMCs. The miR-128-5p mimic promoted the migration and proliferation of VSMCs and suppressed p21, p27, and SM22ɑ expression. The inhibitor increased p21, p27, and SM22ɑ expression and repressed the migration, phenotypic transformation, and proliferation of VSMCs. miR-128-5p directly targeted the 3'UTR-binding sequences of the p21 gene, negatively regulated p21 expression, and supported the proliferation of VSMCs. Conclusion Our research showed that the migration, phenotypic transformation, and proliferation of ox-LDL-induced VSMCs were repressed by AA through inhibiting miR-128-5p by targeting the p21 gene, which may provide an effective option for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Wei Wei
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yang Jie Zhou
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Ju Lian Shen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lu Lu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xin Ru Lv
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Tao Tao Lu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Pei Tao Xu
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xie Hua Xue
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Provincial Rehabilitation Industrial Institution, Fujian Provincial Key Laboratory of Rehabilitation Technology, Fujian Provincial Key Laboratory of Cognitive Rehabilitation, Fuzhou, China
| |
Collapse
|
4
|
Zhou H, Wang L, Liu S, Wang W. The role of phosphoinositide 3-kinases in immune-inflammatory responses: potential therapeutic targets for abdominal aortic aneurysm. Cell Cycle 2022; 21:2339-2364. [PMID: 35792922 DOI: 10.1080/15384101.2022.2094577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The pathogenesis of abdominal aortic aneurysm (AAA) includes inflammatory responses, matrix metalloproteinases (MMPs) degradation, VSMC apoptosis, oxidative stress, and angiogenesis, among which the inflammatory response plays a key role. At present, surgery is the only curing treatment, and no effective drug can delay AAA progression in clinical practice. Therefore, searching for a signaling pathway related to the immune-inflammatory response is an essential direction for developing drugs targeting AAA. Recent studies have confirmed that the PI3K family plays an important role in many inflammatory diseases and is involved in regulating various cellular functions, especially in the immune-inflammatory response. This review focuses on the role of each isoform of PI3K in each stage of AAA immune-inflammatory response, making available explorations for a deeper understanding of the mechanism of inflammation and immune response during the formation and development of AAA.
Collapse
Affiliation(s)
- Haiyang Zhou
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Wang
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Shuai Liu
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Wang
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Pioglitazone protects blood vessels through inhibition of the apelin signaling pathway by promoting KLF4 expression in rat models of T2DM. Biosci Rep 2020; 39:221480. [PMID: 31829402 PMCID: PMC6928522 DOI: 10.1042/bsr20190317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 11/16/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023] Open
Abstract
Apelin, identified as the endogenous ligand of APJ, exerts various cardiovascular effects. However, the molecular mechanism underlying the regulation of apelin expression in vascular cells is poorly described. Pioglitazone (PIO) and Krüppel-like factor 4 (KLF4) exhibit specific biological functions on vascular physiology and pathophysiology by regulating differentiation- and proliferation-related genes. The present study aimed to investigate the roles of PIO and KLF4 in the transcriptional regulation of apelin in a high-fat diet/streptozotocin rat model of diabetes and in PIO-stimulated vascular smooth muscle cells (VSMCs). Immunohistochemistry, qRT-PCR, and Western blotting assays revealed that the aorta of the Type 2 diabetes mellitus (T2DM) rat models had a high expression of apelin, PIO could decrease the expression of apelin in the PIO-treated rats. In vitro, Western blotting assays and immunofluorescent staining results showed that the basal expression of apelin was decreased but that of KLF4 was increased when VSMCs were stimulated by PIO treatment. Luciferase and chromatin immunoprecipitation assay results suggested that KLF4 bound to the GKLF-binding site of the apelin promoter and negatively regulated the transcription activity of apelin in VSMCs under PIO stimulation. Furthermore, qRT-PCR and Western blotting assay results showed that the overexpression of KLF4 markedly decreased the basal expression of apelin, but the knockdown of KLF4 restored the PIO-induced expression of apelin. In conclusion, PIO inhibited the expression of apelin in T2DM rat models to prevent diabetic macroangiopathy, and negatively regulated the gene transcription of apelin by promoting transcription of KLF4 in the apelin promoter.
Collapse
|
6
|
Increased AT 2R expression is induced by AT 1R autoantibody via two axes, Klf-5/IRF-1 and circErbB4/miR-29a-5p, to promote VSMC migration. Cell Death Dis 2020; 11:432. [PMID: 32514012 PMCID: PMC7280191 DOI: 10.1038/s41419-020-2643-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023]
Abstract
Vascular remodeling can be caused by angiotensin II type 1 receptor (AT1R) autoantibody (AT1-AA), although the related mechanism remains unknown. Angiotensin II type 2 receptor (AT2R) plays multiple roles in vascular remodeling through cross-talk with AT1R in the cytoplasm. Here, we aimed to explore the role and mechanism of AT2R in AT1-AA-induced vascular smooth muscle cell (VSMC) migration, which is a key event in vascular remodeling. In vitro and in vivo, we found that AT2R can promote VSMC migration in AT1-AA-induced vascular remodeling. Moreover, AT2R expression was upregulated via Klf-5/IRF-1-mediated transcriptional and circErbB4/miR-29a-5p-mediated posttranscriptional mechanisms in response to AT1-AA. Our data provide a molecular basis for AT1-AA-induced AT2R expression by transcription factors, namely, a circular RNA and a microRNA, and showed that AT2R participated in AT1-AA-induced VSMC migration during the development of vascular remodeling. AT2R may be a potential target for the treatment of AT1-AA-induced vascular diseases.
Collapse
|
7
|
Yang GS, Zheng B, Qin Y, Zhou J, Yang Z, Zhang XH, Zhao HY, Yang HJ, Wen JK. Salvia miltiorrhiza-derived miRNAs suppress vascular remodeling through regulating OTUD7B/KLF4/NMHC IIA axis. Theranostics 2020; 10:7787-7811. [PMID: 32685020 PMCID: PMC7359079 DOI: 10.7150/thno.46911] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/31/2020] [Indexed: 12/15/2022] Open
Abstract
Objective: Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) are essential for vascular remodeling. Natural compounds with diterpene chinone or phenolic acid structure from Salvia miltiorrhiza, an eminent medicinal herb widely used to treat cardiovascular diseases in China, can effectively attenuate vascular remodeling induced by vascular injury. However, it remains unknown whether Salvia miltiorrhiza-derived miRNAs can protect VSMCs from injury by environmental stimuli. Here, we explored the role and underlying mechanisms of Salvia miltiorrhiza-derived Sal-miR-1 and 3 in the regulation of VSMC migration and monocyte adhesion to VSMCs induced by thrombin. Methods: A mouse model for intimal hyperplasia was established by the ligation of carotid artery and the injured carotid arteries were in situ-transfected with Sal-miR-1 and 3 using F-127 pluronic gel. The vascular protective effects of Sal-miR-1 and 3 were assessed via analysis of intimal hyperplasia with pathological morphology. VSMC migration and adhesion were analyzed by the wound healing, transwell membrane assays, and time-lapse imaging experiment. Using loss- and gain-of-function approaches, Sal-miR-1 and 3 regulation of OTUD7B/KLF4/NMHC IIA axis was investigated by using luciferase assay, co-immunoprecipitation, chromatin immunoprecipitation, western blotting, etc. Results:Salvia miltiorrhiza-derived Sal-miR-1 and 3 can enter the mouse body after intragastric administration, and significantly suppress intimal hyperplasia induced by carotid artery ligation. In cultured VSMCs, these two miRNAs inhibit thrombin-induced the migration of VSMCs and monocyte adhesion to VSMCs. Mechanistically, Sal-miR-1 and 3 abrogate OTUD7B upregulation by thrombin via binding to the different sites of the OTUD7B 3'UTR. Most importantly, OTUD7B downregulation by Sal-miR-1 and 3 attenuates KLF4 protein levels via decreasing its deubiquitylation, whereas decreased KLF4 relieves its repression of transcription of NMHC IIA gene and thus increases NMHC IIA expression levels. Further, increased NMHC IIA represses VSMC migration and monocyte adhesion to VSMCs via maintaining the contractile phenotype of VSMCs. Conclusions: Our studies not only found the novel bioactive components from Salvia miltiorrhiza but also clarified the molecular mechanism underlying Sal-miR-1 and 3 inhibition of VSMC migration and monocyte adhesion to VSMCs. These results add important knowledge to the pharmacological actions and bioactive components of Salvia miltiorrhiza. Sal-miR-1 and 3-regulated OTUD7B/KLF4/NMHC IIA axis may represent a therapeutic target for vascular remodeling.
Collapse
Affiliation(s)
- Gao-shan Yang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China
- Department of Biochemistry and Molecular Biology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Bin Zheng
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China
| | - Yan Qin
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding, China
| | - Jing Zhou
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China
- Department of Endocrine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhan Yang
- Department of Science and Technology, The second hospital of Hebei Medical University, Shijiazhuang, China
| | - Xin-hua Zhang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China
| | - Hong-ye Zhao
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China
| | - Hao-jie Yang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China
| | - Jin-kun Wen
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China
- ✉ Corresponding author: Jin-kun Wen, Department of Biochemistry and Molecular Biology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, China. E-mail:
| |
Collapse
|
8
|
Fan Y, Lu H, Liang W, Hu W, Zhang J, Chen YE. Krüppel-like factors and vascular wall homeostasis. J Mol Cell Biol 2018; 9:352-363. [PMID: 28992202 DOI: 10.1093/jmcb/mjx037] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/22/2017] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular diseases (CVDs) are major causes of death worldwide. Identification of promising targets for prevention and treatment of CVDs is paramount in the cardiovascular field. Numerous transcription factors regulate cellular function through modulation of specific genes and thereby are involved in the physiological and pathophysiological processes of CVDs. Although Krüppel-like factors (KLFs) have a similar protein structure with a conserved zinc finger domain, they possess distinct tissue and cell distribution patterns as well as biological functions. In the vascular system, KLF activities are regulated at both transcriptional and posttranscriptional levels. Growing in vitro, in vivo, and genetic epidemiology studies suggest that specific KLFs play important roles in vascular wall biology, which further affect vascular diseases. KLFs regulate various functional aspects such as cell growth, differentiation, activation, and development through controlling a whole cluster of functionally related genes and modulating various signaling pathways in response to pathological conditions. Therapeutic targeting of selective KLF family members may be desirable to achieve distinct treatment effects in the context of various vascular diseases. Further elucidation of the association of KLFs with human CVDs, their underlying molecular mechanisms, and precise protein structure studies will be essential to define KLFs as promising targets for therapeutic interventions in CVDs.
Collapse
Affiliation(s)
- Yanbo Fan
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Haocheng Lu
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Wenying Liang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Wenting Hu
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Jifeng Zhang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Y Eugene Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Hwang JS, Ham SA, Yoo T, Lee WJ, Paek KS, Kim JH, Lee CH, Seo HG. Upregulation of MKP-7 in response to rosiglitazone treatment ameliorates lipopolysaccharide-induced destabilization of SIRT1 by inactivating JNK. Pharmacol Res 2016; 114:47-55. [DOI: 10.1016/j.phrs.2016.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 01/26/2023]
|
10
|
Wang F, Liu Y, Bi Z. Pioglitazone inhibits growth of human retinoblastoma cells via regulation of NF-κB inflammation signals. J Recept Signal Transduct Res 2016; 37:94-99. [PMID: 27133446 DOI: 10.3109/10799893.2016.1171341] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES We aimed to study the antitumor effects of the PPARγ agonist pioglitazone on human retinoblastoma. METHODS The effects of pioglitazone on cell proliferation and apoptosis of the human retinoblastoma Y79 cells were investigated by MTT assay and Hoechst 33258 staining assay. The apoptosis related protein levels were detected by western blot. Inflammationary factors analysis was evaluated by western blot and ELISA. The effect of pioglitazone on nuclear factor-kappa B (NF-κB)-dependent reporter gene transcription induced by LPS was analyzed by NF-κB-luciferase assay. Then human retinoblastoma Y79 cells were subcutaneously transplanted in BALB/c nude mice and the animals were treated with pioglitazone to verify its antitumor effect in vivo. RESULTS Our data revealed that pioglitazone suppressed the viability of Y79 cells dose- and time-dependently and induced apoptosis in Y79 cells in vitro. Molecular biology analysis found that pioglitazone could affect the apoptosis and inflammation related signal via modulating the activity of NF-κB signal. Also we found that pioglitazone could markedly reduce the growth of Y79 cells transplanted into the mice without causing significant side effects. CONCLUSIONS Our results suggested that pioglitazone demonstrated antitumor activity against the human retinoblastoma Y79 cells by inhibiting cell growth, inducing apoptosis and modulating NF-κB pathway, and thus delayed tumor growth in vivo.
Collapse
Affiliation(s)
- Fengyun Wang
- a Department of Ophthalmology , The First Affiliated Hospital, Henan University of Science and Technology , Luoyang , Henan , PR China
| | - Yang Liu
- b Department of Stomatology, Nanfang Hospital, Southern Medical University , Guangzhou , Guangdong Province , PR China
| | - Zhenyu Bi
- c Department of Anatomy, Key Laboratory of Medical Biomechanics of Guangdong Province , Southern Medical University , Guangzhou , Guangdong Province , PR China
| |
Collapse
|
11
|
Nie CJ, Li YH, Zhang XH, Wang ZP, Jiang W, Zhang Y, Yin WN, Zhang Y, Shi HJ, Liu Y, Zheng CY, Zhang J, Zhang GL, Zheng B, Wen JK. SUMOylation of KLF4 acts as a switch in transcriptional programs that control VSMC proliferation. Exp Cell Res 2016; 342:20-31. [PMID: 26945917 DOI: 10.1016/j.yexcr.2016.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 02/06/2023]
Abstract
The regulation of vascular smooth muscle cell (VSMC) proliferation is an important issue due to its major implications for the prevention of pathological vascular conditions. The objective of this work was to assess the function of small ubiquitin-like modifier (SUMO)ylated Krϋppel-like transcription factor 4 (KLF4) in the regulation of VSMC proliferation in cultured cells and in animal models with balloon injury. We found that under basal conditions, binding of non-SUMOylated KLF4 to p300 activated p21 (p21(WAF1/CIP1))transcription, leading to VSMC growth arrest. PDGF-BB promoted the interaction between Ubc9 and KLF4 and the SUMOylation of KLF4, which in turn recruited transcriptional corepressors to the p21 promoter. The reduction in p21 enhanced VSMC proliferation. Additionally, the SUMOylated KLF4 did not affect the expression of KLF4, thereby forming a positive feedback loop enhancing cell proliferation. These results demonstrated that SUMOylated KLF4 plays an important role in cell proliferation by reversing the transactivation action of KLF4 on p21 induced with PDGF-BB.
Collapse
Affiliation(s)
- Chan-Juan Nie
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Yong Hui Li
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China; Hebei Center for Disease Control and Prevention, Shijiazhuang 050000, China
| | - Xin-Hua Zhang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Zhi-Peng Wang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Wen Jiang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Wei-Na Yin
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Yong Zhang
- Department of Urinary Surgery, Second Hospital of Hebei Medical University, Pingan Road, Shijiazhuang 050000, China
| | - Hui-Jing Shi
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Yan Liu
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Cui-Ying Zheng
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Jing Zhang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | | | - Bin Zheng
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China.
| | - Jin-Kun Wen
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China.
| |
Collapse
|
12
|
Zahlten J, Herta T, Kabus C, Steinfeldt M, Kershaw O, García P, Hocke AC, Gruber AD, Hübner RH, Steinicke R, Doehn JM, Suttorp N, Hippenstiel S. Role of Pneumococcal Autolysin for KLF4 Expression and Chemokine Secretion in Lung Epithelium. Am J Respir Cell Mol Biol 2015; 53:544-54. [PMID: 25756955 DOI: 10.1165/rcmb.2014-0024oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In severe pneumococcal pneumonia, the delicate balance between a robust inflammatory response necessary to kill bacteria and the loss of organ function determines the outcome of disease. In this study, we tested the hypothesis that Krueppel-like factor (KLF) 4 may counter-regulate Streptococcus pneumoniae-related human lung epithelial cell activation using the potent proinflammatory chemokine IL-8 as a model molecule. Pneumococci induced KLF4 expression in human lung, in primary human bronchial epithelial cells, and in the lung epithelial cell line BEAS-2B. Whereas proinflammatory cell activation depends mainly on the classical Toll-like receptor 2-mitogen-activated protein kinase or phosphatidylinositide 3-kinase and NF-κB pathways, the induction of KLF4 occurred independently of these molecules but relied, in general, on tyrosine kinase activation and, in part, on the src kinase family member yamaguchi sarcoma viral oncogene homolog (yes) 1. The up-regulation of KLF4 depended on the activity of the main pneumococcal autolysin LytA. KLF4 overexpression suppressed S. pneumoniae-induced NF-κB and IL-8 reporter gene activation and release, whereas small interfering RNA-mediated silencing of KLF4 or yes1 kinase led to an increase in IL-8 release. The KLF4-dependent down-regulation of NF-κB luciferase activity could be rescued by the overexpression of the histone acetylase p300/cAMP response element-binding protein-associated factor. In conclusion, KLF4 acts as a counter-regulatory transcription factor in pneumococci-related proinflammatory activation of lung epithelial cells, thereby potentially preventing lung hyperinflammation and subsequent organ failure.
Collapse
Affiliation(s)
- Janine Zahlten
- 1 Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Toni Herta
- 1 Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christin Kabus
- 1 Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Magdalena Steinfeldt
- 1 Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Olivia Kershaw
- 2 Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Pedro García
- 3 Departamento de Microbiología Molecular, Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain; and.,4 CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Andreas C Hocke
- 1 Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Achim D Gruber
- 2 Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Ralf-Harto Hübner
- 1 Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Robert Steinicke
- 1 Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jan-Moritz Doehn
- 1 Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Norbert Suttorp
- 1 Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Hippenstiel
- 1 Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
13
|
Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist inhibits collagen synthesis in human hypertrophic scar fibroblasts by targeting Smad3 via miR-145. Biochem Biophys Res Commun 2015; 459:49-53. [DOI: 10.1016/j.bbrc.2015.02.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 02/11/2015] [Indexed: 01/20/2023]
|
14
|
Dai X, Liu P, Lau AW, Liu Y, Inuzuka H. Acetylation-dependent regulation of essential iPS-inducing factors: a regulatory crossroad for pluripotency and tumorigenesis. Cancer Med 2014; 3:1211-24. [PMID: 25116380 PMCID: PMC4302671 DOI: 10.1002/cam4.298] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/04/2014] [Accepted: 06/10/2014] [Indexed: 12/26/2022] Open
Abstract
Induced pluripotent stem (iPS) cells can be generated from somatic cells by coexpression of four transcription factors: Sox2, Oct4, Klf4, and c-Myc. However, the low efficiency in generating iPS cells and the tendency of tumorigenesis hinder the therapeutic applications for iPS cells in treatment of human diseases. To this end, it remains largely unknown how the iPS process is subjected to regulation by upstream signaling pathway(s). Here, we report that Akt regulates the iPS process by modulating posttranslational modifications of these iPS factors in both direct and indirect manners. Specifically, Akt directly phosphorylates Oct4 to modulate the Oct4/Sox2 heterodimer formation. Furthermore, Akt either facilitates the p300-mediated acetylation of Oct4, Sox2, and Klf4, or stabilizes Klf4 by inactivating GSK3, thus indirectly modulating stemness. As tumorigenesis shares possible common features and mechanisms with iPS, our study suggests that Akt inhibition might serve as a cancer therapeutic approach to target cancer stem cells.
Collapse
Affiliation(s)
- Xiangpeng Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | |
Collapse
|