1
|
Shyam M, Sidharth S, Veronica A, Jagannathan L, Srirangan P, Radhakrishnan V, Sabina EP. Diabetic retinopathy: a comprehensive review of pathophysiology and emerging treatments. Mol Biol Rep 2025; 52:380. [PMID: 40205024 DOI: 10.1007/s11033-025-10490-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 04/02/2025] [Indexed: 04/11/2025]
Abstract
Diabetic retinopathy constitutes a major complication associated with diabetes mellitus, resulting in visual impairment and blindness on a global scale. The pathophysiology of DR is characterized by intricate interactions among metabolic, hemodynamic, and inflammatory pathways, which include the activation of the polyol pathway, the accumulation of advanced glycation end products, the overactivation of protein kinase C, dysregulation of the renin-angiotensin-aldosterone system, and retinal neurodegeneration. This review investigates the classification, complex pathophysiology, and therapeutic modalities for DR, encompassing conventional interventions such as anti-VEGF agents, aldose reductase inhibitors, angiotensin receptor blockers, laser photocoagulation, and vitrectomy. Innovative treatments, including advanced anti-VEGF agents, neuroprotective strategies, gene and stem cell therapies, and advancements in drug delivery systems, exhibit considerable transformative potential. Furthermore, integrating artificial intelligence for early detection and modulation of inflammatory pathways signifies cutting-edge progress in the field. By integrating contemporary knowledge and prospective avenues, this review underscores the significance of comprehending the multifaceted nature of DR and the advancements in its therapeutic approaches. The objective is to bridge the gaps between research findings and clinical application, thereby providing a comprehensive resource to enhance outcomes and quality of life for individuals impacted by DR.
Collapse
Affiliation(s)
- Mukul Shyam
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - S Sidharth
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Aleen Veronica
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Lakshmipriya Jagannathan
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Prathap Srirangan
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Vidya Radhakrishnan
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Evan Prince Sabina
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
2
|
Bardak H, Uğuz AC, Bardak Y, Rocha-Pimienta J, Delgado-Adámez J, Espino J. Selenium Protects ARPE-19 and ACBRI 181 Cells against High Glucose-Induced Oxidative Stress. Molecules 2023; 28:5961. [PMID: 37630213 PMCID: PMC10459791 DOI: 10.3390/molecules28165961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Diabetic retinopathy (DR), a complication of diabetes mellitus (DM), can cause severe visual loss. The retinal pigment epithelium (RPE) plays a crucial role in retinal physiology but is vulnerable to oxidative damage. We investigated the protective effects of selenium (Se) on retinal pigment epithelium (ARPE-19) and primary human retinal microvascular endothelial (ACBRI 181) cells against high glucose (HG)-induced oxidative stress and apoptotic cascade. To achieve this objective, we utilized varying concentrations of D-glucose (ranging from 5 to 80 mM) to induce the HG model. HG-induced oxidative stress in ARPE-19 and ACBRI 181 cells and the apoptotic cascade were evaluated by determining Ca2+ overload, mitochondrial membrane depolarization, caspase-3/-9 activation, intracellular reactive oxygen species (ROS), lipid peroxidation (LP), glutathione (GSH), glutathione peroxidase (GSH-Px), vascular endothelial growth factor (VEGF) and apoptosis levels. A cell viability assay utilizing MTT was conducted to ascertain the optimal concentration of Se to be employed. The quantification of MTT, ROS, VEGF levels, and caspase-3 and -9 activation was accomplished using a plate reader. To quantitatively assess LP and GSH levels, GSH-Px activities were utilized by spectrophotometer and apoptosis, mitochondrial membrane depolarization, and the release of Ca2+ from intracellular stores were evaluated by spectrofluorometer. Our investigation revealed a significant augmentation in oxidative stress induced by HG, leading to cellular damage through modulation of mitochondrial membrane potential, ROS levels, and intracellular Ca2+ release. Incubation with Se resulted in a notable reduction in ROS production induced by HG, as well as a reduction in apoptosis and the activation of caspase-3 and -9. Additionally, Se incubation led to decreased levels of VEGF and LP while concurrently increasing levels of GSH and GSH-Px. The findings from this study strongly suggest that Se exerts a protective effect on ARPE-19 and ACBRI 181 cells against HG-induced oxidative stress and apoptosis. This protective mechanism is partially mediated through the intracellular Ca2+ signaling pathway.
Collapse
Affiliation(s)
- Handan Bardak
- Department of Ophthalmology, Asya Hospital, 34100 Istanbul, Turkey;
| | - Abdülhadi Cihangir Uğuz
- Department of Biophysics, Faculty of Medicine, Karamanoğlu Mehmetbey University, 70100 Karaman, Turkey
| | | | - Javier Rocha-Pimienta
- Technological Agri-Food Institute (CICYTEX-INTAEX), Junta of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain; (J.R.-P.); (J.D.-A.)
| | - Jonathan Delgado-Adámez
- Technological Agri-Food Institute (CICYTEX-INTAEX), Junta of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain; (J.R.-P.); (J.D.-A.)
| | - Javier Espino
- Department of Physiology, Faculty of Science, University of Extremadura, Avda. de Elvas, s/n, 06006 Badajoz, Spain
| |
Collapse
|
3
|
Tsurudome Y, Morita N, Horiguchi M, Ushijima K. Decreased ZO1 expression causes loss of time-dependent tight junction function in the liver of ob/ob mice. Mol Biol Rep 2022; 49:11881-11890. [PMID: 36224445 DOI: 10.1007/s11033-022-07940-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/18/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022]
Abstract
Diabetes patients are at a high risk of developing complications related to angiopathy and disruption of the signal transduction system. The liver is one of the multiple organs damaged during diabetes. Few studies have evaluated the morphological effects of adhesion factors in diabetic liver. The influence of diurnal variation has been observed in the expression and functioning of adhesion molecules to maintain tissue homeostasis associated with nutrient uptake. The present study demonstrated that the rhythm-influenced functioning of tight junction was impaired in the liver of ob/ob mice. The tight junctions of hepatocytes were loosened during the dark period in control mice compared to those in ob/ob mice, where the hepatocyte gaps remained open throughout the day. The time-dependent expression of zonula occludens 1 (ZO1, encoded by Tjp1 gene) in the liver plays a vital role in the functioning of the tight junction. The time-dependent expression of ZO1 was nullified and its expression was attenuated in the liver of ob/ob mice. ZO1 expression was inhibited at the mRNA and protein levels. The expression rhythm of ZO1 was found to be regulated by heat shock factor (HSF)1/2, the expression of which was reduced in the liver of ob/ob mice. The DNA-binding ability of HSF1/2 was decreased in the liver of ob/ob mice compared to that in control mice. These findings suggest the involvement of impaired expression and functioning of adhesion factors in diabetic liver complications.
Collapse
Affiliation(s)
- Yuya Tsurudome
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 756-0884, Yamaguchi, Japan
| | - Nao Morita
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 756-0884, Yamaguchi, Japan
| | - Michiko Horiguchi
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 756-0884, Yamaguchi, Japan
| | - Kentaro Ushijima
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 756-0884, Yamaguchi, Japan. .,Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Tochigi, Japan.
| |
Collapse
|
4
|
Pan D, Xu L, Guo M. The role of protein kinase C in diabetic microvascular complications. Front Endocrinol (Lausanne) 2022; 13:973058. [PMID: 36060954 PMCID: PMC9433088 DOI: 10.3389/fendo.2022.973058] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Protein kinase C (PKC) is a family of serine/threonine protein kinases, the activation of which plays an important role in the development of diabetic microvascular complications. The activation of PKC under high-glucose conditions stimulates redox reactions and leads to an accumulation of redox stress. As a result, various types of cells in the microvasculature are influenced, leading to changes in blood flow, microvascular permeability, extracellular matrix accumulation, basement thickening and angiogenesis. Structural and functional disorders further exacerbate diabetic microvascular complications. Here, we review the roles of PKC in the development of diabetic microvascular complications, presenting evidence from experiments and clinical trials.
Collapse
Affiliation(s)
- Deng Pan
- Xiyuan hospital of China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Lin Xu
- Gynecological Department of Traditional Chinese Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Ming Guo
- Xiyuan hospital of China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Liu X, Zhou X, Song W, Zeng J, Niu X, Meng R. The Diagnostic Value of Circulating VEGF in Diabetic Retinopathy in Asia: A Systematic Review and Meta-analysis. Ophthalmic Epidemiol 2022; 30:230-238. [PMID: 35796414 DOI: 10.1080/09286586.2022.2088805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE Vascular endothelial growth factor (VEGF) has obvious clinical value in diabetes, but the conclusions on the diagnostic value of diabetic retinopathy (DR) are not consistent. This study aims to comprehensively evaluate the accuracy of circulating VEGF in the diagnosis of DR in the Asian population by a method of meta-analysis. METHODS PubMed, Cochrane Library, Embase, Web of Science, China National Knowledge Infrastructure (CNKI), and China Wanfang Databases were searched for relevant studies on the diagnostic value of VEGF for DR in Asia up to November 2021. The pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and areas under the curve (AUC) were calculated by Stata 15.0 software. RESULTS After screening, eight eligible studies were enrolled, including 547 patients with DR. The results of the meta-analysis showed that the pooled DOR, sensitivity, specificity, PLR, and NLR were 31.67 (95%CI: 13.55 ~ 74.05), 0.86 (95%CI: 0.74 ~ 0.93), 0.84 (95%CI: 0.80 ~ 0.87), 5.33 (95%CI: 4.09 ~ 6.93), 0.17 (95%CI: 0.09 ~ 0.32), respectively. The AUC was 0.86 (95%CI: 0.82 ~ 0.89). CONCLUSION Circulating VEGF has a good diagnostic value in DR in the Asian population, with the potential to be an early diagnostic marker for DR.
Collapse
Affiliation(s)
- Xiaobing Liu
- Department of Endocrinology, HuiDong People's Hospital, Huizhou, Guangdong, China
| | - Xiaoping Zhou
- Department of Ophthalmology, Chenzhou First People's Hospital, Chenzhou, Hunan, China
| | - Weiqiong Song
- Department of Ophthalmology, Chenzhou First People's Hospital, Chenzhou, Hunan, China
| | - Jiechun Zeng
- Department of Endocrinology, HuiDong People's Hospital, Huizhou, Guangdong, China
| | - Xiuxiu Niu
- Department of Endocrinology, HuiDong People's Hospital, Huizhou, Guangdong, China
| | - Ran Meng
- Cadre Ward, The 903rd Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Wright WS, Eshaq RS, Lee M, Kaur G, Harris NR. Retinal Physiology and Circulation: Effect of Diabetes. Compr Physiol 2020; 10:933-974. [PMID: 32941691 PMCID: PMC10088460 DOI: 10.1002/cphy.c190021] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this article, we present a discussion of diabetes and its complications, including the macrovascular and microvascular effects, with the latter of consequence to the retina. We will discuss the anatomy and physiology of the retina, including aspects of metabolism and mechanisms of oxygenation, with the latter accomplished via a combination of the retinal and choroidal blood circulations. Both of these vasculatures are altered in diabetes, with the retinal circulation intimately involved in the pathology of diabetic retinopathy. The later stages of diabetic retinopathy involve poorly controlled angiogenesis that is of great concern, but in our discussion, we will focus more on several alterations in the retinal circulation occurring earlier in the progression of disease, including reductions in blood flow and a possible redistribution of perfusion that may leave some areas of the retina ischemic and hypoxic. Finally, we include in this article a more recent area of investigation regarding the diabetic retinal vasculature, that is, the alterations to the endothelial surface layer that normally plays a vital role in maintaining physiological functions. © 2020 American Physiological Society. Compr Physiol 10:933-974, 2020.
Collapse
Affiliation(s)
- William S Wright
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, South Carolina, USA
| | - Randa S Eshaq
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Minsup Lee
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Gaganpreet Kaur
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Norman R Harris
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
7
|
Li Z, Hu J, Guo J, Fan L, Wang S, Dou N, Zuo J, Yu S. SSeCKS/Gravin/AKAP12 Inhibits PKCζ-Mediated Reduction of ERK5 Transactivation to Prevent Endotoxin-Induced Vascular dysfunction. Cardiovasc Toxicol 2020; 19:372-381. [PMID: 30805771 DOI: 10.1007/s12012-018-09502-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SSeCKS/Gravin/AKAP12 is a protein kinase C (PKC) substrate that inhibits the activity of PKC through binding with it. SSeCKS is expressed in vascular endothelial cells (ECs). The atypical PKC isoform ζ (PKCζ) is a pathologic mediator of endothelial dysfunction. However, the functional significance of SSeCKS/PKCζ dimerization in the vascular endothelium remains poorly understood. Given this background, we investigated the effects of SSeCKS on endothelial dysfunction and elucidated the possible mechanism involved. Vascular endothelial dysfunction and inflammatory changes were induced by treatment with bacterial endotoxin lipopolysaccharide (LPS, a vascular endothelial toxicity inducer). LPS can increase the level of SSeCKS. However, we also found that depletion of SSeCKS aggravated the LPS-induced vascular endothelial dysfunction, upregulated pro-inflammatory proteins and phosphorylation level of PKCζ, increased ROS formation, decreased extracellular-signal-regulated kinase 5 (ERK5) transcriptional activity, and reduced eNOS expression. Further examination revealed that depletion of SSeCKS increased PKCζ/ERK5 dimerization. These findings provide preliminary evidence that the expression of SSeCKS induced by LPS, as a negative feedback mechanism, has the potential to improve endothelium-dependent relaxation in vascular disease conditions by inhibiting PKCζ-mediated reduction of ERK5 transactivation.
Collapse
Affiliation(s)
- Zilin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710032, China
| | - Jing Hu
- Department of Pharmacy, General Hospital of Lanzhou Command, PLA, Lanzhou, 730050, China
| | - Jian Guo
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710032, China
| | - Li Fan
- Outpatient Department, PLA, Unit 32058, Chengdu, 610100, China
| | - Shaowei Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710032, China
| | - Ning Dou
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710032, China
| | - Jian Zuo
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710032, China.
| | - Shiqiang Yu
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710032, China.
| |
Collapse
|
8
|
Adki KM, Kulkarni YA. Potential Biomarkers in Diabetic Retinopathy. Curr Diabetes Rev 2020; 16:971-983. [PMID: 32065092 DOI: 10.2174/1573399816666200217092022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/28/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Diabetic retinopathy is one of the important complications of diabetes. In major cases, diabetic retinopathy is unnoticed until the irreversible damage to eye occurs and leads to blurred vision and, eventually, blindness. OBJECTIVE The pathogenesis and diagnosis of diabetic retinopathy are very complex and not fully understood. Currently, well-established laser techniques and medications are available, but these treatment options have their own shortcomings on biological systems. Biomarkers can help to overcome this problem due to easy, fast and economical options for diagnosis of diabetic retinopathy. METHODS The search terms used were "Diabetic retinopathy", "Biomarkers in diabetic retinopathy", "Novel biomarkers in diabetic retinopathy" and "Potential biomarkers of diabetic retinopathy" by using different scientific resources and databases like EBSCO, ProQuest, PubMed and Scopus. Eligibility criteria included biomarkers involved in diabetic retinopathy in the detectable range. Exclusion criteria included the repetition and duplication of the biomarker in diabetic retinopathy. RESULTS Current review and literature study revealed that biomarkers of diabetic retinopathy can be categorized as inflammatory: tumor necrosis factor-α, monocyte chemoattractant protein-1, transforming growth factor- β; antioxidant: nicotinamide adenine dinucleotide phosphate oxidase; nucleic acid: poly ADP ribose polymerase- α, Apelin, Oncofetal; enzyme: ceruloplasmin, protein kinase C; and miscellaneous: erythropoietin. These biomarkers have a great potential in the progression of diabetic retinopathy hence can be used in the diagnosis and management of this debilitating disease. CONCLUSION Above mentioned biomarkers play a key role in the pathogenesis of diabetic retinopathy; hence they can also be considered as potential targets for new drug development.
Collapse
Affiliation(s)
- Kaveri M Adki
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (West), Mumbai-400056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (West), Mumbai-400056, India
| |
Collapse
|
9
|
Cong X, Kong W. Endothelial tight junctions and their regulatory signaling pathways in vascular homeostasis and disease. Cell Signal 2019; 66:109485. [PMID: 31770579 DOI: 10.1016/j.cellsig.2019.109485] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Endothelial tight junctions (TJs) regulate the transport of water, ions, and molecules through the paracellular pathway, serving as an important barrier in blood vessels and maintaining vascular homeostasis. In endothelial cells (ECs), TJs are highly dynamic structures that respond to multiple external stimuli and pathological conditions. Alterations in the expression, distribution, and structure of endothelial TJs may lead to many related vascular diseases and pathologies. In this review, we provide an overview of the assessment methods used to evaluate endothelial TJ barrier function both in vitro and in vivo and describe the composition of endothelial TJs in diverse vascular systems and ECs. More importantly, the direct phosphorylation and dephosphorylation of TJ proteins by intracellular kinases and phosphatases, as well as the signaling pathways involved in the regulation of TJs, including and the protein kinase C (PKC), PKA, PKG, Ras homolog gene family member A (RhoA), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Akt, and Wnt/β-catenin pathways, are discussed. With great advances in this area, targeting endothelial TJs may provide novel treatment for TJ-related vascular pathologies.
Collapse
Affiliation(s)
- Xin Cong
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| | - Wei Kong
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| |
Collapse
|
10
|
Atypical Protein Kinase C: Breaking Down Barriers in Ocular Disease? THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2142-2146. [PMID: 30220553 DOI: 10.1016/j.ajpath.2018.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 11/21/2022]
Abstract
This commentary highlights the article by Lin et al that demonstrates the therapeutic potential of small-molecule atypical protein kinase C inhibitors in inflammatory ocular disease.
Collapse
|
11
|
Tai ELM, Kueh YC, Wan Hitam WH, Wong TY, Shatriah I. Comparison of retinal vascular geometry in obese and non-obese children. PLoS One 2018; 13:e0191434. [PMID: 29389952 PMCID: PMC5794084 DOI: 10.1371/journal.pone.0191434] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/04/2018] [Indexed: 11/19/2022] Open
Abstract
Purpose Childhood obesity is associated with adult cardiometabolic disease. We postulate that the underlying microvascular dysfunction begins in childhood. We thus aimed to compare retinal vascular parameters between obese and non-obese children. Methods This was a cross-sectional study involving 166 children aged 6 to 12 years old in Malaysia. Ocular examination, biometry, retinal photography, blood pressure and body mass index measurement were performed. Participants were divided into two groups; obese and non-obese. Retinal vascular parameters were measured using validated software. Results Mean age was 9.58 years. Approximately 51.2% were obese. Obese children had significantly narrower retinal arteriolar caliber (F(1,159) = 6.862, p = 0.010), lower arteriovenous ratio (F(1,159) = 17.412, p < 0.001), higher venular fractal dimension (F(1,159) = 4.313, p = 0.039) and higher venular curvature tortuosity (F(1,158) = 5.166, p = 0.024) than non-obese children, after adjustment for age, gender, blood pressure and axial length. Conclusions Obese children have abnormal retinal vascular geometry. These findings suggest that childhood obesity is characterized by early microvascular abnormalities that precede development of overt disease. Further research is warranted to determine if these parameters represent viable biomarkers for risk stratification in obesity.
Collapse
Affiliation(s)
- Evelyn Li Min Tai
- Department of Ophthalmology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- * E-mail: (ELMT); (YCK); (IS)
| | - Yee Cheng Kueh
- Unit of Biostatistics & Research Methodology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- * E-mail: (ELMT); (YCK); (IS)
| | - Wan-Hazabbah Wan Hitam
- Department of Ophthalmology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- DUKE-NUS Medical School, Singapore, Singapore
- Centre for Eye Research Australia, University of Melbourne, Melbourne, Australia
| | - Ismail Shatriah
- Department of Ophthalmology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- * E-mail: (ELMT); (YCK); (IS)
| |
Collapse
|
12
|
Eshaq RS, Aldalati AMZ, Alexander JS, Harris NR. Diabetic retinopathy: Breaking the barrier. PATHOPHYSIOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR PATHOPHYSIOLOGY 2017; 24:229-241. [PMID: 28732591 PMCID: PMC5711541 DOI: 10.1016/j.pathophys.2017.07.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 06/26/2017] [Accepted: 07/04/2017] [Indexed: 12/28/2022]
Abstract
Diabetic retinopathy (DR) remains a major complication of diabetes and a leading cause of blindness among adults worldwide. DR is a progressive disease affecting both type I and type II diabetic patients at any stage of the disease, and targets the retinal microvasculature. DR results from multiple biochemical, molecular and pathophysiological changes to the retinal vasculature, which affect both microcirculatory functions and ultimately photoreceptor function. Several neural, endothelial, and support cell (e.g., pericyte) mechanisms are altered in a pathological fashion in the hyperglycemic environment during diabetes that can disturb important cell surface components in the vasculature producing the features of progressive DR pathophysiology. These include loss of the glycocalyx, blood-retinal barrier dysfunction, increased expression of inflammatory cell markers and adhesion of blood leukocytes and platelets. Included in this review is a discussion of modifications that occur at or near the surface of the retinal vascular endothelial cells, and the consequences of these alterations on the integrity of the retina.
Collapse
Affiliation(s)
- Randa S Eshaq
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center -Shreveport, 1501 Kings Highway, Shreveport, LA 71130, United States
| | - Alaa M Z Aldalati
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center -Shreveport, 1501 Kings Highway, Shreveport, LA 71130, United States
| | - J Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center -Shreveport, 1501 Kings Highway, Shreveport, LA 71130, United States
| | - Norman R Harris
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center -Shreveport, 1501 Kings Highway, Shreveport, LA 71130, United States.
| |
Collapse
|
13
|
Mechanisms of macular edema: Beyond the surface. Prog Retin Eye Res 2017; 63:20-68. [PMID: 29126927 DOI: 10.1016/j.preteyeres.2017.10.006] [Citation(s) in RCA: 408] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/24/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023]
Abstract
Macular edema consists of intra- or subretinal fluid accumulation in the macular region. It occurs during the course of numerous retinal disorders and can cause severe impairment of central vision. Major causes of macular edema include diabetes, branch and central retinal vein occlusion, choroidal neovascularization, posterior uveitis, postoperative inflammation and central serous chorioretinopathy. The healthy retina is maintained in a relatively dehydrated, transparent state compatible with optimal light transmission by multiple active and passive systems. Fluid accumulation results from an imbalance between processes governing fluid entry and exit, and is driven by Starling equation when inner or outer blood-retinal barriers are disrupted. The multiple and intricate mechanisms involved in retinal hydro-ionic homeostasis, their molecular and cellular basis, and how their deregulation lead to retinal edema, are addressed in this review. Analyzing the distribution of junction proteins and water channels in the human macula, several hypotheses are raised to explain why edema forms specifically in the macular region. "Pure" clinical phenotypes of macular edema, that result presumably from a single causative mechanism, are detailed. Finally, diabetic macular edema is investigated, as a complex multifactorial pathogenic example. This comprehensive review on the current understanding of macular edema and its mechanisms opens perspectives to identify new preventive and therapeutic strategies for this sight-threatening condition.
Collapse
|
14
|
Li MS, Xin M, Guo CL, Lin GM, Li J, Wu XG. Differential expression of breast cancer-resistance protein, lung resistance protein, and multidrug resistance protein 1 in retinas of streptozotocin-induced diabetic mice. Int J Ophthalmol 2017; 10:515-523. [PMID: 28503421 DOI: 10.18240/ijo.2017.04.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 01/13/2017] [Indexed: 11/23/2022] Open
Abstract
AIM To investigate the altering expression profiles of efflux transporters such as breast cancer-resistance protein (BCRP), lung resistance protein (LRP), and multidrug resistance protein 1 (MDR1) at the inner blood-retinal barrier (BRB) during the development of early diabetic retinopathy (DR) and/or aging in mice. METHODS Relative mRNA and protein expression profiles of these three efflux transporters in the retina during the development of early DR and/or aging in mice were examined. The differing expression profiles of Zonula occludens 1 (ZO-1) and vascular endothelial growth factor-A (VEGFA) in the retina as well as the perfusion characterization of fluorescein isothiocyanate (FITC)-dextran and Evans blue were examined to evaluate the integrity of the inner BRB. RESULTS There were significant alterations in these three efflux transporters' expression profiles in the mRNA and protein levels of the retina during the development of diabetes mellitus and/or aging. The development of early DR was confirmed by the expression profiles of ZO-1 and VEGFA in the retina as well as the compromised integrity of the inner BRB. CONCLUSION The expression profiles of some efflux transporters such as BCRP, LRP, and MDR1 in mice retina during diabetic and/or aging conditions are tested, and the attenuated expression of BCRP, LRP, and MDR1 along with the breakdown of the inner BRB is found, which may be linked to the pathogenesis of early DR.
Collapse
Affiliation(s)
- Meng-Shuang Li
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250022, Shandong Province, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China.,Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong Province, China
| | - Meng Xin
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong Province, China.,Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, Shandong Province, China
| | - Chuan-Long Guo
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| | - Gui-Ming Lin
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250022, Shandong Province, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| | - Jun Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| | - Xiang-Gen Wu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250022, Shandong Province, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China.,Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong Province, China
| |
Collapse
|
15
|
Ip MS, Zhang J, Ehrlich JS. The Clinical Importance of Changes in Diabetic Retinopathy Severity Score. Ophthalmology 2017; 124:596-603. [PMID: 28284785 DOI: 10.1016/j.ophtha.2017.01.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/19/2016] [Accepted: 01/03/2017] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To investigate the clinical importance of changes in diabetic retinopathy severity score (DRSS) in patients with diabetic macular edema (DME) treated with intravitreal ranibizumab. DESIGN Post hoc analysis of the phase III RIDE and RISE studies of ranibizumab for treatment of DME. PARTICIPANTS Four hundred sixty-eight eyes treated with ranibizumab from randomization with gradable DRSS on baseline fundus photographs. METHODS Visual and anatomic outcomes were examined in eyes grouped according to DRSS change from baseline to month 24. MAIN OUTCOME MEASURES Mean best-corrected visual acuity (BCVA) letter score change, proportion of patients with 15 or more Early Treatment Diabetic Retinopathy Study (ETDRS) letter score change, mean contrast sensitivity change, proportion of patients with resolved macular edema, and leakage on fluorescein angiography. RESULTS Most (56.8%) patients treated with ranibizumab experienced 1-step or more improvement in DRSS from baseline to month 24; 40.0% had no change, and 3.2% experienced DRSS worsening. Patients with DRSS stability or improvement had greater mean BCVA letter score changes (+15.1, +14.2, +11.3, and +11.2 letters for ≥3-step improvement, ≥2-step improvement, 1-step improvement, and no DRSS change, respectively) compared with +5.0 letters in patients who had any DRSS worsening. Best-corrected visual acuity letter score gain of 15 letters or more was more common in patients with 2-step or 3-step or more DRSS improvement (51.9% and 44.6%, respectively) compared with those with a 1-step DRSS improvement, no change, or worsening (37.9%, 39.6%, and 26.7%, respectively). A loss of 15 letters or more in BCVA was more common in patients with any DRSS worsening (13.3%) compared with patients who had stable or improved DRSS (0%-2.8%). Resolution of macular edema was more common in patients with DRSS improvement: 84.2%, 87.7%, and 92.3% of patients with 1-step, 2-step or more, and 3-step or more improvement in DRSS achieved central foveal thickness of 250 μm or less, compared with 65.2% and 53.3% of patients who had no DRSS change or any DRSS worsening. CONCLUSIONS These findings provide further support that improvement in DRSS is a clinically important outcome that should be evaluated as a measure of treatment effectiveness in future studies of diabetic eye disease.
Collapse
Affiliation(s)
- Michael S Ip
- Doheny Eye Institute, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California.
| | | | | |
Collapse
|
16
|
Jiang M, Qin C, Han M. Primary breast cancer induces pulmonary vascular hyperpermeability and promotes metastasis via the VEGF-PKC pathway. Mol Carcinog 2015; 55:1087-95. [PMID: 26152457 DOI: 10.1002/mc.22352] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/20/2015] [Accepted: 05/28/2015] [Indexed: 01/22/2023]
Abstract
The lung is one of the most frequent target organs for breast cancer metastasis. When breast cancer cells from a primary tumor do not colonize the lung, which we named the premetastatic phase, the microenvironment of the lung has already been influenced by the primary tumor. However, little is known about the exact premetastatic alteration and regulatory mechanisms of the lung. Here, we used 4T1 cells (a mouse breast cancer cell line which can specifically metastasize to the lung) to build a mouse breast cancer model. We found that primary breast tumor induced increased pulmonary vascular permeability in the premetastatic phase, which facilitated the leakage of rhodamine-dextran and the extravasation of intravenous therapy injected cancer cells. Furthermore, tight junctions (TJs) were disrupted, and the expression of zonula occludens-1(ZO-1), one of the most important components of tight junctions, was decreased in the premetastatic lung. In addition, elevated serum vascular endothelial growth factor (VEGF) was involved in the destabilization of tight junctions and the VEGF antagonist bevacizumab reversed the primary tumor-induced vascular hyperpermeability. Moreover, activation of the protein kinase C (PKC) pathway disrupted the integrity of TJs and accordingly, the disruption could be alleviated by blocking VEGF. Taken together, these data demonstrate that primary breast cancer may induce tight junction disruptions in the premetastatic lung via the VEGF-PKC pathway and promote pulmonary vascular hyperpermeability before metastasis. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Man Jiang
- Cancer Therapy and Research Center, Shandong Provincial Hospital, Shandong University, Jinan, PR China
| | - Chengyong Qin
- Cancer Therapy and Research Center, Shandong Provincial Hospital, Shandong University, Jinan, PR China
| | - Mingyong Han
- Cancer Therapy and Research Center, Shandong Provincial Hospital, Shandong University, Jinan, PR China
| |
Collapse
|
17
|
Burke RM, Berk BC. The Role of PB1 Domain Proteins in Endothelial Cell Dysfunction and Disease. Antioxid Redox Signal 2015; 22:1243-56. [PMID: 25686626 DOI: 10.1089/ars.2014.6182] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE There are a limited number of proteins containing the Phox-Bem1 (PB1) protein interaction domain, and almost all of them play some role in endothelial cell (EC) function, health, and homeostasis. RECENT ADVANCES Most of these proteins have been shown to physically interact through PB1-PB1 binding and, as such, are linked together to form complexes that are responsive to hemodynamic force. These complexes range from redox regulation to inflammation to autophagy and back, and they employ multiple feedback mechanisms that are reliant on PB1 domain proteins. CRITICAL ISSUES Pathologic roles for PB1 domain-containing proteins have been demonstrated in multiple diseases, including vascular disease, cancer, liver disease, and myriad other concerns. Findings cited in this review show that dimerization of PB1 proteins exerts novel effects on EC function that may be important in multiple cardiovascular diseases, including atherosclerosis, thrombosis, inflammation, and hypertension. FUTURE DIRECTIONS As mechanistic understanding of the component pathways (redox regulation, cell polarity, inflammation, atheroprotection, and autophagy) is continually increasing, the larger picture of how these pathways interact with one another is evolving rapidly. We can now evaluate the PB1 domain proteins as a family in the context of multiple phenotypic readouts in EC function as well as evaluate them as drug targets against disease.
Collapse
Affiliation(s)
- Ryan M Burke
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester Medical Center , Rochester, New York
| | | |
Collapse
|
18
|
Jiang Y, Zhang Q, Steinle JJ. Beta-adrenergic receptor agonist decreases VEGF levels through altered eNOS and PKC signaling in diabetic retina. Growth Factors 2015; 33:192-9. [PMID: 26115368 PMCID: PMC4791949 DOI: 10.3109/08977194.2015.1054990] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Vascular endothelial cell growth factor (VEGF) is increased in diabetic macular edema. Compound 49b, a novel β-adrenergic receptor agonist, is protective in a type 1 diabetic rat model. We questioned whether Compound 49b could decrease VEGF levels, suggesting that Compound 49b may be effective against edema. Two-month diabetic rats received topical Compound 49b for 7 days only and/or insulin-like growth factor binding protein 3 (IGFBP-3) siRNA. We also measured endothelial nitric oxide synthase (eNOS) and protein kinase C (PKC)ζ and PKCδ phosphorylation. Retinal endothelial cells (RECs) cultured in high glucose were treated with Compound 49b and IGFBP-3 siRNA for evaluation of the same signaling pathways. Compound 49b significantly decreased VEGF through increased IGFBP-3 in the diabetic retina. Compound 49b also reduced eNOS, PKCζ and PKCδ phosphorylation in the diabetic retina and REC. Compound 49b regulated a number of proteins involved in REC barrier properties.
Collapse
Affiliation(s)
- Youde Jiang
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI, USA
| | - Qiuhua Zhang
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jena J. Steinle
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI, USA
- Department of Ophthalmology, Wayne State University, Detroit, MI, USA
| |
Collapse
|