1
|
Wolfe AR, Feng H, Zuniga O, Rodrigues H, Eldridge DE, Yang L, Shen C, Williams TM. RAS-RAF-miR-296-3p signaling axis increases Rad18 expression to augment radioresistance in pancreatic and thyroid cancers. Cancer Lett 2024; 591:216873. [PMID: 38604313 PMCID: PMC11132429 DOI: 10.1016/j.canlet.2024.216873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/18/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024]
Abstract
Oncogenic RAS and RAF signaling has been implicated in contributing to radioresistance in pancreatic and thyroid cancers. In this study, we sought to better clarify molecular mechanisms contributing to this effect. We discovered that miRNA 296-3p (miR-296-3p) is significantly correlated with radiosensitivity in a panel of pancreatic cancer cells, and miR-296-3p is highly expressed in normal cells, but low in cancer cell lines. Elevated expression of miR-296-3p increases radiosensitization while decreasing the expression of the DNA repair enzyme RAD18 in both pancreatic and thyroid cancer cells. RAD18 is overexpressed in both pancreatic and thyroid tumors compared to matched normal controls, and high expression of RAD18 in tumors is associated with poor prognostic features. Modulating the expression of mutant KRAS in pancreatic cancer cells or mutant BRAF in thyroid cancer cells demonstrates a tight regulation of RAD18 expression in both cancer types. Depletion of RAD18 results in DNA damage and radiation-induced cell death. Importantly, RAD18 depletion in combination with radiotherapy results in marked and sustained tumor regression in KRAS mutant pancreatic cancer orthotopic tumors and BRAF mutant thyroid heterotopic tumors. Overall, our findings identify a novel coordinated RAS/RAF-miR-296-3p-RAD18 signaling network in pancreatic and thyroid cancer cells, which leads to enhanced radioresistance.
Collapse
Affiliation(s)
- Adam R Wolfe
- Department of Radiation Oncology, The University of Arkansas for Medical Sciences, The Winthrop P. Rockefeller Cancer Institute, Little Rock, AR, USA
| | - Haihua Feng
- Department of Radiation Oncology, City of Hope, Duarte, CA, USA
| | - Oscar Zuniga
- Department of Radiation Oncology, The University of Arkansas for Medical Sciences, The Winthrop P. Rockefeller Cancer Institute, Little Rock, AR, USA
| | - Henrique Rodrigues
- Department of Radiation Oncology, The University of Arkansas for Medical Sciences, The Winthrop P. Rockefeller Cancer Institute, Little Rock, AR, USA
| | - Daniel E Eldridge
- Department of Veterinary Medicine, The University of Arkansas for Medical Sciences, The Winthrop P. Rockefeller Cancer Institute, Little Rock, AR, USA
| | - Linlin Yang
- Department of Radiation Oncology, City of Hope, Duarte, CA, USA
| | - Changxian Shen
- Department of Radiation Oncology, City of Hope, Duarte, CA, USA
| | | |
Collapse
|
2
|
Ma X, Fu H, Sun C, Wu W, Hou W, Zhou Z, Zheng H, Gong Y, Wu H, Qin J, Lou H, Li J, Tang TS, Guo C. RAD18 O-GlcNAcylation promotes translesion DNA synthesis and homologous recombination repair. Cell Death Dis 2024; 15:321. [PMID: 38719812 PMCID: PMC11078974 DOI: 10.1038/s41419-024-06700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
RAD18, an important ubiquitin E3 ligase, plays a dual role in translesion DNA synthesis (TLS) and homologous recombination (HR) repair. However, whether and how the regulatory mechanism of O-linked N-acetylglucosamine (O-GlcNAc) modification governing RAD18 and its function during these processes remains unknown. Here, we report that human RAD18, can undergo O-GlcNAcylation at Ser130/Ser164/Thr468, which is important for optimal RAD18 accumulation at DNA damage sites. Mechanistically, abrogation of RAD18 O-GlcNAcylation limits CDC7-dependent RAD18 Ser434 phosphorylation, which in turn significantly reduces damage-induced PCNA monoubiquitination, impairs Polη focus formation and enhances UV sensitivity. Moreover, the ubiquitin and RAD51C binding ability of RAD18 at DNA double-strand breaks (DSBs) is O-GlcNAcylation-dependent. O-GlcNAcylated RAD18 promotes the binding of RAD51 to damaged DNA during HR and decreases CPT hypersensitivity. Our findings demonstrate a novel role of RAD18 O-GlcNAcylation in TLS and HR regulation, establishing a new rationale to improve chemotherapeutic treatment.
Collapse
Affiliation(s)
- Xiaolu Ma
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101, China
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Hui Fu
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chenyi Sun
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101, China
| | - Wei Wu
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101, China
| | - Wenya Hou
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Zibin Zhou
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Hui Zheng
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yifei Gong
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Honglin Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Junying Qin
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101, China
| | - Huiqiang Lou
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| | - Tie-Shan Tang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Caixia Guo
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
3
|
Tian Y, Zhou Y, Chen F, Qian S, Hu X, Zhang B, Liu Q. Research progress in MCM family: Focus on the tumor treatment resistance. Biomed Pharmacother 2024; 173:116408. [PMID: 38479176 DOI: 10.1016/j.biopha.2024.116408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
Malignant tumors constitute a significant category of diseases posing a severe threat to human survival and health, thereby representing one of the most challenging and pressing issues in the field of biomedical research. Due to their malignant nature, which is characterized by a high potential for metastasis, rapid dissemination, and frequent recurrence, the prevailing approach in clinical oncology involves a comprehensive treatment strategy that combines surgery with radiotherapy, chemotherapy, targeted drug therapies, and other interventions. Treatment resistance remains a major obstacle in the comprehensive management of tumors, serving as a primary cause for the failure of integrated tumor therapies and a critical factor contributing to patient relapse and mortality. The Minichromosome Maintenance (MCM) protein family comprises functional proteins closely associated with the development of resistance in tumor therapy.The influence of MCMs manifests through various pathways, encompassing modulation of DNA replication, cell cycle regulation, and DNA damage repair mechanisms. Consequently, this leads to an enhanced tolerance of tumor cells to chemotherapy, targeted drugs, and radiation. Consequently, this review explores the specific roles of the MCM family in various cancer treatment strategies. Its objective is to enhance our comprehension of resistance mechanisms in tumor therapy, thereby presenting novel targets for clinical research aimed at overcoming resistance in cancer treatment. This bears substantial clinical relevance.
Collapse
Affiliation(s)
- Yuxuan Tian
- Department of Hepatobiliary and Intestinal Surgery of Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Department of Histology and Embryology, Basic School of Medicine Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine Sciences, Central South University, Changsha, Hunan 410078, PR China
| | - Fuxin Chen
- Department of Histology and Embryology, Basic School of Medicine Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Siyi Qian
- Department of Histology and Embryology, Basic School of Medicine Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Xingming Hu
- The 1st Department of Thoracic Surgery of Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Bin Zhang
- Department of Hepatobiliary and Intestinal Surgery of Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Department of Histology and Embryology, Basic School of Medicine Sciences, Central South University, Changsha, Hunan 410013, PR China.
| | - Qiang Liu
- Department of Hepatobiliary and Intestinal Surgery of Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China.
| |
Collapse
|
4
|
Griffith-Jones S, Álvarez L, Mukhopadhyay U, Gharbi S, Rettel M, Adams M, Hennig J, Bhogaraju S. Structural basis for RAD18 regulation by MAGEA4 and its implications for RING ubiquitin ligase binding by MAGE family proteins. EMBO J 2024; 43:1273-1300. [PMID: 38448672 PMCID: PMC10987633 DOI: 10.1038/s44318-024-00058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024] Open
Abstract
MAGEA4 is a cancer-testis antigen primarily expressed in the testes but aberrantly overexpressed in several cancers. MAGEA4 interacts with the RING ubiquitin ligase RAD18 and activates trans-lesion DNA synthesis (TLS), potentially favouring tumour evolution. Here, we employed NMR and AlphaFold2 (AF) to elucidate the interaction mode between RAD18 and MAGEA4, and reveal that the RAD6-binding domain (R6BD) of RAD18 occupies a groove in the C-terminal winged-helix subdomain of MAGEA4. We found that MAGEA4 partially displaces RAD6 from the RAD18 R6BD and inhibits degradative RAD18 autoubiquitination, which could be countered by a competing peptide of the RAD18 R6BD. AlphaFold2 and cross-linking mass spectrometry (XL-MS) also revealed an evolutionary invariant intramolecular interaction between the catalytic RING and the DNA-binding SAP domains of RAD18, which is essential for PCNA mono-ubiquitination. Using interaction proteomics, we found that another Type-I MAGE, MAGE-C2, interacts with the RING ubiquitin ligase TRIM28 in a manner similar to the MAGEA4/RAD18 complex, suggesting that the MAGEA4 peptide-binding groove also serves as a ligase-binding cleft in other type-I MAGEs. Our data provide new insights into the mechanism and regulation of RAD18-mediated PCNA mono-ubiquitination.
Collapse
Affiliation(s)
| | - Lucía Álvarez
- European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Urbi Mukhopadhyay
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Sarah Gharbi
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Mandy Rettel
- European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Michael Adams
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Janosch Hennig
- European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
- Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany
| | - Sagar Bhogaraju
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042, Grenoble, France.
| |
Collapse
|
5
|
Kalweit K, Gölling V, Kosan C, Jungnickel B. Role of Rad18 in B cell activation and lymphomagenesis. Sci Rep 2024; 14:7066. [PMID: 38528023 PMCID: PMC10963733 DOI: 10.1038/s41598-024-57018-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 03/13/2024] [Indexed: 03/27/2024] Open
Abstract
Maintenance of genome integrity is instrumental in preventing cancer. In addition to DNA repair pathways that prevent damage to DNA, damage tolerance pathways allow for the survival of cells that encounter DNA damage during replication. The Rad6/18 pathway is instrumental in this process, mediating damage bypass by ubiquitination of proliferating cell nuclear antigen. Previous studies have shown different roles of Rad18 in vivo and in tumorigenesis. Here, we show that B cells induce Rad18 expression upon proliferation induction. We have therefore analysed the role of Rad18 in B cell activation as well as in B cell lymphomagenesis mediated by an Eµ-Myc transgene. We find no activation defects or survival differences between Rad18 WT mice and two different models of Rad18 deficient tumour mice. Also, tumour subtypes do not differ between the mouse models. Accordingly, functions of Rad18 in B cell activation and tumorigenesis may be compensated for by other pathways in B cells.
Collapse
Affiliation(s)
- Kevin Kalweit
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Hans Knöll Strasse 2, 07745, Jena, Germany
| | - Vanessa Gölling
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Hans Knöll Strasse 2, 07745, Jena, Germany
| | - Christian Kosan
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Hans Knöll Strasse 2, 07745, Jena, Germany
| | - Berit Jungnickel
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Hans Knöll Strasse 2, 07745, Jena, Germany.
| |
Collapse
|
6
|
Mórocz M, Qorri E, Pekker E, Tick G, Haracska L. Exploring RAD18-dependent replication of damaged DNA and discontinuities: A collection of advanced tools. J Biotechnol 2024; 380:1-19. [PMID: 38072328 DOI: 10.1016/j.jbiotec.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/21/2023]
Abstract
DNA damage tolerance (DDT) pathways mitigate the effects of DNA damage during replication by rescuing the replication fork stalled at a DNA lesion or other barriers and also repair discontinuities left in the newly replicated DNA. From yeast to mammalian cells, RAD18-regulated translesion synthesis (TLS) and template switching (TS) represent the dominant pathways of DDT. Monoubiquitylation of the polymerase sliding clamp PCNA by HRAD6A-B/RAD18, an E2/E3 protein pair, enables the recruitment of specialized TLS polymerases that can insert nucleotides opposite damaged template bases. Alternatively, the subsequent polyubiquitylation of monoubiquitin-PCNA by Ubc13-Mms2 (E2) and HLTF or SHPRH (E3) can lead to the switching of the synthesis from the damaged template to the undamaged newly synthesized sister strand to facilitate synthesis past the lesion. When immediate TLS or TS cannot occur, gaps may remain in the newly synthesized strand, partly due to the repriming activity of the PRIMPOL primase, which can be filled during the later phases of the cell cycle. The first part of this review will summarize the current knowledge about RAD18-dependent DDT pathways, while the second part will offer a molecular toolkit for the identification and characterization of the cellular functions of a DDT protein. In particular, we will focus on advanced techniques that can reveal single-stranded and double-stranded DNA gaps and their repair at the single-cell level as well as monitor the progression of single replication forks, such as the specific versions of the DNA fiber and comet assays. This collection of methods may serve as a powerful molecular toolkit to monitor the metabolism of gaps, detect the contribution of relevant pathways and molecular players, as well as characterize the effectiveness of potential inhibitors.
Collapse
Affiliation(s)
- Mónika Mórocz
- HCEMM-HUN-REN BRC Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary.
| | - Erda Qorri
- HCEMM-HUN-REN BRC Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary; Faculty of Science and Informatics, Doctoral School of Biology, University of Szeged, Szeged H-6720, Hungary.
| | - Emese Pekker
- HCEMM-HUN-REN BRC Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary; Doctoral School of Interdisciplinary Medicine, University of Szeged, Korányi fasor 10, 6720 Szeged, Hungary.
| | - Gabriella Tick
- Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary.
| | - Lajos Haracska
- HCEMM-HUN-REN BRC Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2. H-1117 Budapest, Hungary.
| |
Collapse
|
7
|
Zhang M, Shao Y, Gu W. The Mechanism of Ubiquitination or Deubiquitination Modifications in Regulating Solid Tumor Radiosensitivity. Biomedicines 2023; 11:3240. [PMID: 38137461 PMCID: PMC10741492 DOI: 10.3390/biomedicines11123240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Radiotherapy, a treatment method employing radiation to eradicate tumor cells and subsequently reduce or eliminate tumor masses, is widely applied in the management of numerous patients with tumors. However, its therapeutic effectiveness is somewhat constrained by various drug-resistant factors. Recent studies have highlighted the ubiquitination/deubiquitination system, a reversible molecular modification pathway, for its dual role in influencing tumor behaviors. It can either promote or inhibit tumor progression, impacting tumor proliferation, migration, invasion, and associated therapeutic resistance. Consequently, delving into the potential mechanisms through which ubiquitination and deubiquitination systems modulate the response to radiotherapy in malignant tumors holds paramount significance in augmenting its efficacy. In this paper, we comprehensively examine the strides made in research and the pertinent mechanisms of ubiquitination and deubiquitination systems in governing radiotherapy resistance in tumors. This underscores the potential for developing diverse radiosensitizers targeting distinct mechanisms, with the aim of enhancing the effectiveness of radiotherapy.
Collapse
Affiliation(s)
| | - Yingjie Shao
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China;
| | - Wendong Gu
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China;
| |
Collapse
|
8
|
Maksoud S. The DNA Double-Strand Break Repair in Glioma: Molecular Players and Therapeutic Strategies. Mol Neurobiol 2022; 59:5326-5365. [PMID: 35696013 DOI: 10.1007/s12035-022-02915-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/05/2022] [Indexed: 12/12/2022]
Abstract
Gliomas are the most frequent type of tumor in the central nervous system, which exhibit properties that make their treatment difficult, such as cellular infiltration, heterogeneity, and the presence of stem-like cells responsible for tumor recurrence. The response of this type of tumor to chemoradiotherapy is poor, possibly due to a higher repair activity of the genetic material, among other causes. The DNA double-strand breaks are an important type of lesion to the genetic material, which have the potential to trigger processes of cell death or cause gene aberrations that could promote tumorigenesis. This review describes how the different cellular elements regulate the formation of DNA double-strand breaks and their repair in gliomas, discussing the therapeutic potential of the induction of this type of lesion and the suppression of its repair as a control mechanism of brain tumorigenesis.
Collapse
Affiliation(s)
- Semer Maksoud
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
9
|
Vilar JB, Christmann M, Tomicic MT. Alterations in Molecular Profiles Affecting Glioblastoma Resistance to Radiochemotherapy: Where Does the Good Go? Cancers (Basel) 2022; 14:cancers14102416. [PMID: 35626024 PMCID: PMC9139489 DOI: 10.3390/cancers14102416] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Glioblastoma is a type of brain cancer that remains incurable. Despite multiple past and ongoing preclinical studies and clinical trials, involving adjuvants to the conventional therapy and based on molecular targeting, no relevant benefit for patients’ survival has been achieved so far. The current first-line treatment regimen is based on ionizing radiation and the monoalkylating compound, temozolomide, and has been administered for more than 15 years. Glioblastoma is extremely resistant to most agents due to a mutational background that elicits quick response to insults and adapts to microenvironmental and metabolic changes. Here, we present the most recent evidence concerning the molecular features and their alterations governing pathways involved in GBM response to the standard radio-chemotherapy and discuss how they collaborate with acquired GBM’s resistance. Abstract Glioblastoma multiforme (GBM) is a brain tumor characterized by high heterogeneity, diffuse infiltration, aggressiveness, and formation of recurrences. Patients with this kind of tumor suffer from cognitive, emotional, and behavioral problems, beyond exhibiting dismal survival rates. Current treatment comprises surgery, radiotherapy, and chemotherapy with the methylating agent, temozolomide (TMZ). GBMs harbor intrinsic mutations involving major pathways that elicit the cells to evade cell death, adapt to the genotoxic stress, and regrow. Ionizing radiation and TMZ induce, for the most part, DNA damage repair, autophagy, stemness, and senescence, whereas only a small fraction of GBM cells undergoes treatment-induced apoptosis. Particularly upon TMZ exposure, most of the GBM cells undergo cellular senescence. Increased DNA repair attenuates the agent-induced cytotoxicity; autophagy functions as a pro-survival mechanism, protecting the cells from damage and facilitating the cells to have energy to grow. Stemness grants the cells capacity to repopulate the tumor, and senescence triggers an inflammatory microenvironment favorable to transformation. Here, we highlight this mutational background and its interference with the response to the standard radiochemotherapy. We discuss the most relevant and recent evidence obtained from the studies revealing the molecular mechanisms that lead these cells to be resistant and indicate some future perspectives on combating this incurable tumor.
Collapse
|
10
|
Li X, Zou S, Zhou L, Gao A, Xu J, He C, Zhou J, Wu S, Chen Y. RAD18
confers radioresistance of esophagus squamous cell carcinoma through regulating
p‐DNA‐PKcs. Cancer Med 2022; 11:3809-3819. [PMID: 35426246 PMCID: PMC9582675 DOI: 10.1002/cam4.4754] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/24/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022] Open
Abstract
Background Radiotherapy has recently become more common for the treatment of esophageal squamous cell carcinoma (ESCC). Radioresistance, on the other hand, continues to be a major issue because it interferes with the effectiveness of ESCC radiation. It has been demonstrated that RAD18, an E3 ubiquitin‐protein ligase that regulates translesion DNA synthesis (TLS), is implicated in the regulation of genomic integrity and DNA damage response. Methods In the present study, immunohistochemical staining and western blotting were utilized to determine RAD18 expression in ESCC tissues and cells. ESCC cell proliferation was determined using a colony formation assay. Immunofluorescence staining, comet assay, and homologous recombination (HR)/non‐homologous end‐joining (NHEJ) assays were conducted to examine the effect of RAD18 on the DNA damage response in ESCC cells. Results We found that high RAD18 expression was positively associated with a poorer prognosis in patients with ESCC who received radiotherapy. Downregulation of RAD18 expression significantly increased the sensitivity of ESCC cells to irradiation. Moreover, RAD18 knockdown prolonged the repair kinetics of γH2AX foci and resulted in longer comet tails. Furthermore, loss of RAD18 expression markedly decreased non‐homologous end‐joining (NHEJ) activity, but it did not affect homologous recombination (HR)‐mediated double‐strand break repair in ESCC cells. RAD18 upregulated p‐DNA‐dependent protein kinase complex (p‐DNA‐PKc) expression in vivo and in vitro. Conclusions These data indicated that RAD18 may regulate radioresistance by facilitating NHEJ via phosphorylation of DNA‐PKcs in ESCC cells, providing a novel radiotherapy target for ESCC.
Collapse
Affiliation(s)
- Xiaoqing Li
- Suzhou Cancer Center Core Laboratory The Affiliated Suzhou Hospital of Nanjing Medical University Suzhou Jiangsu China
| | - Shitao Zou
- Suzhou Cancer Center Core Laboratory The Affiliated Suzhou Hospital of Nanjing Medical University Suzhou Jiangsu China
| | - Liangsu Zhou
- Department of Radiation Oncology The Affiliated Suzhou Hospital of Nanjing Medical University Suzhou Jiangsu China
| | - Aidi Gao
- Suzhou Cancer Center Core Laboratory The Affiliated Suzhou Hospital of Nanjing Medical University Suzhou Jiangsu China
| | - Jing Xu
- Department of Neurology The Second Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Chao He
- Suzhou Cancer Center Core Laboratory The Affiliated Suzhou Hospital of Nanjing Medical University Suzhou Jiangsu China
| | - Jundong Zhou
- Department of Radiation Oncology The Affiliated Suzhou Hospital of Nanjing Medical University Suzhou Jiangsu China
| | - Shuhua Wu
- Department of Geriatrics The Second Affiliated Hospital of Soochow University Suzhou Jiangsu China
| | - Yihong Chen
- Department of Radiation The First Affiliated Hospital of Wanna Medical College Wuhu Anhui China
| |
Collapse
|
11
|
Hanisch D, Krumm A, Diehl T, Stork CM, Dejung M, Butter F, Kim E, Brenner W, Fritz G, Hofmann TG, Roos WP. Class I HDAC overexpression promotes temozolomide resistance in glioma cells by regulating RAD18 expression. Cell Death Dis 2022; 13:293. [PMID: 35365623 PMCID: PMC8975953 DOI: 10.1038/s41419-022-04751-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/05/2022] [Accepted: 03/18/2022] [Indexed: 12/22/2022]
Abstract
Overexpression of histone deacetylases (HDACs) in cancer commonly causes resistance to genotoxic-based therapies. Here, we report on the novel mechanism whereby overexpressed class I HDACs increase the resistance of glioblastoma cells to the SN1 methylating agent temozolomide (TMZ). The chemotherapeutic TMZ triggers the activation of the DNA damage response (DDR) in resistant glioma cells, leading to DNA lesion bypass and cellular survival. Mass spectrometry analysis revealed that the catalytic activity of class I HDACs stimulates the expression of the E3 ubiquitin ligase RAD18. Furthermore, the data showed that RAD18 is part of the O6-methylguanine-induced DDR as TMZ induces the formation of RAD18 foci at sites of DNA damage. Downregulation of RAD18 by HDAC inhibition prevented glioma cells from activating the DDR upon TMZ exposure. Lastly, RAD18 or O6-methylguanine-DNA methyltransferase (MGMT) overexpression abolished the sensitization effect of HDAC inhibition on TMZ-exposed glioma cells. Our study describes a mechanism whereby class I HDAC overexpression in glioma cells causes resistance to TMZ treatment. HDACs accomplish this by promoting the bypass of O6-methylguanine DNA lesions via enhancing RAD18 expression. It also provides a treatment option with HDAC inhibition to undermine this mechanism.
Collapse
Affiliation(s)
- Daniela Hanisch
- Institute of Toxicology, Medical Center of the University Mainz, Obere Zahlbacher Straße 67, 55131, Mainz, Germany
| | - Andrea Krumm
- Institute of Toxicology, Medical Center of the University Mainz, Obere Zahlbacher Straße 67, 55131, Mainz, Germany
| | - Tamara Diehl
- Institute of Toxicology, Medical Center of the University Mainz, Obere Zahlbacher Straße 67, 55131, Mainz, Germany
| | - Carla M Stork
- Institute of Toxicology, Medical Center of the University Mainz, Obere Zahlbacher Straße 67, 55131, Mainz, Germany
| | - Mario Dejung
- Institute of Molecular Biology, Ackermannweg 4, 55128, Mainz, Germany
| | - Falk Butter
- Institute of Molecular Biology, Ackermannweg 4, 55128, Mainz, Germany
| | - Ella Kim
- Laboratory for Experimental Neurooncology, Clinic for Neurosurgery, Medical Center of the University Mainz, 55131, Mainz, Germany
| | - Walburgis Brenner
- Department of Obstetrics and Gynecology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Gerhard Fritz
- Institute of Toxicology, Medical Faculty, Heinrich Heine University Duesseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Thomas G Hofmann
- Institute of Toxicology, Medical Center of the University Mainz, Obere Zahlbacher Straße 67, 55131, Mainz, Germany
| | - Wynand P Roos
- Institute of Toxicology, Medical Center of the University Mainz, Obere Zahlbacher Straße 67, 55131, Mainz, Germany.
| |
Collapse
|
12
|
Sun J, Li J, Lu Z, Chen L, Ma J. Analysis of the Mechanism of RAD18 in Glioma. Neuroimmunomodulation 2022; 29:327-337. [PMID: 35367987 DOI: 10.1159/000520761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/28/2021] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION This study aimed to evaluate the regulatory mechanism of RAD18 in glioma development. METHODS RAD18 expression was compared in glioma tumors and normal samples. Furthermore, we investigated the association between gene transcription and clinical factors in glioma samples, followed by functional enrichment analysis, screening for key Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, immune infiltration analysis of high and low RAD18 expression groups, and correlation analysis of quantified KEGG signaling pathways and immune cell types. RESULTS The expression of RAD18 was upregulated in gliomas. Moreover, RAD18 expression was significantly correlated with age, tumor grade, and histological subtype. Notably, patients with gliomas with high RAD18 expression levels had worse overall survival. Functional enrichment analysis showed that RAD18 was significantly related to biological processes, such as cell division, chemical synaptic transmission, and mitotic nuclear division, and KEGG pathways such as cell cycle, oxidative phosphorylation, and extracellular matrix (ECM)-receptor interaction. The infiltration of five immune cells (plasma B cells, naive B cells, resting CD4+ memory T cells, monocytes, and M1 macrophages) was significantly different between the high and low RAD18 expression groups, and this difference was significantly related to key KEGG pathways, such as neuroactive ligand-receptor interaction and ECM-receptor interaction. CONCLUSION RAD18 may serve as a target for glioma treatment and as a key regulator of glioma development.
Collapse
Affiliation(s)
- Jiahua Sun
- Department of Neurosurgery, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jun Li
- Department of Neurosurgery, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Zhengrong Lu
- Department of Neurosurgery, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Lin Chen
- Department of Neurosurgery, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Junfeng Ma
- Department of Neurosurgery, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Zhang S, Zhou T, Wang Z, Yi F, Li C, Guo W, Xu H, Cui H, Dong X, Liu J, Song X, Cao L. Post-Translational Modifications of PCNA in Control of DNA Synthesis and DNA Damage Tolerance-the Implications in Carcinogenesis. Int J Biol Sci 2021; 17:4047-4059. [PMID: 34671219 PMCID: PMC8495385 DOI: 10.7150/ijbs.64628] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/19/2021] [Indexed: 11/05/2022] Open
Abstract
The faithful DNA replication is a critical event for cell survival and inheritance. However, exogenous or endogenous sources of damage challenge the accurate synthesis of DNA, which causes DNA lesions. The DNA lesions are obstacles for replication fork progression. However, the prolonged replication fork stalling leads to replication fork collapse, which may cause DNA double-strand breaks (DSB). In order to maintain genomic stability, eukaryotic cells evolve translesion synthesis (TLS) and template switching (TS) to resolve the replication stalling. Proliferating cell nuclear antigen (PCNA) trimer acts as a slide clamp and encircles DNA to orchestrate DNA synthesis and DNA damage tolerance (DDT). The post-translational modifications (PTMs) of PCNA regulate these functions to ensure the appropriate initiation and termination of replication and DDT. The aberrant regulation of PCNA PTMs will result in DSB, which causes mutagenesis and poor response to chemotherapy. Here, we review the roles of the PCNA PTMs in DNA duplication and DDT. We propose that clarifying the regulation of PCNA PTMs may provide insights into understanding the development of cancers.
Collapse
Affiliation(s)
- Siyi Zhang
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Tingting Zhou
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Zhuo Wang
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Fei Yi
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Chunlu Li
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Wendong Guo
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Hongde Xu
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Hongyan Cui
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Xiang Dong
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Jingwei Liu
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Xiaoyu Song
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Liu Cao
- College of Basic Medical Science, Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| |
Collapse
|
14
|
Maiorano D, El Etri J, Franchet C, Hoffmann JS. Translesion Synthesis or Repair by Specialized DNA Polymerases Limits Excessive Genomic Instability upon Replication Stress. Int J Mol Sci 2021; 22:3924. [PMID: 33920223 PMCID: PMC8069355 DOI: 10.3390/ijms22083924] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
DNA can experience "replication stress", an important source of genome instability, induced by various external or endogenous impediments that slow down or stall DNA synthesis. While genome instability is largely documented to favor both tumor formation and heterogeneity, as well as drug resistance, conversely, excessive instability appears to suppress tumorigenesis and is associated with improved prognosis. These findings support the view that karyotypic diversity, necessary to adapt to selective pressures, may be limited in tumors so as to reduce the risk of excessive instability. This review aims to highlight the contribution of specialized DNA polymerases in limiting extreme genetic instability by allowing DNA replication to occur even in the presence of DNA damage, to either avoid broken forks or favor their repair after collapse. These mechanisms and their key regulators Rad18 and Polθ not only offer diversity and evolutionary advantage by increasing mutagenic events, but also provide cancer cells with a way to escape anti-cancer therapies that target replication forks.
Collapse
Affiliation(s)
- Domenico Maiorano
- Institute of Human Genetics, UMR9002, CNRS-University of Montpellier, 34396 Montpellier, France; (D.M.); (J.E.E.)
| | - Jana El Etri
- Institute of Human Genetics, UMR9002, CNRS-University of Montpellier, 34396 Montpellier, France; (D.M.); (J.E.E.)
| | - Camille Franchet
- Laboratoire D’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France;
| | - Jean-Sébastien Hoffmann
- Laboratoire D’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France;
| |
Collapse
|
15
|
Niu ZS, Wang WH, Dong XN, Tian LML. Role of long noncoding RNA-mediated competing endogenous RNA regulatory network in hepatocellular carcinoma. World J Gastroenterol 2020; 26:4240-4260. [PMID: 32848331 PMCID: PMC7422540 DOI: 10.3748/wjg.v26.i29.4240] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/05/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) are noncoding RNAs (ncRNAs) that occupy over 90% of the human genome, and their main function is to directly or indirectly regulate messenger RNA (mRNA) expression and participate in the tumorigenesis and progression of malignances. In particular, some lncRNAs can interact with miRNAs as competing endogenous RNAs (ceRNAs) to modulate mRNA expression. Accordingly, these RNA molecules are interrelated and coordinate to form a dynamic lncRNA-mediated ceRNA regulatory network. Mounting evidence has revealed that lncRNAs that act as ceRNAs are closely related to tumorigenesis. To date, numerous studies have established many different regulatory networks in hepatocellular carcinoma (HCC), and perturbations in these ceRNA interactions may result in the initiation and progression of HCC. Herein, we emphasize recent advances concerning the biological function of lncRNAs as ceRNAs in HCC, with the aim of elucidating the molecular mechanism underlying these HCC-related RNA molecules and providing novel insights into the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Zhao-Shan Niu
- Laboratory of Micromorphology, School of Basic Medicine, Medical Department of Qingdao University, Qingdao 266071, Shandong Province, China
| | - Wen-Hong Wang
- Department of Pathology, School of Basic Medicine, Medical Department of Qingdao University, Qingdao 266071, Shandong Province, China
| | - Xian-Ning Dong
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao 266061, Shandong Province, China
| | - Li-Mei-Li Tian
- BGI Gene Innovation Class, School of Basic Medicine, Medical Department of Qingdao University, Qingdao 266071, Shandong Province, China
| |
Collapse
|
16
|
Li M, Larsen L, Hedglin M. Rad6/Rad18 Competes with DNA Polymerases η and δ for PCNA Encircling DNA. Biochemistry 2020; 59:407-416. [PMID: 31887036 DOI: 10.1021/acs.biochem.9b00938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Translesion DNA synthesis (TLS) bypasses DNA lesions encountered during S-phase and is critical for cell survival after exposure to DNA-damaging agents. In humans, Rad6/Rad18 attaches single ubiquitin moieties (i.e., monoubiquitination) to proliferating cell nuclear antigen (PCNA) sliding clamps encircling primer/template (P/T) junctions that are stalled at DNA lesions. TLS occurs via PCNA monoubiquitination-independent and -dependent pathways, and both contribute to cell survival. The interaction of Rad6/Rad18 with PCNA is paramount to PCNA monoubiquitination and remains poorly defined. In particular, the location of the Rad6/Rad18 binding site on PCNA is unknown. Many PCNA-binding proteins, particularly DNA polymerases (pols), converge on PCNA encircling stalled P/T junctions in human cells, and all interact in a similar manner with the universal binding sites on PCNA. We reasoned the following: if Rad6/Rad18 utilizes the universal binding sites (or nearby sites), then PCNA monoubiquitination may be suppressed by pols involved in TLS. Results from quantitative studies reveal that (1) a Y-family pol (pol η) and a B-family pol (pol δ) critical to TLS each inhibit the transfer of ubiquitin from Rad6/Rad18 to PCNA and that (2) the observed inhibitions are dependent on the interaction of these pols with PCNA encircling DNA. These studies suggest that Rad6/Rad18 utilizes the universal PCNA-binding sites or nearby sites and, hence, competes for PCNA encircling DNA with pols η and δ and possibly other PCNA-binding proteins involved in TLS. These findings provide valuable insight into the nature of the interaction between Rad6/Rad18 and PCNA and have important implications for the division of human TLS pathways.
Collapse
Affiliation(s)
- Mingjie Li
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Leah Larsen
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Mark Hedglin
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| |
Collapse
|
17
|
Dalavaikodihalli Nanjaiah N, Ramaswamy P, Goswami K, Fathima K H, Borkotokey M. Survival of glioblastoma cells in response to endogenous and exogenous oxidative challenges: possible implication of NMDA receptor-mediated regulation of redox homeostasis. Cell Biol Int 2019; 43:1443-1452. [PMID: 31187913 DOI: 10.1002/cbin.11193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/06/2019] [Indexed: 01/24/2023]
Abstract
Cancer cells are highly metabolically active and produce high levels of reactive oxygen species (ROS). Drug resistance in cancer cells is closely related to their redox status. The role of ROS and its impact on cancer cell survival seems far from elucidation. The mechanisms through which glioblastoma cells overcome aberrant ROS and oxidative stress in a milieu of hypermetabolic state is still elusive. We hypothesize that the formidable growth potential of glioma cells is through manipulation of tumor microenvironment for its survival and growth, which can be attributed to an astute redox regulation through a nexus between activation of N-methyl-d-aspartate receptor (NMDAR) and glutathione (GSH)-based antioxidant prowess. Hence, we examined the NMDAR activation on intracellular ROS level, and cell viability on exposure to hydrogen peroxide (H2 O2 ), and antioxidants in glutamate-rich microenvironment of glioblastoma. The activation of NMDAR attenuated the intracellular ROS production in LN18 and U251MG glioma cells. MK-801 significantly reversed this effect. On evaluation of GSH redox cycle in these cells, the level of reduced GSH and glutathione reductase (GR) activity were significantly increased. NMDAR significantly enhanced the cell viability in LN18 and U251MG glioblastoma cells, by attenuating exogenous H2 O2 -induced oxidative stress, and significantly increased catalase activity, the key antioxidant that detoxifies H2 O2 . We hereby report an unexplored role of NMDAR activation induced protection of the rapidly multiplying glioblastoma cells against both endogenous ROS as well as exogenous oxidative challenges. We propose potentiation of reduced GSH, GR, and catalase in glioblastoma cells through NMDAR as a novel rationale of chemoresistance in glioblastoma.
Collapse
Affiliation(s)
| | - Palaniswamy Ramaswamy
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, 560029, India
| | - Kalyan Goswami
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Raipur, 492099, India
| | - Hurmath Fathima K
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, 560029, India
| | - Monjuri Borkotokey
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, 560029, India
| |
Collapse
|
18
|
Xie C, Lu D, Xu M, Qu Z, Zhang W, Wang H. Knockdown of RAD18 inhibits glioblastoma development. J Cell Physiol 2019; 234:21100-21112. [PMID: 31081138 DOI: 10.1002/jcp.28713] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/20/2022]
Abstract
This study aimed at investigating the role of RAD18 in the regulation of glioblastoma development as well as the underlying mechanisms. The human glioblastoma U251 and U87MG cells were transfected with siRNAs specifically targeting RAD18, and the effects of knockdown of RAD18 on the viability, apoptosis, migration, and invasion of U251 and U87MG cells were investigated. Transcriptome sequencing of the siRNA-RAD18-tranfected and siRNA-NC-transfected U251 cells was performed, followed by bioinformatic analyses for sequencing data. The results showed that knockdown of RAD18 significantly inhibited cell viability, promoted apoptosis, and suppressed migration and invasion of U251 and U87MG cells. Bioinformatic analyses of sequencing data identified 1,051 differentially expressed genes (DEGs) (369 up- and 682 downregulated genes) in the siRNA-RAD18-transfected U251 cells compared with siRNA-NC-transfected U251 cells. Eleven DEGs, including nerve growth factor (NGF), colony-stimulating factor 2 (CSF2), matrix metallopeptidase 1 (MMP1), platelet-derived growth factor receptor α (PDGFRA), and heme oxygenase 1 (HMOX1), were identified as the hub nodes in protein-protein interaction (PPI) network. Moreover, the aforementioned 11 hub genes were significantly enriched in PI3K-Akt signaling pathway and GO functions associated with the extracellular region. Notably, quantitative real-time polymerase chain reaction further confirmed that the expression levels of NGF, CSF2, HMOX1, and MMP1 were significantly downregulated, while that of PDGFRA was markedly upregulated in the siRNA-RAD18-transfected U251 cells than in the siRNA-NC cells. In conclusion, the knockdown of RAD18 may inhibit glioblastoma development by regulating the expression of the aforementioned key DEGs.
Collapse
Affiliation(s)
- Chen Xie
- Department of Neurosurgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Dejuan Lu
- Department of Endoscope, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Meng Xu
- Department of Neurosurgery, First People's Hospital of Heihe, Heihe, Heilongjiang, People's Republic of China
| | - Zhengyi Qu
- Department of Neurology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Weiguang Zhang
- Department of Neurosurgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Hongwei Wang
- Department of Minimally Invasive Neurosurgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| |
Collapse
|
19
|
Wu B, Wang H, Zhang L, Sun C, Li H, Jiang C, Liu X. High expression of RAD18 in glioma induces radiotherapy resistance via down-regulating P53 expression. Biomed Pharmacother 2019; 112:108555. [PMID: 30798132 DOI: 10.1016/j.biopha.2019.01.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 01/04/2019] [Accepted: 01/06/2019] [Indexed: 12/14/2022] Open
Abstract
As a key regulator of DNA translesion synthesis (TLS) pathway, RAD18 is reported to be abnormally expressed in many kinds of cancers. In glioma, RAD18 was overexpressed in the primary and recurrent glioblastoma multiforme specimens, and its overexpression weakened ionizing radiation-induced apoptosis in glioma A172 cells. Moreover, A172 cells with mutational P53 also showed enhanced radiation resistance. And RAD18 activation induced by cyclin-dependent kinase 2 (CDK2) was repressed by P53. However, whether P53 involves in RAD18-induced radiation resistance remains unknown. Therefore, this study was conducted to explore the effects and mechanism of RAD18 in the radiation resistance of glioma and study P53 role in this process. Results showed that, RAD18 expression was obviously elevated in glioma tissues and cell lines such as U251, SHG-44, A172, U-87 MG and U-118 MG as compared with the normal brain tissues and neuroglia cells. Up-regulation of RAD18 in U-118 MG and A172 cells with lentivirus infection significantly increased cell growth and inhibited cell apoptosis, determined by CCK-8 and flow cytometry technologies. Besides, RAD18 overexpression enhanced cell growth and inhibited cell apoptosis after U-118 MG or A172 cells were irradiated at a dose of 4 Gy. On the contrary, silencing of endogenous RAD18 sensitized U-118 MG and A172 cells to radiation. Moreover, RAD18 and P53 proteins were co-located in the nucleus, and up-regulation of RAD18 decreased the expression of P53 protein and facilitated its nuclear export. Furthermore, cell growth promotion and cell apoptosis inhibition induced by RAD18 up-regulation were impaired when P53 expression was up-regulated under radiation condition. In a word, this study clarifies that RAD18 functions as a promoter in glioma progression and reduces glioma cells' sensibility to radiation through down-regulating P53, which provides new strategies to overcome the radiation resistance in glioma.
Collapse
Affiliation(s)
- Bing Wu
- NHC Key Lab of Radiobiology, Jilin University, Changchun, Jilin 130021, China; Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Heyuan Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, China; Department of Immunology in College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Lenign Zhang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Chenglin Sun
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, China
| | - Hang Li
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Chunyan Jiang
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Xiaodong Liu
- NHC Key Lab of Radiobiology, Jilin University, Changchun, Jilin 130021, China; School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
20
|
Han X, Xue X, Zhou H, Zhang G. A molecular view of the radioresistance of gliomas. Oncotarget 2017; 8:100931-100941. [PMID: 29246031 PMCID: PMC5725073 DOI: 10.18632/oncotarget.21753] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022] Open
Abstract
Gliomas originate from glial cells and are the most frequent primary brain tumors. High-grade gliomas occur ∼4 times more frequently than low-grade gliomas, are highly malignant, and have extremely poor prognosis. Radiotherapy, sometimes combined with chemotherapy, is considered the treatment of choice for gliomas and is used after resective surgery. Despite great technological improvements, the radiotherapeutic effect is generally limited, due to the marked radioresistance exhibited by gliomas cells, especially glioma stem cells (GSCs). The mechanisms underlying this phenomenon are multiple and remain to be fully elucidated. This review attempts to summarize current knowledge on the molecular basis of glioma radioresistance by focusing on signaling pathways, microRNAs, hypoxia, the brain microenvironment, and GSCs. A thorough understanding of the complex interactions between molecular, cellular, and environmental factors should provide new insight into the intrinsic radioresistance of gliomas, potentially enabling improvement, through novel concurrent therapies, of the clinical efficacy of radiotherapy.
Collapse
Affiliation(s)
- Xuetao Han
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoying Xue
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huandi Zhou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ge Zhang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
21
|
Chu TQ, Li R, Shao MH, Ye JY, Han BH. RAD18 polymorphisms are associated with platinum-based chemotherapy toxicity in Chinese patients with non-small cell lung cancer. Acta Pharmacol Sin 2016; 37:1490-1498. [PMID: 27665847 DOI: 10.1038/aps.2016.100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/29/2016] [Indexed: 12/15/2022]
Abstract
AIM Although targeted therapy is very efficient for lung cancer, traditional platinum-based chemotherapies are still the principal strategy in the absence of positive biomarkers. The aim of the present study is to evaluate the contribution of RAD18 polymorphisms to platinum-chemotherapy response and its potential side effects in Chinese patients with non-small cell lung cancer (NSCLC). METHODS A total of 1021 Chinese patients with histological diagnosis of advanced NSCLC were enrolled. Treatment responses were classified into 4 categories (complete response, partial response, stable disease and progressive disease). Gastrointestinal and hematological toxicity incidences were assessed twice a week during the first-line treatment. Ten RAD18 SNPs were genotyped. A logistic regression model was utilized to analyze the associations between RAD18 SNPs and treatment response or toxicity. RESULTS Among the 10 SNPs tested, none was significantly correlated with the treatment response in a combined cohort. For gastrointestinal toxicity incidences, rs586014 was significantly associated with an increased risk of grade 3 or 4 gastrointestinal toxicity in non-smokers and in the combined cohort; rs654448 and rs618784 were significantly associated with gastrointestinal toxicity in non-smokers; rs6763823 was significantly associated with gastrointestinal toxicity in smokers. For hematological toxicity incidences, rs586014, rs654448 and rs618784 were significantly associated with hematologic toxicity in non-smokers; rs6763823 and rs9880051 were significantly associated with leukocytopenia in smokers. CONCLUSION RAD18 polymorphisms are correlated with the side effects of platinum-chemotherapy in Chinese patients with advanced NSCLC.
Collapse
|
22
|
Du HQ, Wang Y, Jiang Y, Wang CH, Zhou T, Liu HY, Xiao H. Silencing of the TPM1 gene induces radioresistance of glioma U251 cells. Oncol Rep 2015; 33:2807-14. [PMID: 25873252 DOI: 10.3892/or.2015.3906] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 02/27/2015] [Indexed: 11/06/2022] Open
Abstract
The present study was designed to investigate the relationship between tropomyosin 1 (TPM1) and radioresistance in human U251 cells. Radioresistant U251 (RR-U251) cells were established by repeated small irradiating injury. TPM1 levels in the U251 and RR-U251 cells were inhibited by transfection with TPM1-short hairpin RNA (shRNA) while overexpression was induced by treatment with pcDNA3.1‑TPM1. The radiosensitivity of the U251 and RR-U251 cells and the plasmid-transfected cells was evaluated by cell viability, migration and invasion assays. Cell apoptosis was also examined in vitro. The radiosensitivity of U251 xenografts was observed by tumor growth curve after radiotherapy in an in vivo experiment. Western blotting and immunohistochemistry were used to detect the level of TPM1 in vivo. The expression of TPM1 was significantly decreased in the RR-U251 cells, which may be correlated with the radioresistance of the glioma U251 cells. In the TPM1-silenced RR-U251 and TPM1-silenced U251 cells, cell viability, migration and invasion ability were significantly increased, and the rate of cell apoptosis was decreased. Consistent with these results, in the TPM1-overexpressing U251 and RR-U251 cells, cell viability, migration and invasion abilities were markedly decreased, and increased apoptosis was noted when compared to the control group. Tumor growth of the U251 xenografts was significantly inhibited following treatment with pcDNA3.1‑TPM1 combined with radiotherapy. Taken together, these results indicate that TPM1 may be one mechanism underlying radiation resistance, and TPM1 may be a potential target for overcoming the radiation resistance in glioma.
Collapse
Affiliation(s)
- Hua-Qing Du
- Department of Neuro-Psychiatric Institute, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ying Wang
- Department of Neuro-Psychiatric Institute, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yao Jiang
- Department of Neuro-Psychiatric Institute, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Chen-Han Wang
- Department of Neuro-Psychiatric Institute, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Tao Zhou
- Department of Neuro-Psychiatric Institute, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hong-Yi Liu
- Department of Neuro-Psychiatric Institute, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hong Xiao
- Department of Neuro-Psychiatric Institute, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
23
|
Sasatani M, Xu Y, Kawai H, Cao L, Tateishi S, Shimura T, Li J, Iizuka D, Noda A, Hamasaki K, Kusunoki Y, Kamiya K. RAD18 activates the G2/M checkpoint through DNA damage signaling to maintain genome integrity after ionizing radiation exposure. PLoS One 2015; 10:e0117845. [PMID: 25675240 PMCID: PMC4326275 DOI: 10.1371/journal.pone.0117845] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/31/2014] [Indexed: 12/28/2022] Open
Abstract
The ubiquitin ligase RAD18 is involved in post replication repair pathways via its recruitment to stalled replication forks, and its role in the ubiquitylation of proliferating cell nuclear antigen (PCNA). Recently, it has been reported that RAD18 is also recruited to DNA double strand break (DSB) sites, where it plays novel functions in the DNA damage response induced by ionizing radiation (IR). This new role is independent of PCNA ubiquitylation, but little is known about how RAD18 functions after IR exposure. Here, we describe a role for RAD18 in the IR-induced DNA damage signaling pathway at G2/M phase in the cell cycle. Depleting cells of RAD18 reduced the recruitment of the DNA damage signaling factors ATM, γH2AX, and 53BP1 to foci in cells at the G2/M phase after IR exposure, and attenuated activation of the G2/M checkpoint. Furthermore, depletion of RAD18 increased micronuclei formation and cell death following IR exposure, both in vitro and in vivo. Our data suggest that RAD18 can function as a mediator for DNA damage response signals to activate the G2/M checkpoint in order to maintain genome integrity and cell survival after IR exposure.
Collapse
Affiliation(s)
- Megumi Sasatani
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1–2–3 Kasumi, Minami-ku, Hiroshima, 734–8553, Japan
| | - Yanbin Xu
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1–2–3 Kasumi, Minami-ku, Hiroshima, 734–8553, Japan
| | - Hidehiko Kawai
- Department of Molecular Radiobiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1–2–3 Kasumi, Minami-ku, Hiroshima, 734–8553, Japan
| | - Lili Cao
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1–2–3 Kasumi, Minami-ku, Hiroshima, 734–8553, Japan
| | - Satoshi Tateishi
- Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, 2–2–1, Honjo, Kumamoto, 860–0811, Japan
| | - Tsutomu Shimura
- Department of Environmental Health, National Institute of Public Health, 2–3–6, Minami, Wako, Saitama, 351–0197, Japan
| | - Jianxiang Li
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1–2–3 Kasumi, Minami-ku, Hiroshima, 734–8553, Japan
| | - Daisuke Iizuka
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1–2–3 Kasumi, Minami-ku, Hiroshima, 734–8553, Japan
| | - Asao Noda
- Department of Genetics, Radiation Effects Research Foundation, 5–2, hijiyamako-en, Minami-ku, Hiroshima, 732–0815, Japan
| | - Kanya Hamasaki
- Department of Genetics, Radiation Effects Research Foundation, 5–2, hijiyamako-en, Minami-ku, Hiroshima, 732–0815, Japan
| | - Yoichiro Kusunoki
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, 5–2, hijiyamako-en, Minami-ku, Hiroshima, 732–0815, Japan
| | - Kenji Kamiya
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1–2–3 Kasumi, Minami-ku, Hiroshima, 734–8553, Japan
- * E-mail:
| |
Collapse
|
24
|
Ye L, Wang C, Yu G, Jiang Y, Sun D, Zhang Z, Yu X, Li X, Wei W, Liu P, Cheng J, DU B, Hu L. Bmi-1 induces radioresistance by suppressing senescence in human U87 glioma cells. Oncol Lett 2014; 8:2601-2606. [PMID: 25364434 PMCID: PMC4214493 DOI: 10.3892/ol.2014.2606] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/16/2014] [Indexed: 01/23/2023] Open
Abstract
Radiotherapy is the main locoregional control modality for a number of types of malignant tumors, including glioblastoma. However, radiotherapy fails to prevent recurrence in numerous patients due to the intrinsic radioresistance of cancer cells. Cell senescence is significant in tumor suppressor mechanisms and is closely associated with the radioresistance of cancer cells. Bmi-1 has been proposed to be an oncogene that can induce anti-senescence in tumor cells. The present study investigated the response of U87 glioma cells to radiation exposure and the role of Bmi-1 in the response following radiotherapy. Cell apoptosis and cell cycle distribution were assessed using flow cytometry, and a SA-β-Gal stain was used to observe the senescence ratio of U87 cells following radiation. The expression of Bmi-1 in U87 cells exposed to different doses of radiation was evaluated by western blot analysis. X-ray radiation was found to inhibit U87 cell proliferation through the induction of senescence rather than apoptosis. Following exposure to radiation, the cell cycle distribution was dysregulated, with an increased number of cells in the G2/M phase, and the expression of Bmi-1 was upregulated, particularly when a dose of ≥6 Gy was administered. The results indicated that senescence is the main mechanism by which U87 cell growth is inhibited following radiation. In addition, Bmi-1 may be significant in increasing the radioresistance of glioma cells by enabling cell senescence.
Collapse
Affiliation(s)
- Lan Ye
- Cancer Center, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Cuihong Wang
- Cancer Center, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Guanying Yu
- Jinan Central Hospital, Jinan, Shandong 250014, P.R. China
| | - Yuhua Jiang
- Cancer Center, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Dianshui Sun
- Cancer Center, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Zaiyun Zhang
- Cancer Center, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xiaoming Yu
- Cancer Center, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xiaomei Li
- Cancer Center, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Wei Wei
- Cancer Center, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Ping Liu
- Cancer Center, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Jian Cheng
- Cancer Center, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Bin DU
- Jinan Central Hospital, Jinan, Shandong 250014, P.R. China
| | - Likuan Hu
- Department of Radiotherapy, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
25
|
Xiao S, Yang Z, Lv R, Zhao J, Wu M, Liao Y, Liu Q. miR-135b contributes to the radioresistance by targeting GSK3β in human glioblastoma multiforme cells. PLoS One 2014; 9:e108810. [PMID: 25265336 PMCID: PMC4181861 DOI: 10.1371/journal.pone.0108810] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 08/25/2014] [Indexed: 11/18/2022] Open
Abstract
Radioresistance remains a major challenge in the treatment of glioblastoma multiforme (GBM). Recent data strongly suggests the important role of miRNAs in cancer progression and therapeutic response. Here, we have established a radioresistant human GBM cell line U87R derived from parental U87 and found miR-135b expression was upregulated in U87R cells. miR-135b knockdown reversed radioresistance of U87R cells, and miR-135b overexpression enhanced radioresistance of U87 cells. Mechanically, bioinformatics analysis combined with experimental analysis demonstrated GSK3β (Glycogen synthase kinase 3 beta) was a novel direct target of miR-135b. Moreover, GSK3β protein expression was downregulated in U87R cells and restored expression of GSK3β increased radiosensitivity of U87R cells. In addition, clinical data indicated that the expression of miR-135b or GSK3β was significantly association with IR resistance of GBM samples. Our findings suggest miR-135b is involved in the radioresistance of human GBM cells and miR-135b-GSK3β axis may be a novel candidate for developing rational therapeutic strategies for human GBM treatment.
Collapse
Affiliation(s)
- Songhua Xiao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guanzhou, Guangdong, People's Republic of China
| | - Zhen Yang
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guanzhou, Guangdong, People's Republic of China
| | - Ruiyan Lv
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guanzhou, Guangdong, People's Republic of China
| | - Jia Zhao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guanzhou, Guangdong, People's Republic of China
| | - Ming Wu
- Department of Neurosurgery, Xiangya Hospital, Central South university, Changsha, Hunan, People's Republic of China
| | - Yiwei Liao
- Department of Neurosurgery, Xiangya Hospital, Central South university, Changsha, Hunan, People's Republic of China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South university, Changsha, Hunan, People's Republic of China
| |
Collapse
|
26
|
Zeman MK, Lin JR, Freire R, Cimprich KA. DNA damage-specific deubiquitination regulates Rad18 functions to suppress mutagenesis. ACTA ACUST UNITED AC 2014; 206:183-97. [PMID: 25023518 PMCID: PMC4107794 DOI: 10.1083/jcb.201311063] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Deubiquitination of Rad18 drives its localization to sites of DNA damage and formation of the Rad18–SHPRH complexes necessary for error-free lesion bypass. Deoxyribonucleic acid (DNA) lesions encountered during replication are often bypassed using DNA damage tolerance (DDT) pathways to avoid prolonged fork stalling and allow for completion of DNA replication. Rad18 is a central E3 ubiquitin ligase in DDT, which exists in a monoubiquitinated (Rad18•Ub) and nonubiquitinated form in human cells. We find that Rad18 is deubiquitinated when cells are treated with methyl methanesulfonate or hydrogen peroxide. The ubiquitinated form of Rad18 does not interact with SNF2 histone linker plant homeodomain RING helicase (SHPRH) or helicase-like transcription factor, two downstream E3 ligases needed to carry out error-free bypass of DNA lesions. Instead, it interacts preferentially with the zinc finger domain of another, nonubiquitinated Rad18 and may inhibit Rad18 function in trans. Ubiquitination also prevents Rad18 from localizing to sites of DNA damage, inducing proliferating cell nuclear antigen monoubiquitination, and suppressing mutagenesis. These data reveal a new role for monoubiquitination in controlling Rad18 function and suggest that damage-specific deubiquitination promotes a switch from Rad18•Ub–Rad18 complexes to the Rad18–SHPRH complexes necessary for error-free lesion bypass in cells.
Collapse
Affiliation(s)
- Michelle K Zeman
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Jia-Ren Lin
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologias Biomedicas, 38320 Tenerife, Spain
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|