1
|
Pacher N, Burtscher J, Bender D, Fieseler L, Domig KJ. Aerobic spore-forming bacteria associated with ropy bread: Identification, characterization and spoilage potential assessment. Int J Food Microbiol 2024; 418:110730. [PMID: 38714095 DOI: 10.1016/j.ijfoodmicro.2024.110730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024]
Abstract
Aerobic spore-forming (ASF) bacteria have been reported to cause ropiness in bread. Sticky and stringy degradation, discoloration, and an odor reminiscent of rotting fruit are typical characteristics of ropy bread spoilage. In addition to economic losses, ropy bread spoilage may lead to health risks, as virulent strains of ASF bacteria are not uncommon. However, the lack of systematic approaches to quantify physicochemical spoilage characteristics makes it extremely difficult to assess rope formation in bread. To address this problem, the aim of this study was to identify, characterize and objectively assess the spoilage potential of ASF bacteria associated with ropy bread. Hence, a set of 82 ASF bacteria, including isolates from raw materials and bakery environments as well as strains from international culture collections, were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and their species identity confirmed by 16S rRNA and gyrA or panC gene sequencing. A standardized approach supported by objective colorimetric measurements was developed to assess the rope-inducing potential (RIP) of a strain by inoculating autoclaved bread slices with bacterial spores. In addition, the presence of potential virulence factors such as swarming motility or hemolysis was investigated. This study adds B. velezensis, B. inaquosorum and B. spizizenii to the species potentially implicated of causing ropy bread spoilage. Most importantly, this study introduces a standardized classification protocol for assessing the RIP of a bacterial strain. Colorimetric measurements are used to objectively quantify the degree of breadcrumb discoloration. Furthermore, our results indicate that strains capable of inducing rope spoilage in bread often exhibit swarming motility and virulence factors such as hemolysis, raising important food quality considerations.
Collapse
Affiliation(s)
- Nicola Pacher
- University of Natural Resources and Life Sciences, Vienna, Department of Food Science and Technology, Institute of Food Science, Muthgasse 18, 1190 Vienna, Austria
| | - Johanna Burtscher
- University of Natural Resources and Life Sciences, Vienna, Department of Food Science and Technology, Institute of Food Science, Muthgasse 18, 1190 Vienna, Austria.
| | - Denisse Bender
- University of Natural Resources and Life Sciences, Vienna, Department of Food Science and Technology, Institute of Food Science, Muthgasse 18, 1190 Vienna, Austria
| | - Lars Fieseler
- ZHAW Zurich University of Applied Sciences, Institute of Food and Beverage Innovation, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Konrad J Domig
- University of Natural Resources and Life Sciences, Vienna, Department of Food Science and Technology, Institute of Food Science, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
2
|
Reslane I, Handke LD, Watson GF, Shinde D, Ahn JS, Endres JL, Razvi F, Gilbert EA, Bayles KW, Thomas VC, Lehman MK, Fey PD. Glutamate -dependent arginine biosynthesis requires the inactivation of spoVG, sarA, and ahrC in Staphylococcus aureus. J Bacteriol 2024; 206:e0033723. [PMID: 38299858 PMCID: PMC10883023 DOI: 10.1128/jb.00337-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
Genome sequencing has demonstrated that Staphylococcus aureus encodes arginine biosynthetic genes argDCJBFGH synthesizing proteins that mediate arginine biosynthesis using glutamate as a substrate. Paradoxically, however, S. aureus does not grow in a defined, glutamate-replete medium lacking arginine and glucose (CDM-R). Studies from our laboratory have found that specific mutations are selected by S. aureus that facilitate growth in CDM-R. However, these selected mutants synthesize arginine utilizing proline as a substrate rather than glutamate. In this study, we demonstrate that the ectopic expression of the argDCJB operon supports the growth of S. aureus in CDM-R, thus documenting the functionality of this pathway. Furthermore, suppressor mutants of S. aureus JE2 putA::Tn, which is defective in synthesizing arginine from proline, were selected on CDM-R agar. Genome sequencing revealed that these mutants had compensatory mutations within both spoVG, encoding an ortholog of the Bacillus subtilis stage V sporulation protein, and sarA, encoding the staphylococcal accessory regulator. Transcriptional studies document that argD expression is significantly increased when JE2 spoVG sarA was grown in CDM-R. Lastly, we found that a mutation in ahrC was required to induce argD expression in JE2 spoVG sarA when grown in an arginine-replete medium (CDM), suggesting that AhrC also functions to repress argDCJB in an arginine-dependent manner. In conclusion, these data indicate that the argDCJB operon is functional when transcribed in vitro and that SNPs within potential putative regulatory proteins are required to alleviate the repression.IMPORTANCEAlthough Staphylococcus aureus has the capability to synthesize all 20 amino acids, it is phenotypically auxotrophic for several amino acids including arginine. This work identifies putative regulatory proteins, including SpoVG, SarA, and AhrC, that function to inhibit the arginine biosynthetic pathways using glutamate as a substrate. Understanding the ultimate mechanisms of why S. aureus is selected to repress arginine biosynthetic pathways even in the absence of arginine will add to the growing body of work assessing the interactions between metabolism and S. aureus pathogenesis.
Collapse
Affiliation(s)
- Itidal Reslane
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Luke D. Handke
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Gabrielle F. Watson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Dhananjay Shinde
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jong-Sam Ahn
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jennifer L. Endres
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Fareha Razvi
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Emily A. Gilbert
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Kenneth W. Bayles
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Vinai C. Thomas
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - McKenzie K. Lehman
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Paul D. Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
3
|
Qian J, Wang Y, Hu Z, Shi T, Wang Y, Ye C, Huang H. Bacillus sp. as a microbial cell factory: Advancements and future prospects. Biotechnol Adv 2023; 69:108278. [PMID: 37898328 DOI: 10.1016/j.biotechadv.2023.108278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Bacillus sp. is one of the most distinctive gram-positive bacteria, able to grow efficiently using cheap carbon sources and secrete a variety of useful substances, which are widely used in food, pharmaceutical, agricultural and environmental industries. At the same time, Bacillus sp. is also recognized as a safe genus with a relatively clear genetic background, which is conducive to the industrial production of target metabolites. In this review, we discuss the reasons why Bacillus sp. has been so extensively studied and summarize its advances in systems and synthetic biology, engineering strategies to improve microbial cell properties, and industrial applications in several metabolic engineering applications. Finally, we present the current challenges and possible solutions to provide a reliable basis for Bacillus sp. as a microbial cell factory.
Collapse
Affiliation(s)
- Jinyi Qian
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Yuzhou Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Zijian Hu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Tianqiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| | - Yuetong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
4
|
Toutiaee S, Mojgani N, Harzandi N, Moharrami M, Mokhberosafa L. In vitro probiotic and safety attributes of Bacillus spp. isolated from beebread, honey samples and digestive tract of honeybees Apis mellifera. Lett Appl Microbiol 2022; 74:656-665. [PMID: 35000212 DOI: 10.1111/lam.13650] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 01/03/2023]
Abstract
Bacillus species isolated from honeybee Apis mellifera gut, honey and bee bread samples were characterized for their in vitro probiotic and safety attributes. Alpha and γ haemolytic cultures were tested for their antibiotic resistance, antibacterial spectrum, acid and bile tolerance, adhesion ability (auto-aggregation, co-aggregation and hydrophobicity) and phenol tolerance. Safety criteria included evaluation of virulence genes and cytotoxicity percentages. Bacillus isolates inhibited both Gram-positive and Gram-negative pathogens including Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus faecalis and Streptococcus mutans, while none could inhibit Listeria monocytogenes. Among the isolates, Bacillus subtilis ZH05, ZB03 and ZG025 showed resistance to most of the tested antibiotics and were considered unsafe. B. subtilis (4) and B. licheniformis (1) tolerated acidic pH and bile conditions, never the less were more tolerant in simulated intestinal conditions vis-a-vis gastric conditions. In 0·5% phenol concentrations, B. licheniformis ZH02 showed highest growth, while, B. subtilis ZG029 demonstrated highest auto-aggregation (65 ± 4·6) and hydrophobicity (23 ± 3·6) percentages (P < 0·05). The isolates lacked virulence genes (hblA, hblC, hblD, nhe, cytK and ces), and their cytotoxic percentage on Caco-2 cell lines was ˂15%. Overall, honeybees appear to be a good source of Bacillus species exhibiting typical in vitro probiotic properties, which could be of commercial interest.
Collapse
Affiliation(s)
- S Toutiaee
- Department of Microbiology, Islamic Azad University, Karaj Branch, Karaj, Iran
| | - N Mojgani
- Biotechnology Department, Razi Vaccine and Serum Research Institute, Agriculture Research, Education and Extension Organization, Tehran, Iran
| | - N Harzandi
- Department of Microbiology, Islamic Azad University, Karaj Branch, Karaj, Iran
| | - M Moharrami
- Honeybee, Silkworm and Wild Life Research Department, Razi Vaccine and Serum Research Institute, Agriculture Research, Education and Extension Organization, Tehran, Iran
| | - L Mokhberosafa
- Biotechnology Department, Razi Vaccine and Serum Research Institute, Agriculture Research, Education and Extension Organization, Tehran, Iran
| |
Collapse
|
5
|
White K, Nicoletti G, Cornell H. Antibacterial Profile of a Microbicidal Agent Targeting Tyrosine Phosphatases and Redox Thiols, Novel Drug Targets. Antibiotics (Basel) 2021; 10:1310. [PMID: 34827248 PMCID: PMC8615086 DOI: 10.3390/antibiotics10111310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 11/16/2022] Open
Abstract
The activity profile of a protein tyrosine phosphatase (PTP) inhibitor and redox thiol oxidant, nitropropenyl benzodioxole (NPBD), was investigated across a broad range of bacterial species. In vitro assays assessed inhibitory and lethal activity patterns, the induction of drug variants on long term exposure, the inhibitory interactions of NPBD with antibiotics, and the effect of plasma proteins and redox thiols on activity. A literature review indicates the complexity of PTP and redox signaling and suggests likely metabolic targets. NPBD was broadly bactericidal to pathogens of the skin, respiratory, urogenital and intestinal tracts. It was effective against antibiotic resistant strains and slowly replicating and dormant cells. NPBD did not induce resistant or drug-tolerant phenotypes and showed low cross reactivity with antibiotics in synergy assays. Binding to plasma proteins indicated lowered in-vitro bioavailability and reduction of bactericidal activity in the presence of thiols confirmed the contribution of thiol oxidation and oxidative stress to lethality. This report presents a broad evaluation of the antibacterial effect of PTP inhibition and redox thiol oxidation, illustrates the functional diversity of bacterial PTPs and redox thiols, and supports their consideration as novel targets for antimicrobial drug development. NPBD is a dual mechanism agent with an activity profile which supports consideration of tyrosine phosphatases and bacterial antioxidant systems as promising targets for drug development.
Collapse
Affiliation(s)
- Kylie White
- STEM College, RMIT University, Melbourne, VIC 3001, Australia; (G.N.); (H.C.)
| | | | | |
Collapse
|
6
|
Christopoulou N, Granneman S. The role of RNA-binding proteins in mediating adaptive responses in Gram-positive bacteria. FEBS J 2021; 289:1746-1764. [PMID: 33690958 DOI: 10.1111/febs.15810] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
Bacteria are constantly subjected to stressful conditions, such as antibiotic exposure, nutrient limitation and oxidative stress. For pathogenic bacteria, adapting to the host environment, escaping defence mechanisms and coping with antibiotic stress are crucial for their survival and the establishment of a successful infection. Stress adaptation relies heavily on the rate at which the organism can remodel its gene expression programme to counteract the stress. RNA-binding proteins mediating co- and post-transcriptional regulation have recently emerged as important players in regulating gene expression during adaptive responses. Most of the research on these layers of gene expression regulation has been done in Gram-negative model organisms where, thanks to a wide variety of global studies, large post-transcriptional regulatory networks have been uncovered. Unfortunately, our understanding of post-transcriptional regulation in Gram-positive bacteria is lagging behind. One possible explanation for this is that many proteins employed by Gram-negative bacteria are not well conserved in Gram-positives. And even if they are conserved, they do not always play similar roles as in Gram-negative bacteria. This raises the important question whether Gram-positive bacteria regulate gene expression in a significantly different way. The goal of this review was to discuss this in more detail by reviewing the role of well-known RNA-binding proteins in Gram-positive bacteria and by highlighting their different behaviours with respect to some of their Gram-negative counterparts. Finally, the second part of this review introduces several unusual RNA-binding proteins of Gram-positive species that we believe could also play an important role in adaptive responses.
Collapse
Affiliation(s)
- Niki Christopoulou
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, UK
| | - Sander Granneman
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, UK
| |
Collapse
|
7
|
SpoVG is Necessary for Sporulation in Bacillus anthracis. Microorganisms 2020; 8:microorganisms8040548. [PMID: 32290166 PMCID: PMC7232415 DOI: 10.3390/microorganisms8040548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/01/2020] [Accepted: 04/08/2020] [Indexed: 01/24/2023] Open
Abstract
The Bacillus anthracis spore constitutes the infectious form of the bacterium, and sporulation is an important process in the organism’s life cycle. Herein, we show that disruption of SpoVG resulted in defective B. anthracis sporulation. Confocal microscopy demonstrated that a ΔspoVG mutant could not form an asymmetric septum, the first morphological change observed during sporulation. Moreover, levels of spoIIE mRNA were reduced in the spoVG mutant, as demonstrated using β-galactosidase activity assays. The effects on sporulation of the ΔspoVG mutation differed in B. anthracis from those in B. subtilis because of the redundant functions of SpoVG and SpoIIB in B. subtilis. SpoVG is highly conserved between B. anthracis and B. subtilis. Conversely, BA4688 (the protein tentatively assigned as SpoIIB in B. anthracis) and B. subtilis SpoIIB (SpoIIBBs) share only 27.9% sequence identity. On complementation of the B. anthracis ΔspoVG strain with spoIIBBs, the resulting strain pBspoIIBBs/ΔspoVG could not form resistant spores, but partially completed the prespore engulfment stage. In agreement with this finding, mRNA levels of the prespore engulfment gene spoIIM were significantly increased in strain pBspoIIBBs/ΔspoVG compared with the ΔspoVG strain. Transcription of the coat development gene cotE was similar in the pBspoIIBBs/ΔspoVG and ΔspoVG strains. Thus, unlike in B. subtilis, SpoVG appears to be required for sporulation in B. anthracis, which provides further insight into the sporulation mechanisms of this pathogen.
Collapse
|
8
|
Singh N, Hussain A, Kumar Singh S. Morphological transitions of Bacillus subtilis in the presence of food-grade lipidic nanoemulsions. J Food Sci 2020; 85:1223-1230. [PMID: 32147836 DOI: 10.1111/1750-3841.15088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/03/2020] [Accepted: 01/29/2020] [Indexed: 11/29/2022]
Abstract
The present study aims to study the antibacterial activity of food-grade lipidic nanoemulsion (noncationized/cationized) against Bacillus subtilis (BS). Bactericidal activity was ascertained by studying the morphological transitions on BS using transmission electron microscopy (TEM), atomic force microscopy (AFM), and scanning electron microscopy (SEM). Morphological changes were witnessed by cell wall breakage, oozing out of cellular contents, loss of cell turgidity and contour. Furthermore, aggregation of cationic nanoemulsion (CaNM) was preferentially observed at apical side of BS construing comparatively more electrostatic attraction between electronegative apical side and CaNM. Resistance response of BS exhibited by apical cell-wall thickening was not able to protect the bacteria due to leakage of cellular content. AFM corroborated its importance in bacteriology, wherein the fragmented cell wall can be "piece-by-piece" identified and sutured back to its appropriate vacant places, thereby, completing the cell wall contour of the ghost cell. Such postmortem analysis of bacterial cell using AFM studies can throw light toward mechanism of cell fragmentation of bacterial cells. SEM study also demonstrated the deformed, fragmented, and amorphous nature of BS construing the bactericidal effect of prepared nanoemulsion.
Collapse
Affiliation(s)
- Neeru Singh
- Department of Biomedical Laboratory Technology, University Polytechnic, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sandeep Kumar Singh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| |
Collapse
|
9
|
Disruption of SpoIIID decreases sporulation, increases extracellular proteolytic activity and virulence in Bacillus anthracis. Biochem Biophys Res Commun 2019; 513:651-656. [PMID: 30982579 DOI: 10.1016/j.bbrc.2019.04.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/08/2019] [Indexed: 11/20/2022]
Abstract
Endospores are important for maintenance of the B. anthracis lifecycle and necessary for its effective spread between hosts. Our experiments with B. anthracis showed that disruption of SpoIIID results in a spore formation defect, as determined by heat resistance assays and microscopic assessment. We further found complete engulfment by the ΔspoIIID mutant strain by membrane morphology staining but no synthesis of the clarity coat and exosporium by transmission electron microscopy. Reduced transcription and expression of small acid-soluble spore protein(sasP-2) and the spore development associated genes (σK, gerE and cotE) in the mother cell were found in the ΔspoIIID strain, suggesting that the spore formation defect in B. anthracis A16R is related to decreased transcription and expression of these genes. Extracellular protease and virulence enhancement in the ΔspoIIID strain may be related to the elevation of metalloproteinases (TasA and Camelysin) levels. Our findings pave the way for further research on the regulation network of sporulation, survival and virulence in these two morphological forms of B. anthracis.
Collapse
|
10
|
Zhu Q, Wen W, Wang W, Sun B. Transcriptional regulation of virulence factors Spa and ClfB by the SpoVG-Rot cascade in Staphylococcus aureus. Int J Med Microbiol 2018; 309:39-53. [PMID: 30392856 DOI: 10.1016/j.ijmm.2018.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/25/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus can produce numerous surface proteins involved in the adhesion and internalization of host cells, immune evasion, and inflammation initiation. Among these surface proteins, the microbial surface components recognizing adhesive matrix molecules contain many crucial cell wall-anchored virulence factors. The Sar-family regulatory protein Rot has been reported to regulate many important extracellular virulence factors at the transcriptional level, including Spa and clumping factor B. SpoVG, a global regulator in S. aureus, is known to control the expression of numerous genes. Here, we demonstrate that SpoVG can positively regulate the transcription of rot by directly binding to its promoter. SpoVG can also positively regulate the transcription of spa and clfB through direct-binding to their promoters and in a Rot-mediated manner. Furthermore, SpoVG can positively modulate the human fibrinogen-binding ability of S. aureus. In addition, phosphorylation of SpoVG by the serine/threonine kinase, Stk1, can positively regulate its binding to the promoters of rot, spa, and clfB. The human cell infection assay showed that the adhesion and internalization abilities were reduced in the spoVG mutant strain in comparison to those in the wild-type strain. Collectively, our data reveal a SpoVG-Rot regulatory cascade and novel molecular mechanisms in the virulence control in S. aureus.
Collapse
Affiliation(s)
- Qing Zhu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China
| | - Wen Wen
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China
| | - Wanying Wang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China
| | - Baolin Sun
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China.
| |
Collapse
|
11
|
SpoVG Is a Conserved RNA-Binding Protein That Regulates Listeria monocytogenes Lysozyme Resistance, Virulence, and Swarming Motility. mBio 2016; 7:e00240. [PMID: 27048798 PMCID: PMC4959528 DOI: 10.1128/mbio.00240-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In this study, we sought to characterize the targets of the abundant Listeria monocytogenes noncoding RNA Rli31, which is required for L. monocytogenes lysozyme resistance and pathogenesis. Whole-genome sequencing of lysozyme-resistant suppressor strains identified loss-of-expression mutations in the promoter of spoVG, and deletion of spoVG rescued lysozyme sensitivity and attenuation in vivo of the rli31 mutant. SpoVG was demonstrated to be an RNA-binding protein that interacted with Rli31 in vitro. The relationship between Rli31 and SpoVG is multifaceted, as both the spoVG-encoded protein and the spoVG 5′-untranslated region interacted with Rli31. In addition, we observed that spoVG-deficient bacteria were nonmotile in soft agar and suppressor mutations that restored swarming motility were identified in the gene encoding a major RNase in Gram-positive bacteria, RNase J1. Collectively, these findings suggest that SpoVG is similar to global posttranscriptional regulators, a class of RNA-binding proteins that interact with noncoding RNA, regulate genes in concert with RNases, and control pleiotropic aspects of bacterial physiology. spoVG is widely conserved among bacteria; however, the function of this gene has remained unclear since its initial characterization in 1977. Mutation of spoVG impacts various phenotypes in Gram-positive bacteria, including methicillin resistance, capsule formation, and enzyme secretion in Staphylococcus aureus and also asymmetric cell division, hemolysin production, and sporulation in Bacillus subtilis. Here, we demonstrate that spoVG mutant strains of Listeria monocytogenes are hyper-lysozyme resistant, hypervirulent, nonmotile, and misregulate genes controlling carbon metabolism. Furthermore, we demonstrate that SpoVG is an RNA-binding protein. These findings suggest that SpoVG has a role in L. monocytogenes, and perhaps in other bacteria, as a global gene regulator. Posttranscriptional gene regulators help bacteria adapt to various environments and coordinate differing aspects of bacterial physiology. SpoVG may help the organism coordinate environmental growth and virulence to survive as a facultative pathogen.
Collapse
|
12
|
AlGburi A, Volski A, Cugini C, Walsh EM, Chistyakov VA, Mazanko MS, Bren AB, Dicks LMT, Chikindas ML. Safety Properties and Probiotic Potential of <i>Bacillus subtilis</i> KATMIRA1933 and <i>Bacillus amyloliquefaciens</i> B-1895. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/aim.2016.66043] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|