1
|
Tripathi S, Gupta E, Galande S. Statins as anti-tumor agents: A paradigm for repurposed drugs. Cancer Rep (Hoboken) 2024; 7:e2078. [PMID: 38711272 PMCID: PMC11074523 DOI: 10.1002/cnr2.2078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Statins, frequently prescribed medications, work by inhibiting the rate-limiting enzyme HMG-CoA reductase (HMGCR) in the mevalonate pathway to reduce cholesterol levels. Due to their multifaceted benefits, statins are being adapted for use as cost-efficient, safe and effective anti-cancer treatments. Several studies have shown that specific types of cancer are responsive to statin medications since they rely on the mevalonate pathway for their growth and survival. RECENT FINDINGS Statin are a class of drugs known for their potent inhibition of cholesterol production and are typically prescribed to treat high cholesterol levels. Nevertheless, there is growing interest in repurposing statins for the treatment of malignant neoplastic diseases, often in conjunction with chemotherapy and radiotherapy. The mechanism behind statin treatment includes targeting apoptosis through the BCL2 signaling pathway, regulating the cell cycle via the p53-YAP axis, and imparting epigenetic modulations by altering methylation patterns on CpG islands and histone acetylation by downregulating DNMTs and HDACs respectively. Notably, some studies have suggested a potential chemo-preventive effect, as decreased occurrence of tumor relapse and enhanced survival rate were reported in patients undergoing long-term statin therapy. However, the definitive endorsement of statin usage in cancer therapy hinges on population based clinical studies with larger patient cohorts and extended follow-up periods. CONCLUSIONS The potential of anti-cancer properties of statins seems to reach beyond their influence on cholesterol production. Further investigations are necessary to uncover their effects on cancer promoting signaling pathways. Given their distinct attributes, statins might emerge as promising contenders in the fight against tumorigenesis, as they appear to enhance the efficacy and address the limitations of conventional cancer treatments.
Collapse
Affiliation(s)
- Sneha Tripathi
- Laboratory of Chromatin Biology & EpigeneticsIndian Institute of Science Education and ResearchPuneIndia
| | - Ekta Gupta
- Laboratory of Chromatin Biology & EpigeneticsIndian Institute of Science Education and ResearchPuneIndia
| | - Sanjeev Galande
- Laboratory of Chromatin Biology & EpigeneticsIndian Institute of Science Education and ResearchPuneIndia
- Centre of Excellence in Epigenetics, Department of Life SciencesShiv Nadar Institution of EminenceGautam Buddha NagarIndia
| |
Collapse
|
2
|
Ben Hassen C, Goupille C, Vigor C, Durand T, Guéraud F, Silvente-Poirot S, Poirot M, Frank PG. Is cholesterol a risk factor for breast cancer incidence and outcome? J Steroid Biochem Mol Biol 2023; 232:106346. [PMID: 37321513 DOI: 10.1016/j.jsbmb.2023.106346] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Cholesterol plays important roles in many physiological processes, including cell membrane structure and function, hormone synthesis, and the regulation of cellular homeostasis. The role of cholesterol in breast cancer is complex, and some studies have suggested that elevated cholesterol levels may be associated with an increased risk of developing breast cancer, while others have found no significant association. On the other hand, other studies have shown that, for total cholesterol and plasma HDL-associated cholesterol levels, there was inverse association with breast cancer risk. One possible mechanism by which cholesterol may contribute to breast cancer risk is as a key precursor of estrogen. Other potential mechanisms by which cholesterol may contribute to breast cancer risk include its role in inflammation and oxidative stress, which have been linked to cancer progression. Cholesterol has also been shown to play a role in signaling pathways regulating the growth and proliferation of cancer cells. In addition, recent studies have shown that cholesterol metabolism can generate tumor promoters such as cholesteryl esters, oncosterone, 27-hydroxycholesterol but also tumor suppressor metabolites such as dendrogenin A. This review summarizes some of the most important clinical studies that have evaluated the role of cholesterol or its derivatives in breast cancer. It also addresses the role of cholesterol and its derivatives at the cellular level.
Collapse
Affiliation(s)
| | - Caroline Goupille
- INSERM N2C UMR1069, University of Tours, 37032 Tours, France; Department of Gynecology, CHRU Hôpital Bretonneau, boulevard Tonnellé, 37044 Tours, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, IBMM, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, 34293 CEDEX 5 Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, IBMM, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, 34293 CEDEX 5 Montpellier, France
| | - Françoise Guéraud
- INRAE, Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Sandrine Silvente-Poirot
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV:"Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, France
| | - Marc Poirot
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV:"Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, France
| | - Philippe G Frank
- INSERM N2C UMR1069, University of Tours, 37032 Tours, France; SGS Health and Nutrition, Saint Benoît, France.
| |
Collapse
|
3
|
Wang T, Rao D, Yu C, Sheng J, Luo Y, Xia L, Huang W. RHO GTPase family in hepatocellular carcinoma. Exp Hematol Oncol 2022; 11:91. [DOI: 10.1186/s40164-022-00344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractRHO GTPases are a subfamily of the RAS superfamily of proteins, which are highly conserved in eukaryotic species and have important biological functions, including actin cytoskeleton reorganization, cell proliferation, cell polarity, and vesicular transport. Recent studies indicate that RHO GTPases participate in the proliferation, migration, invasion and metastasis of cancer, playing an essential role in the tumorigenesis and progression of hepatocellular carcinoma (HCC). This review first introduces the classification, structure, regulators and functions of RHO GTPases, then dissects its role in HCC, especially in migration and metastasis. Finally, we summarize inhibitors targeting RHO GTPases and highlight the issues that should be addressed to improve the potency of these inhibitors.
Collapse
|
4
|
Jin J, Du X, Zhou L, Yao D, Zou Q. SPI1-related protein inhibits cervical cancer cell progression and prevents macrophage cell migration. J Obstet Gynaecol Res 2022; 48:2419-2430. [PMID: 35770729 DOI: 10.1111/jog.15336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/29/2022]
Abstract
AIM The functions and molecular mechanisms of SPI1-related protein (SPIB) were examined in cervical cancer (CC) cells. METHODS Genes related to miscarriage and prognosis in CC were identified by Kaplan-Meier and differential expression analysis, respectively. Cell proliferation, apoptosis, migration, and invasion were examined by cell counting kit-8, flow cytometry, transwell migration, and transwell invasion assays, respectively. The potential functions and molecular mechanisms of SPIB in CC were speculated by gene set enrichment analysis (GSEA) analysis. The mRNA and protein levels of genes were examined by RT-qPCR and western blot assays, respectively. The effect of SPIB on macrophage cells was tested by macrophage recruitment assay and bioinformatics analysis. RESULTS A total of 753 dysregulated genes were identified in 88 TCGA CC samples with a history of one or more miscarriages versus 208 CC samples with no miscarriage history. Also, 91 genes related to CC prognosis were identified. SPIB, a gene related to both miscarriage and CC prognosis, inhibited Hela cell proliferation, migration, and invasion, and facilitated Hela cell apoptosis. GSEA analysis disclosed that SPIB might play vital roles in immunity, chemokine signaling pathway, and macrophage chemotaxis/activation in CC. Moreover, SPIB inhibited C-X-C motif chemokine ligand 8 (CXCL8), C-C motif chemokine ligand 17 (CCL17), and C-C motif chemokine ligand 25 (CCL25) expression in Hela cells, and SPIB overexpression in Hela cells hampered THP-1 cell migration. Higher SPIB expression was associated with less M2 macrophage infiltration in CC. CONCLUSIONS SPIB inhibited CC-cell progression and hindered macrophage cell migration in CC.
Collapse
Affiliation(s)
- Jing Jin
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan City, PR China
| | - Xin Du
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan City, PR China
| | - Limin Zhou
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan City, PR China
| | - Dongmei Yao
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan City, PR China
| | - Qian Zou
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan City, PR China
| |
Collapse
|
5
|
Crosas-Molist E, Samain R, Kohlhammer L, Orgaz J, George S, Maiques O, Barcelo J, Sanz-Moreno V. RhoGTPase Signalling in Cancer Progression and Dissemination. Physiol Rev 2021; 102:455-510. [PMID: 34541899 DOI: 10.1152/physrev.00045.2020] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rho GTPases are a family of small G proteins that regulate a wide array of cellular processes related to their key roles controlling the cytoskeleton. On the other hand, cancer is a multi-step disease caused by the accumulation of genetic mutations and epigenetic alterations, from the initial stages of cancer development when cells in normal tissues undergo transformation, to the acquisition of invasive and metastatic traits, responsible for a large number of cancer related deaths. In this review, we discuss the role of Rho GTPase signalling in cancer in every step of disease progression. Rho GTPases contribute to tumour initiation and progression, by regulating proliferation and apoptosis, but also metabolism, senescence and cell stemness. Rho GTPases play a major role in cell migration, and in the metastatic process. They are also involved in interactions with the tumour microenvironment and regulate inflammation, contributing to cancer progression. After years of intensive research, we highlight the importance of relevant models in the Rho GTPase field, and we reflect on the therapeutic opportunities arising for cancer patients.
Collapse
Affiliation(s)
- Eva Crosas-Molist
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Remi Samain
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Leonie Kohlhammer
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jose Orgaz
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM, 28029, Madrid, Spain
| | - Samantha George
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Oscar Maiques
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jaume Barcelo
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
6
|
Jin Y, Zhang Z, Zou S, Li F, Chen H, Peng C, Deng X, Wen C, Shen B, Zhan Q. A Novel c-MET-Targeting Antibody-Drug Conjugate for Pancreatic Cancer. Front Oncol 2021; 11:634881. [PMID: 33816276 PMCID: PMC8010262 DOI: 10.3389/fonc.2021.634881] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-associated death in the United States and has a 5-year survival rate of <4%. Although much effort has been invested in the research and development of pancreatic cancer drugs over the past 30 years, due to the lack of effective targetable carcinogenic drivers, no new targeted therapies that can improve patient prognosis have been approved for clinical use. SHR-A1403 is a new c-mesenchymal-epithelial transition factor (c-MET) antibody-drug conjugate that can be used for the targeted treatment of PDAC with high c-MET expression. This study reports for the first time the application prospects of SHR-A1403 in preclinical models of PDAC. SHR-A1403 significantly inhibited the proliferation, migration, and invasion of pancreatic cancer cells and induced cell cycle arrest and apoptosis. These changes were caused by inhibition of intracellular cholesterol biosynthesis by SHR-A1403. Therefore, targeting c-MET through SHR-A1403 showed strong preclinical anti-tumour efficacy in pancreatic cancer. Our work suggests the potential application of c-MET-targeted antibody-drug conjugate treatment for PDAC in clinical practise.
Collapse
Affiliation(s)
- Yangbing Jin
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zehui Zhang
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Siyi Zou
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fanlu Li
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenghong Peng
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenlei Wen
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Zhan
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Huo X, Zhou X, Peng P, Yu M, Zhang Y, Yang J, Cao D, Sun H, Shen K. Identification of a Six-Gene Signature for Predicting the Overall Survival of Cervical Cancer Patients. Onco Targets Ther 2021; 14:809-822. [PMID: 33574675 PMCID: PMC7873033 DOI: 10.2147/ott.s276553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/06/2021] [Indexed: 01/22/2023] Open
Abstract
Background Although the incidence of cervical cancer has decreased in recent decades with the development of human papillomavirus vaccines and cancer screening, cervical cancer remains one of the leading causes of cancer-related death worldwide. Identifying potential biomarkers for cervical cancer treatment and prognosis prediction is necessary. Methods Samples with mRNA sequencing, copy number variant, single nucleotide polymorphism and clinical follow-up data were downloaded from The Cancer Genome Atlas database and randomly divided into a training dataset (N=146) and a test dataset (N=147). We selected and identified a prognostic gene set and mutated gene set and then integrated the two gene sets with the random survival forest algorithm and constructed a prognostic signature. External validation and immunohistochemical staining were also performed. Results We obtained 1416 differentially expressed prognosis-related genes, 624 genes with copy number amplification, 1038 genes with copy number deletion, and 163 significantly mutated genes. A total of 75 candidate genes were obtained after overlapping the differentially expressed genes and the genes with genomic variations. Subsequently, we obtained six characteristic genes through the random survival forest algorithm. The results showed that high expression of SLC19A3, FURIN, SLC22A3, and DPAGT1 and low expression of CCL17 and DES were associated with a poor prognosis in cervical cancer patients. We constructed a six-gene signature that can separate cervical cancer patients according to their different overall survival rates, and it showed robust performance for predicting survival (training set: p ˂ 0.001, AUC = 0.82; testing set: p ˂ 0.01, AUC = 0.59). Conclusion Our study identified a novel six-gene signature and nomogram for predicting the overall survival of cervical cancer patients, which may be beneficial for clinical decision-making for individualized treatment.
Collapse
Affiliation(s)
- Xiao Huo
- Medical Research Center, Peking University Third Hospital, Beijing,, People's Republic of China
| | - Xiaoshuang Zhou
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.,Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Peng Peng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Mei Yu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Ying Zhang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jiaxin Yang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Dongyan Cao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Hengzi Sun
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
8
|
Thomas JP, Loke YK, Alexandre L. Efficacy and safety profile of statins in patients with cancer: a systematic review of randomised controlled trials. Eur J Clin Pharmacol 2020; 76:1639-1651. [PMID: 32719919 PMCID: PMC7661422 DOI: 10.1007/s00228-020-02967-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/16/2020] [Indexed: 01/14/2023]
Abstract
PURPOSE A growing body of preclinical and observational research suggests that statins have potential as a therapeutic strategy in patients with cancer. This systematic review of randomised controlled trials (RCTs) in patients with solid tumours aimed to determine the efficacy of statin therapy on mortality outcomes, their safety profile and the risk of bias of included studies. METHODS Full-text articles comparing statin therapy versus control in solid tumours and reporting mortality outcomes were identified from Medline and Embase from conception to February 2020. A systematic review with qualitative (primarily) and quantitative synthesis was conducted. This systematic review was prospectively registered (Prospero registration CRD42018116364). RESULTS Eleven trials of 2165 patients were included. Primary tumour sites investigated included lung, colorectal, gastro-oesophageal, pancreatic and liver. Most trials recruited patients with advanced malignancy and used sub-maximal statin doses for relatively short durations. Aside from one trial which demonstrated benefit with allocation to pravastatin 40 mg in hepatocellular carcinoma, the remaining ten trials did not demonstrate efficacy with statins. The pooled hazard ratio for all-cause mortality with allocation to pravastatin in patients with hepatocellular carcinoma in two trials was 0.69 (95% confidence interval CI 0.30-1.61). Study estimates were imprecise. There were no clinically important differences in statin-related adverse events between groups. Overall, included trials were deemed low risk of bias. CONCLUSION The trial evidence is not sufficiently robust to confirm or refute the efficacy and safety of statins in patients with solid malignant tumours. Study and patient characteristics may explain this uncertainty. The potential role of high-dose statins in adjuvant settings deserves further research.
Collapse
Affiliation(s)
- John P Thomas
- Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK
- Department of Gastroenterology, Norfolk and Norwich University Hospital, Norwich, NR47UY, UK
| | - Yoon K Loke
- Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Leo Alexandre
- Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK.
- Department of Gastroenterology, Norfolk and Norwich University Hospital, Norwich, NR47UY, UK.
| |
Collapse
|
9
|
Ortiz N, Díaz C. Mevalonate pathway as a novel target for the treatment of metastatic gastric cancer. Oncol Lett 2020; 20:320. [PMID: 33093924 PMCID: PMC7573883 DOI: 10.3892/ol.2020.12183] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
Gastric mucosa tumors may present as two distinct major entities: Diffuse and intestinal subtypes. There is no standard treatment for advanced or metastatic gastric cancer. The mevalonate pathway and cholesterol homeostasis are important processes in cancer cells that may be highly relevant in terms of cell growth, survival and metastatic potential. Two model cell lines representing intestinal (NCI-N87) and diffuse (Hs746T) metastatic gastric tumor histological subtypes were treated with different drugs that alter membrane lipid metabolism to determine whether cell proliferation, viability and migration were affected. The results indicated that the cells exhibited significant differences in proliferation when treated with the cholesterol-lowering drug simvastatin, but not with terbinafine, another compound that affects cholesterol synthesis. Only simvastatin affected migration in both cell lines. Reposition studies with mevalonolactone, farnesyl pyrophosphate and geranylgeranyl pyrophosphate in the presence of high and low FBS concentrations indicated that both isoprenoids and cholesterol reversed the antiproliferative effects of simvastatin in gastric cancer cells. The cell lines used in the present study had different sensitivities to several potential anti-neoplastic agents that affect the synthesis of membrane lipids. The diffuse gastric cancer cells were particularly sensitive to simvastatin, suggesting it as an option for combination treatment.
Collapse
Affiliation(s)
- Natalia Ortiz
- Department of Biochemistry, School of Medicine, University of Costa Rica, San Pedro de Montes de Oca, San José 11501-2060, Costa Rica
| | - Cecilia Díaz
- Department of Biochemistry, School of Medicine, University of Costa Rica, San Pedro de Montes de Oca, San José 11501-2060, Costa Rica.,Institute Clodomiro Picado, Faculty of Microbiology, University of Costa Rica, San Pedro de Montes de Oca, San José 11501-2060, Costa Rica
| |
Collapse
|
10
|
Zou Y, Liang J, Li D, Fang J, Wang L, Wang J, Zhang J, Guo Q, Yan X, Tang H. Application of the chemokine-chemokine receptor axis increases the tumor-targeted migration ability of cytokine-induced killer cells in patients with colorectal cancer. Oncol Lett 2020; 20:123-134. [PMID: 32565940 PMCID: PMC7286113 DOI: 10.3892/ol.2020.11539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/14/2020] [Indexed: 12/24/2022] Open
Abstract
Cytokine-induced killer (CIK) cells are a group of heterogeneous immune cells which can be isolated from human peripheral blood mononuclear cells and have demonstrated therapeutic benefit both in hematologic malignancies and solid tumors, including colorectal cancer. However, poor tumor-targeted migration has limited the clinical efficacy of CIK cell treatment. The chemokine-chemokine receptor (CK-CKR) axis serves a role in the tumor-directed trafficking capacity of immune cells. Investigating the relationship between CKR profiles on the surface of CIK cells and chemokine expression levels in the tumor microenvironment may improve CIK cell therapy. In the present study, the spectrum of chemokine expression levels in tumor tissues from patients with colorectal cancer (CRC) and CKR expression profiles in CIK cells obtained from the same individuals with CRC were investigated. The results showed that chemokine expression levels in tumor tissues exhibited variability and cell line heterogeneity. However, the expression levels of a number of chemokines were similar in different CRC donors and cell lines. Expression levels of CXCLL10, CXCL11 and CCL3 were significantly higher in most tumor tissues compared with adjacent normal tissues and highly expressed in most CRC cell lines. In accordance with chemokine expression levels, CKR profiles on the surface of CIK cells also showed donor-to-donor variability. However, concordant expression profiles of CKRs were identified in different patients with CRC. CXCR3 and CXCR4 were highly expressed on the surface of CIK cells through the culture process. Importantly, the expression levels of all CKRs, especially CCR4, CXCR4 and CXCR3, were notably decreased during the course of CIK cell expansion. The changing trend of CKR profiles were not correlated with the chemokine expression profiles in CRC tissues (CCL3, CXCL12 and CXCL10/CXCL11 were highly expressed in CRC tissue). Re-stimulating CIK cells using chemokines (CCL21 and CXCL11) at the proper time point increased corresponding CKR expression levels on the surface of CIK cells and enhance tumor-targeted trafficking in vitro. These results demonstrated that modification of the CK-CKR axis using exogenous recombinant chemokines at the proper time point enhanced CIK cell trafficking ability and improved CIK antitumor effects.
Collapse
Affiliation(s)
- Yunlian Zou
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650504, P.R. China
- Institute of Medical Sciences, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Jianhua Liang
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650504, P.R. China
- Institute of Medical Sciences, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Danyang Li
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650504, P.R. China
- Institute of Medical Sciences, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Jingjing Fang
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650504, P.R. China
- Institute of Medical Sciences, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Linping Wang
- Institute of Medical Sciences, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Jinli Wang
- Institute of Medical Sciences, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Jinping Zhang
- Institute of Medical Sciences, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Qiang Guo
- Yunnan Digestive Endoscopy Clinical Medical Center, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Xinmin Yan
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650504, P.R. China
- Institute of Medical Sciences, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Hui Tang
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650504, P.R. China
- Institute of Medical Sciences, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
11
|
The Pivotal Role of the Dysregulation of Cholesterol Homeostasis in Cancer: Implications for Therapeutic Targets. Cancers (Basel) 2020; 12:cancers12061410. [PMID: 32486083 DOI: 10.3390/cancers12061410] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/23/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Cholesterol plays an important role in cellular homeostasis by maintaining the rigidity of cell membranes, providing a medium for signaling transduction, and being converted into other vital macromolecules, such as sterol hormones and bile acids. Epidemiological studies have shown the correlation between cholesterol content and cancer incidence worldwide. Accumulating evidence has shown the emerging roles of the dysregulation of cholesterol metabolism in cancer development. More specifically, recent reports have shown the distinct role of cholesterol in the suppression of immune cells, regulation of cell survival, and modulation of cancer stem cells in cancer. Here, we provide a comprehensive review of the epidemiological analysis, functional roles, and mechanistic action of cholesterol homeostasis in regard to its contribution to cancer development. Based on the existing data, cholesterol homeostasis is identified to be a new key player in cancer pathogenesis. Lastly, we also discuss the therapeutic implications of natural compounds and cholesterol-lowering drugs in cancer prevention and treatment. In conclusion, intervention in cholesterol metabolism may offer a new therapeutic avenue for cancer treatment.
Collapse
|
12
|
Abstract
OBJECTIVE Statins are a class of drugs that competitively bind to the active site of HMG-CoA reductase enzyme, thereby inhibiting the initial steps in cholesterol synthesis. Originally approved for use in lowering serum cholesterol, a risk factor for developing atherosclerosis and coronary heart disease, statins have subsequently been noted to have myriad extrahepatic effects, including potential effects on cognition, diabetes, breast cancer, bone, and muscle. This narrative review assesses the current state of the science regarding the risks and benefits of statin therapy in women to identify areas where additional research is needed. METHODS Basic and clinical studies were identified by searching PubMed with particular attention to inclusion of female animals, women, randomized controlled trials, and sex-specific analyses. RESULTS Statin therapy is generally recommended to reduce the risk of cardiovascular disease. None of the current clinical guidelines, however, offer sex-specific recommendations for women due to lack of understanding of sex differences and underlying mechanisms of disease processes. In addition, conclusions regarding efficacy of treatments do not consider lipid solubility for the drug, dosing, duration of treatment, interactions with estrogen, or comorbidities. Pleiotropic effects of statins are often derived from secondary analysis of studies with cardiovascular events as primary outcomes. CONCLUSIONS Many of the trials that have established the efficacy and safety of statins were conducted predominantly or entirely in men, with results extrapolated to women. Additional research is needed to guide clinical recommendations specific to women. : Video Summary:http://links.lww.com/MENO/A462.
Collapse
Affiliation(s)
- Stephanie S. Faubion
- Center for Women’s Health, Mayo Clinic, Rochester, MN
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN
| | - Ekta Kapoor
- Center for Women’s Health, Mayo Clinic, Rochester, MN
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN
| | - Ann M. Moyer
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN
| | - Howard N. Hodis
- Atherosclerosis Research Unit, Departments of Medicine and Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Virginia M. Miller
- Departments of Surgery and Physiology & Biomedical Engineering, Women’s Health Research Center, Mayo Clinic, Rochester, MN
| |
Collapse
|
13
|
Mo H, Jeter R, Bachmann A, Yount ST, Shen CL, Yeganehjoo H. The Potential of Isoprenoids in Adjuvant Cancer Therapy to Reduce Adverse Effects of Statins. Front Pharmacol 2019; 9:1515. [PMID: 30662405 PMCID: PMC6328495 DOI: 10.3389/fphar.2018.01515] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022] Open
Abstract
The mevalonate pathway provides sterols for membrane structure and nonsterol intermediates for the post-translational modification and membrane anchorage of growth-related proteins, including the Ras, Rac, and Rho GTPase family. Mevalonate-derived products are also essential for the Hedgehog pathway, steroid hormone signaling, and the nuclear localization of Yes-associated protein and transcriptional co-activator with PDZ-binding motif, all of which playing roles in tumorigenesis and cancer stem cell function. The phosphatidylinositol-4,5-bisphosphate 3-kinase-AKT-mammalian target of rapamycin complex 1 pathway, p53 with gain-of-function mutation, and oncoprotein MYC upregulate the mevalonate pathway, whereas adenosine monophosphate-activated protein kinase and tumor suppressor protein RB are the downregulators. The rate-limiting enzyme, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), is under a multivalent regulation. Sterol regulatory element binding protein 2 mediates the sterol-controlled transcriptional downregulation of HMGCR. UbiA prenyltransferase domain-containing protein-1 regulates the ubiquitination and proteasome-mediated degradation of HMGCR, which is accelerated by 24, 25-dihydrolanosterol and the diterpene geranylgeraniol. Statins, competitive inhibitors of HMGCR, deplete cells of mevalonate-derived intermediates and consequently inhibit cell proliferation and induce apoptosis. Clinical application of statins is marred by dose-limiting toxicities and mixed outcomes on cancer risk, survival and mortality, partially resulting from the statin-mediated compensatory upregulation of HMGCR and indiscriminate inhibition of HMGCR in normal and tumor cells. Tumor HMGCR is resistant to the sterol-mediated transcriptional control; consequently, HMGCR is upregulated in cancers derived from adrenal gland, blood and lymph, brain, breast, colon, connective tissue, embryo, esophagus, liver, lung, ovary, pancreas, prostate, skin, and stomach. Nevertheless, tumor HMGCR remains sensitive to isoprenoid-mediated degradation. Isoprenoids including monoterpenes (carvacrol, L-carvone, geraniol, perillyl alcohol), sesquiterpenes (cacalol, farnesol, β-ionone), diterpene (geranylgeranyl acetone), “mixed” isoprenoids (tocotrienols), and their derivatives suppress the growth of tumor cells with little impact on non-malignant cells. In cancer cells derived from breast, colon, liver, mesothelium, prostate, pancreas, and skin, statins and isoprenoids, including tocotrienols, geraniol, limonene, β-ionone and perillyl alcohol, synergistically suppress cell proliferation and associated signaling pathways. A blend of dietary lovastatin and δ-tocotrienol, each at no-effect doses, suppress the growth of implanted murine B16 melanomas in C57BL6 mice. Isoprenoids have potential as adjuvant agents to reduce the toxicities of statins in cancer prevention or therapy.
Collapse
Affiliation(s)
- Huanbiao Mo
- Department of Nutrition, Byrdine F. Lewis College of Nursing and Health Professions, Georgia State University, Atlanta, GA, United States
| | - Rayna Jeter
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Andrea Bachmann
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sophie T Yount
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Hoda Yeganehjoo
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
14
|
Askarizadeh A, Butler AE, Badiee A, Sahebkar A. Liposomal nanocarriers for statins: A pharmacokinetic and pharmacodynamics appraisal. J Cell Physiol 2018; 234:1219-1229. [DOI: 10.1002/jcp.27121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/05/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Anis Askarizadeh
- Nanotechnology Research Center Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
| | | | - Ali Badiee
- Nanotechnology Research Center Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
- Neurogenic Inflammation Research Center Mashhad University of Medical Sciences Mashhad Iran
- School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
15
|
Luput L, Licarete E, Drotar DM, Nagy AL, Sesarman A, Patras L, Rauca VF, Porfire A, Muntean D, Achim M, Tomuta I, Vlase L, Catoi C, Dragos N, Banciu M. In Vivo Double Targeting of C26 Colon Carcinoma Cells and Microenvironmental Protumor Processes Using Liposomal Simvastatin. J Cancer 2018; 9:440-449. [PMID: 29344291 PMCID: PMC5771352 DOI: 10.7150/jca.21560] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/19/2017] [Indexed: 12/18/2022] Open
Abstract
Purpose: Besides cholesterol lowering effects, simvastatin (SIM) at very high doses possesses antitumor actions. Moreover our previous studies demonstrated that tumor-targeted delivery of SIM by using long-circulating liposomes (LCL) improved the therapeutic index of this drug in murine melanoma-bearing mice. To evaluate whether this finding can be exploited for future therapy of colorectal cancer the antitumor activity and the underlying mechanisms of long-circulating liposomal simvastatin (LCL-SIM) efficacy for inhibition of C26 murine colon carcinoma growth in vivo were investigated. Materials and Methods: To find LCL-SIM dose with the highest therapeutic index, dose-response relationship and side effects of different LCL-SIM doses were assessed in C26 colon carcinoma-bearing mice. The underlying mechanisms of LCL-SIM versus free SIM treatments were investigated with regard to their actions on C26 cell proliferation and apoptosis (via tumor tissues immunostaining for PCNA and Bax markers), tumor inflammation (via western blot analysis of NF-κΒ production), angiogenesis (using an angiogenic protein array), and oxidative stress (by HPLC assessment of malondialdehyde). Results: Our findings suggest that LCL-SIM antitumor activity on C26 colon carcinoma is a result of the tumor-targeting property of the liposome formulation, as free SIM treatment was ineffective. Moreover, LCL-SIM exerted significant antiproliferative and pro-apoptotic actions on C26 cells, notable suppressive effects on two main supportive processes for tumor development, inflammation and angiogenesis, and only slight anti-oxidant actions. Conclusion: Our data proved that LCL-SIM antitumor activity in C26 colon carcinoma was based on cytotoxic effects on these cancer cells and suppressive actions on tumor angiogenesis and inflammation.
Collapse
Affiliation(s)
- Lavinia Luput
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 400006, Cluj-Napoca, Romania.,Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University, 400271, Cluj-Napoca, Romania
| | - Emilia Licarete
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 400006, Cluj-Napoca, Romania.,Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University, 400271, Cluj-Napoca, Romania
| | - Denise Minerva Drotar
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 400006, Cluj-Napoca, Romania
| | - Andras-Laszlo Nagy
- Department of Veterinary Toxicology, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj Napoca, Romania
| | - Alina Sesarman
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 400006, Cluj-Napoca, Romania.,Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University, 400271, Cluj-Napoca, Romania
| | - Laura Patras
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 400006, Cluj-Napoca, Romania.,Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University, 400271, Cluj-Napoca, Romania
| | - Valentin Florian Rauca
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 400006, Cluj-Napoca, Romania.,Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University, 400271, Cluj-Napoca, Romania
| | - Alina Porfire
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Hatieganu", 400012, Cluj-Napoca, Romania
| | - Dana Muntean
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Hatieganu", 400012, Cluj-Napoca, Romania
| | - Marcela Achim
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Hatieganu", 400012, Cluj-Napoca, Romania
| | - Ioan Tomuta
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Hatieganu", 400012, Cluj-Napoca, Romania
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Hatieganu", 400012, Cluj-Napoca, Romania
| | - Cornel Catoi
- Department of Veterinary Toxicology, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj Napoca, Romania
| | - Nicolae Dragos
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 400006, Cluj-Napoca, Romania.,Taxonomy and Ecology Department, Institute of Biological Research, Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 400006, Cluj-Napoca, Romania.,Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University, 400271, Cluj-Napoca, Romania
| |
Collapse
|
16
|
Lash TL, Riis AH, Ostenfeld EB, Erichsen R, Vyberg M, Ahern TP, Thorlacius-Ussing O. Associations of Statin Use With Colorectal Cancer Recurrence and Mortality in a Danish Cohort. Am J Epidemiol 2017; 186:679-687. [PMID: 28338891 DOI: 10.1093/aje/kww245] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/27/2016] [Indexed: 12/18/2022] Open
Abstract
In earlier studies of the influence of hydroxymethylglutaryl-coenzyme A reductase inhibitors (also known as statins) on colorectal cancer prognosis, investigators reported a reduced rate of cancer-specific mortality. Studies of recurrence are few and small. Using data from Danish registries, we followed 21,152 patients diagnosed with stage I-III colorectal cancer from 2001 to 2011. We estimated the association between statin use in the preceding year and cancer recurrence, cancer-specific mortality, and all-cause mortality rates. We identified 5,036 recurrences, 7,084 deaths from any cause, and 4,066 deaths from colorectal cancer. After adjustment for potential confounders, statin use was not associated with recurrence (adjusted hazard ratio (aHR) = 1.01, 95% confidence interval (CI): 0.93, 1.09), but it was associated with death from colorectal cancer (aHR = 0.72, 95% CI: 0.65, 0.79) and death from any cause (aHR = 0.72, 95% CI: 0.67, 0.76). Statin use in the year preceding recurrence was associated with a reduced risk of cancer-specific mortality (aHR = 0.83, 95% CI: 0.74, 0.92) but also a reduced risk of death from any other cause (aHR = 0.78, 95% CI: 0.61, 1.00). Statin use was not associated with a reduced rate of colorectal cancer recurrence, but it was associated with a reduced rate of cancer-specific mortality, which suggests that there is no cancer-directed benefit; therefore, there is no basis to prescribe statins to colorectal cancer patients who do not have cardiovascular indications.
Collapse
|
17
|
Gash KJ, Chambers AC, Cotton DE, Williams AC, Thomas MG. Potentiating the effects of radiotherapy in rectal cancer: the role of aspirin, statins and metformin as adjuncts to therapy. Br J Cancer 2017; 117:210-219. [PMID: 28641310 PMCID: PMC5520519 DOI: 10.1038/bjc.2017.175] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/03/2017] [Accepted: 05/22/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Complete tumour response (pCR) to neo-adjuvant chemo-radiotherapy for rectal cancer is associated with a reduction in local recurrence and improved disease-free and overall survival, but is achieved in only 20-30% of patients. Drug repurposing for anti-cancer treatments is gaining momentum, but the potential of such drugs as adjuncts, to increase tumour response to chemo-radiotherapy in rectal cancer, is only just beginning to be recognised. METHODS A systematic literature search was conducted and all studies investigating the use of drugs to enhance response to neo-adjuvant radiation in rectal cancer were included. 2137 studies were identified and following review 12 studies were extracted for full text review, 9 studies were included in the final analysis. RESULTS The use of statins or aspirin during neo-adjuvant therapy was associated with a significantly higher rate of tumour downstaging. Statins were identified as a significant predictor of pCR and aspirin users had a greater 5-year progression-free survival and overall survival. Metformin use was associated with a significantly higher overall and disease-free survival, in a subset of diabetic patients. CONCLUSIONS Aspirin, metformin and statins are associated with increased downstaging of rectal tumours and thus may have a role as adjuncts to neoadjuvant treatment, highlighting a clear need for prospective randomised controlled trials to determine their true impact on tumour response and overall survival.
Collapse
Affiliation(s)
- K J Gash
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS1 8TD, UK
- Department of Coloproctology, University Hospitals Bristol NHS Foundation Trust, Bristol BS2 8HW, UK
| | - A C Chambers
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS1 8TD, UK
- Department of Coloproctology, University Hospitals Bristol NHS Foundation Trust, Bristol BS2 8HW, UK
| | - D E Cotton
- Department of Coloproctology, University Hospitals Bristol NHS Foundation Trust, Bristol BS2 8HW, UK
| | - A C Williams
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS1 8TD, UK
| | - M G Thomas
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS1 8TD, UK
- Department of Coloproctology, University Hospitals Bristol NHS Foundation Trust, Bristol BS2 8HW, UK
| |
Collapse
|
18
|
Inhibiting HDAC1 Enhances the Anti-Cancer Effects of Statins through Downregulation of GGTase-Iβ Expression. Int J Mol Sci 2017; 18:ijms18051010. [PMID: 28481295 PMCID: PMC5454923 DOI: 10.3390/ijms18051010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 04/23/2017] [Accepted: 05/01/2017] [Indexed: 02/05/2023] Open
Abstract
Hydroxy-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitors, namely statins, are potential anti-tumor agents. Previously, we showed that a pan-histone deacetylase (HDAC) inhibitor enhances the anti-tumor effects of the HMG-CoA inhibitor. However, the underlying mechanisms were not fully understood. Cancer cell lines (CAL-27 and SACC-83) were exposed to pan-HDAC inhibitor, or HDAC1 inhibitor, or geranylgeranyl transferase type I (GGTase-I) inhibitor alone or in combination with statin. Cell viability, apoptosis, migration, and invasion were assessed by Cell Count Kit-8, 4′,6-diamidino-2-phenylindole staining, and transwell assay, respectively. A xenograft model was used for assessing tumor growth in vivo. Western blot and real-time PCR were used to assess the expression of genes. We observed that inhibiting HDAC1 could enhance the anti-tumor effects of statins both in vitro and in vivo. Inhibiting HDAC1 blocked the statin-induced upregulation of geranylgeranyl transferase type Iβ subunit (GGTase-Iβ), resulting in an enhancement of the anti-cancer effects of statin. Overexpression of GGTase-Iβ or constitutively active RhoA abolished the enhancement by inhibiting HDAC1 on anti-tumor effects of statins. The HDAC1 inhibitor failed to enhance cytotoxicity in non-tumor primary cells treated with statin. Inhibiting HDAC1 enhanced the anti-cancer effects of statins through downregulation of GGTase-Iβ expression, and thus further inactivation of RhoA. A combination of statin with HDAC1 or GGTase-I inhibitor would be a new strategy for cancer chemotherapy.
Collapse
|
19
|
Dong X, Huang Y, Kong L, Li J, Kou J, Yin L, Yang J. C35 is overexpressed in colorectal cancer and is associated tumor invasion and metastasis. Biosci Trends 2016; 9:117-21. [PMID: 26173296 DOI: 10.5582/bst.2015.01057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The aim of this study was to investigate the expression of C35, an oncogene previously found in breast and prostate cancers, and its clinicopathological significance in colorectal cancer (CRC). Qualitative and quantitative detection of C35 mRNA expression was performed using reverse transcription-PCR (RT-PCR) and real-time PCR. C35 protein expression was determined using immunohistochemistry. C35 mRNA was detected in none of 10 normal colorectal tissue samples, 55 of 65 (84.6%) CRC tissue samples, and 43 of 55 (78.2%) adjacent non-cancerous tissue samples. In addition, the level of C35 mRNA in CRC tissue samples was markedly higher than that in tumor adjacent non-cancerous tissue samples. C35 protein expression was detected in 58 of 80 (72.5%) CRC tissue samples and was closely associated with tumor serosal invasion, lymphnode metastasis, and an advanced Dukes stage. These results suggest that C35 might serve as a biomarker or therapeutic target for management of CRC.
Collapse
|
20
|
Synergistic Effects of Simvastatin and Irinotecan against Colon Cancer Cells with or without Irinotecan Resistance. Gastroenterol Res Pract 2016; 2016:7891374. [PMID: 26966430 PMCID: PMC4757714 DOI: 10.1155/2016/7891374] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/30/2015] [Accepted: 01/11/2016] [Indexed: 01/15/2023] Open
Abstract
Aims. We here investigated whether the combination of simvastatin and irinotecan could induce the synergistic effect on colon cancer cells with or without resistance to irinotecan. Methods. We investigated cell proliferation assay and assessed cell death detection ELISA and caspase-3 activity assay of various concentrations of simvastatin and irinotecan to evaluate the efficacy of drug combination on colon cancer cells with or without irinotecan resistance. Results. The IC50 values of simvastatin alone and irinotecan alone were 115.4 ± 0.14 μM (r = 0.98) and 62.5 ± 0.18 μM (r = 0.98) in HT-29 cells without resistance to irinotecan. The IC50 values of these two drugs were 221.9 ± 0.22 μM (r = 0.98) and 195.9 ± 0.16 μM (r = 0.99), respectively, in HT-29 cell with resistance to irinotecan. The results of combinations of the various concentrations of two drugs showed that combined treatment with irinotecan and simvastatin more efficiently suppressed cell proliferation of HT-29 cells even with resistance to irinotecan as well as without resistance. Furthermore, the combination of simvastatin and irinotecan at 2 : 1 molar ratio showed the best synergistic interaction. Conclusion. Simvastatin could act synergistically with irinotecan to overcome irinotecan resistance of colon cancer.
Collapse
|
21
|
Licarete E, Sesarman A, Banciu M. Exploitation of pleiotropic actions of statins by using tumour-targeted delivery systems. J Microencapsul 2015; 32:619-31. [PMID: 26299551 DOI: 10.3109/02652048.2015.1073383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Statins are drugs traditionally used to lower cholesterol levels in blood. At concentrations 100- to 500-fold higher than those needed for reaching cholesterol lowering activity, they have anti-tumour activity. This anti-tumour activity is based on statins pleiotropic effects derived from their ability to inhibit the mevalonate synthesis and include anti-proliferative, pro-apoptotic, anti-angiogenic, anti-inflammatory, anti-metastatic actions and modulatory effects on intra-tumour oxidative stress. Thus, in this review, we summarise the possible pleiotropic actions of statins involved in tumour growth inhibition. Since the administration of these high doses of statins is accompanied by severe side effects, targeted delivery of statins seems to be the appropriate strategy for efficient application of statins in oncology. Therefore, we also present an overview of the current status of targeted delivery systems for statins with possible utilisation in oncology.
Collapse
Affiliation(s)
- Emilia Licarete
- a Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology , Babes-Bolyai University , Cluj-Napoca , Romania and.,b Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University , Cluj-Napoca , Romania
| | - Alina Sesarman
- a Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology , Babes-Bolyai University , Cluj-Napoca , Romania and.,b Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University , Cluj-Napoca , Romania
| | - Manuela Banciu
- a Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology , Babes-Bolyai University , Cluj-Napoca , Romania and.,b Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University , Cluj-Napoca , Romania
| |
Collapse
|
22
|
Altwairgi AK. Statins are potential anticancerous agents (review). Oncol Rep 2015; 33:1019-39. [PMID: 25607255 DOI: 10.3892/or.2015.3741] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/23/2014] [Indexed: 11/05/2022] Open
Abstract
Statins are inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), which is a rate-limiting enzyme in the mevalonate pathway. The pleiotropic effects of statins may be mediated by the inhibition of downstream products such as small GTP-binding proteins, Rho, Ras and Rac whose localization and function are dependent on isoprenylation. Preclinical studies of statins in different cancer cell lines and animal models showed antiproliferative, pro‑apoptotic and anti-invasive effects. Notably, statins showed targeted action in cancerous cell lines compared to normal cells. Previous studies have also shown the synergistic effects of statins with chemotherapeutic agents and radiotherapy. This effect of statins was also observed in chemotherapeutic-resistant tumors. Statins were reported to sensitize the cells to radiation by arresting them in the late G1 phase of the cell cycle. Similarly, population-based studies also demonstrated a chemopreventive and survival benefit of statins in various types of cancers. However, this benefit has yet to be proven in clinical trials. The inter-individual variation in response to statins may be contributed to many genetic and non-genetic factors, including single-nucleotide polymorphisms in HMGCR gene and the overexpression of heterogeneous nuclear ribonucleoprotein A1, which was reported to reduce HMGCR enzyme activity. However, more studies with large phase III randomized controlled trials in cancer patients should be conducted to establish the effect of stains in cancer prevention and treatment.
Collapse
|
23
|
Towards the Application of Atorvastatin to Intensify Proapoptotic Potential of Conventional Antileukemic Agents In Vitro. J CHEM-NY 2015. [DOI: 10.1155/2015/162956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
It has been previously revealed that statins used at high concentrations display antileukemic potential towards chronic lymphocytic leukemia (CLL) cells. However, their usage alone in clinical practice may be limited due to possible side effects of high doses of these drugs. On the other hand, combined treatment of leukemia with statins and the conventional chemotherapeutics is questionable because of unknown influence of the first on the standard treatment results. This study has revealed thatin vitroatorvastatin increases the proapoptotic potential of cladribine and mafosfamide in CLL cells isolated from peripheral blood of patients. Moreover, a preincubation with the above statin sensitizes leukemic cells to CM-induced apoptosis even at small concentrations of the drug. The usage of atorvastatin together with or followed by the conventional chemotherapy should be considered as therapeutic option for the treatment for this leukemia. Interestingly, CM-resistant patients might have the biggest benefits from atorvastatin administration.
Collapse
|
24
|
Porfire A, Tomuta I, Muntean D, Luca L, Licarete E, Alupei MC, Achim M, Vlase L, Banciu M. Optimizing long-circulating liposomes for delivery of simvastatin to C26 colon carcinoma cells. J Liposome Res 2014; 25:261-9. [DOI: 10.3109/08982104.2014.987787] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Pisanti S, Picardi P, Ciaglia E, D'Alessandro A, Bifulco M. Novel prospects of statins as therapeutic agents in cancer. Pharmacol Res 2014; 88:84-98. [PMID: 25009097 DOI: 10.1016/j.phrs.2014.06.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/25/2014] [Accepted: 06/25/2014] [Indexed: 02/07/2023]
Abstract
Statins are well known competitive inhibitors of hydroxymethylglutaryl-CoA reductase enzyme (HMG-CoA reductase), thus traditionally used as cholesterol-lowering agents. In recent years, more and more effects of statins have been revealed. Nowadays alterations of lipid metabolism have been increasingly recognized as a hallmark of cancer cells. Consequently, much attention has been directed toward the potential of statins as therapeutic agents in the oncological field. Accumulated in vitro and in vivo clinical evidence point out the role of statins in a variety of human malignancies, in regulating tumor cell growth and anti-tumor immune response. Herein, we summarize and discuss, in light of the most recent observations, the anti-tumor effects of statins, underpinning the detailed mode of action and looking for their true significance in cancer prevention and treatment, to determine if and in which case statin repositioning could be really justified for neoplastic diseases.
Collapse
Affiliation(s)
- Simona Pisanti
- Department of Medicine and Surgery, University of Salerno, Italy; Department of Pharmacy, University of Salerno, Italy.
| | - Paola Picardi
- Department of Medicine and Surgery, University of Salerno, Italy; Department of Pharmacy, University of Salerno, Italy
| | - Elena Ciaglia
- Department of Medicine and Surgery, University of Salerno, Italy; Department of Pharmacy, University of Salerno, Italy
| | - Alba D'Alessandro
- Department of Medicine and Surgery, University of Salerno, Italy; Department of Pharmacy, University of Salerno, Italy
| | - Maurizio Bifulco
- Department of Medicine and Surgery, University of Salerno, Italy; Department of Pharmacy, University of Salerno, Italy.
| |
Collapse
|