1
|
Abstract
Integrin-mediated adhesion of cells to the extracellular matrix (ECM) is crucial for the physiological development and functioning of tissues but is pathologically disrupted in cancer. Indeed, abnormal regulation of integrin receptors and ECM ligands allows cancer cells to break down tissue borders, breach into blood and lymphatic vessels, and survive traveling in suspension through body fluids or residing in metabolically or pharmacologically hostile environments. Different molecular and cellular mechanisms responsible for the modulation of integrin adhesive function or mechanochemical signaling are altered and participate in cancer. Cancer development and progression are also bolstered by dysfunctionalities of integrin-mediated ECM adhesion occurring both in tumor cells and in elements of the surrounding tumor microenvironment, such as vascular cells, cancer-associated fibroblasts, and immune cells. Mounting evidence suggests that integrin inhibitors may be effectively exploited to overcome resistance to standard-of-care anti-cancer therapies.
Collapse
Affiliation(s)
- Donatella Valdembri
- Candiolo Cancer Institute - Fondazione del Piemonte per l’Oncologia (FPO) - IRCCS, Candiolo (TO), Italy
- Department of Oncology, University of Torino School of Medicine, Candiolo (TO), Italy
| | - Guido Serini
- Candiolo Cancer Institute - Fondazione del Piemonte per l’Oncologia (FPO) - IRCCS, Candiolo (TO), Italy
- Department of Oncology, University of Torino School of Medicine, Candiolo (TO), Italy
| |
Collapse
|
2
|
Su X, Liu N, Wu W, Zhu Z, Xu Y, He F, Chen X, Zeng Y. Comprehensive analysis of prognostic value and immune infiltration of kindlin family members in non-small cell lung cancer. BMC Med Genomics 2021; 14:119. [PMID: 33934696 PMCID: PMC8091749 DOI: 10.1186/s12920-021-00967-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Kindlin Family Members have been reported to be aberrantly expressed in various human cancer types and involved in tumorigenesis, tumor progression, and chemoresistance. However, their roles in non-small cell lung cancer (NSCLC) remain poorly elucidated. METHODS We analyzed the prognostic value and immune infiltration of Kindlins in NSCLC through Oncomine, GEPIA, UALCAN, CCLE, Kaplan‑Meier plotter, cBioPortal, TIMER, GeneMANIA, STRING, and DAVID database. Additionally, the mRNA expression levels of Kindlins were verified in 30 paired NSCLC tissues and NSCLC cell lines by real-time PCR. RESULTS The expression level of FERMT1 was remarkably increased in NSCLC tissues and NSCLC cell lines, while FERMT2 and FERMT3 were reduced. Kindlins expressions were associated with individual cancer stages and nodal metastasis. We also found that higher expression level of FERMT1 was obviously correlated with worse overall survival (OS) in patients with NSCLC, while higher FERMT2 was strongly associated with better overall survival (OS) and first progression (FP). Additionally, the expression of FERMT2 and FERMT3 were obviously correlated with the immune infiltration of diverse immune cells. Functional enrichment analysis has shown that Kindlins may be significantly correlated with intracellular signal transduction, ATP binding and the PI3K-Akt signaling pathway in NSCLC. CONCLUSIONS The research provides a new perspective on the distinct roles of Kindlins in NSCLC and likely has important implications for future novel biomarkers and therapeutic targets in NSCLC.
Collapse
Affiliation(s)
- Xiaoshan Su
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Ning Liu
- Department of Thoracic Surgery, Fuzhou Pulmonary Hospital, Fuzhou, China
| | - Weijing Wu
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Zhixing Zhu
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Yuan Xu
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Feng He
- Department of Thoracic Surgery, Fuzhou Pulmonary Hospital, Fuzhou, China
| | - Xinfu Chen
- Department of Thoracic Surgery, Fuzhou Pulmonary Hospital, Fuzhou, China
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China.
| |
Collapse
|
3
|
Wang W, Kansakar U, Markovic V, Sossey-Alaoui K. Role of Kindlin-2 in cancer progression and metastasis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:901. [PMID: 32793745 DOI: 10.21037/atm.2020.03.64] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer metastasis is a complex and multistep process whereby cancer cells escape the confines of the primary site to establish a new residency at distant sites. This multistep process is also known as the invasion-metastasis cascade. The biological and molecular mechanisms that control the invasion-metastasis cascade, which ultimately leads to the spread of cancer cells into distant sites, remain poorly understood. Kindlin-2 (K2) belongs to the 4.1-ezrin-ridixin-moesin (FERM) domain family of proteins, which interact with the cytoplasmic tails of β-integrin subunits, leading to the activation of extensive biological functions. These biological functions include cell migration, differentiation, cancer initiation, development, and invasion. In this review, we will discuss the various molecular signaling pathways that are regulated by K2 during the invasion-metastasis cascade of cancer tumors. These signaling pathways include TGFβ, Wnt/β-Catenin, Hedgehog, p53 and senescence, and cancer stem cell (CSC) maintenance. We will also discuss the molecular signaling pathways that regulate K2 function both at the transcriptional and the posttranslational levels. Finally, we will consider molecular mechanisms to specifically target K2 as novel therapeutic options for cancer treatment.
Collapse
Affiliation(s)
- Wei Wang
- Case Western Reserve University, Cleveland, OH, USA.,Division of Cancer Biology, MetroHealth System, Cleveland, OH, USA
| | - Urna Kansakar
- Case Western Reserve University, Cleveland, OH, USA.,Division of Cancer Biology, MetroHealth System, Cleveland, OH, USA
| | - Vesna Markovic
- Division of Cancer Biology, MetroHealth System, Cleveland, OH, USA
| | - Khalid Sossey-Alaoui
- Case Western Reserve University, Cleveland, OH, USA.,Division of Cancer Biology, MetroHealth System, Cleveland, OH, USA
| |
Collapse
|
4
|
Wu G, Long Y, Lu Y, Feng Y, Yang X, Xu X, Yao D. Kindlin‑2 suppresses cervical cancer cell migration through AKT/mTOR‑mediated autophagy induction. Oncol Rep 2020; 44:69-76. [PMID: 32377753 PMCID: PMC7251777 DOI: 10.3892/or.2020.7603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/29/2020] [Indexed: 12/15/2022] Open
Abstract
Kindlin‑2 plays a carcinogenic or tumor‑suppressor role in various tumors. However, its role in cervical cancer remains unclear. In the present study, kindlin‑2 expression was first analyzed using public expression data and clinical specimens. It was revealed that kindlin‑2 was downregulated in cervical cancer tissues, and low expression of kindlin‑2 was associated with poor disease‑free survival. In addition, kindlin‑2 was overexpressed and knocked down in two cell lines to study its effect in cervical cancer cells. The results revealed that kindlin‑2 promoted cell autophagy and inactivated AKT/mTOR signaling. Rescue experiments indicated that the regulation of autophagy by kindlin‑2 was dependent on the AKT/mTOR signaling pathway. Furthermore, it was revealed that kindlin‑2 inhibited cell migration, and autophagy was required for this process. Collectively, these findings revealed the role and mechanism of kindlin‑2 in the autophagy and migration of cervical cancer cells.
Collapse
Affiliation(s)
- Guangteng Wu
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Ying Long
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yan Lu
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yiming Feng
- Guangxi Medical University Graduate School, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xinmei Yang
- Guangxi Medical University Graduate School, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xun Xu
- Guangxi Medical University Graduate School, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Desheng Yao
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
5
|
Distinct expression profiles and functions of Kindlins in breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:281. [PMID: 30477537 PMCID: PMC6260766 DOI: 10.1186/s13046-018-0955-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/09/2018] [Indexed: 12/20/2022]
Abstract
Background Kindlin-1, − 2, and − 3 are the three members of the Kindlin family. They are best known as regulators of integrin functions, contributing to fundamental biological processes such as cell survival, adhesion and migration. Their deregulation leads to diverse pathologies including a broad range of cancers in which both, tumor-promoting and tumor-inhibiting functions have been described. Methods To better characterize Kindlins implication in breast cancer, in vitro experiments were performed in a series of cancer cell lines. We first assessed their expression profiles and subcellular distributions. Then, their involvement in breast cancer cell morphology, migration and invasion was verified by examining phenotypic changes induced by the depletion of either isoforms using RNA interference. An expression study was performed in a series of breast cancer patient derived xenografts (n = 58) to define the epithelial and stromal contribution of each Kindlin. Finally, we analyzed the expression levels of the three Kindlins in a large series of human breast tumors, at the RNA (n = 438) and protein (n = 129) levels and we evaluated their correlation with the clinical outcome. Results We determined that Kindlin-1 and Kindlin-2, but not Kindlin-3, were expressed in breast tumor cells. We uncovered the compensatory roles of Kindlin-1 and -2 in focal adhesion dynamics and cell motility. Remarkably, Kindlin-2 had a predominant effect on cell spreading and Kindlin-1 on cell invasion. In line with these experimental observations, Kindlin-1 overexpression was associated with a worse patients’ outcome. Notably, Kindlin-3, expressed by tumor infiltrating leukocytes, also correlated with a poor prognosis of breast cancer patients. Conclusion This study demonstrates that each one of the Kindlin family members has a different expression profile emphasizing their redundant and complementary roles in breast tumor cells. We highlight the specific link between Kindlin-1 and breast cancer progression. In addition, Kindlin-3 overexpression in the tumor microenvironment is associated with more aggressive breast tumors. These results suggest that Kindlins play distinctive roles in breast cancer. Kindlins may be useful in identifying breast cancer patients with a worst prognosis and may offer new avenues for therapeutic intervention against cancer progression. Electronic supplementary material The online version of this article (10.1186/s13046-018-0955-4) contains supplementary material, which is available to authorized users.
Collapse
|
6
|
Li B, Chi X, Song J, Tang Y, Du J, He X, Sun X, Bi Z, Wang Y, Zhan J, Zhang H. Integrin-interacting protein Kindlin-2 induces mammary tumors in transgenic mice. SCIENCE CHINA-LIFE SCIENCES 2018; 62:225-234. [PMID: 30460471 DOI: 10.1007/s11427-018-9336-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 07/23/2018] [Indexed: 11/25/2022]
Abstract
Kindlin-2, an integrin-interacting protein, regulates breast cancer progression. However, currently, no animal model to study the role of Kindlin-2 in the carcinogenesis of mammary gland is available. We established a Kindlin-2 transgenic mouse model using a mammary gland-specific promoter, mammary tumor virus (MMTV) long terminal repeat (LTR). Kindlin-2 was overexpressed in the epithelial cells of the transgenic mice. The mammary gland ductal trees were found to grow faster in MMTV-Kindlin-2 transgenic mice than in control mice during puberty. Kindlin-2 promoted mammary gland growth as indicated by more numerous duct branches and larger lumens, and more alveoli were formed in the mammary glands during pregnancy under Kindlin-2 overexpression. Importantly, mammary gland-specific expression of Kindlin-2 induced tumor formation at the age of 55 weeks on average. Additionally, the levels of estrogen receptor and progesterone receptor were decreased, whereas human epidermal growth factor receptor 2 and β-catenin were upregulated in the Kindlin-2-induced mammary tumors. These findings demonstrated that Kindlin-2 induces mammary tumor formation via activation of the Wnt signaling pathway.
Collapse
MESH Headings
- Animals
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Cell Differentiation
- Cell Proliferation
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Female
- Gene Expression
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/metabolism
- Mammary Neoplasms, Animal/pathology
- Mammary Tumor Virus, Mouse/genetics
- Mice
- Mice, Transgenic
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Pregnancy
- Promoter Regions, Genetic
- Receptor, ErbB-2/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
- Wnt Signaling Pathway
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Bing Li
- Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Xiaochun Chi
- Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Jiagui Song
- Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Yan Tang
- Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Juan Du
- Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Xiaokun He
- Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Xiaoran Sun
- Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Zhenwu Bi
- Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Yunling Wang
- Institute of Cardiovascular Research, Peking University Health Science Center, Beijing, 100191, China
| | - Jun Zhan
- Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China.
| | - Hongquan Zhang
- Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
7
|
Liu S, Chen S, Ma K, Shao Z. Prognostic value of Kindlin-2 expression in patients with solid tumors: a meta-analysis. Cancer Cell Int 2018; 18:166. [PMID: 30386175 PMCID: PMC6198465 DOI: 10.1186/s12935-018-0651-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/27/2018] [Indexed: 12/27/2022] Open
Abstract
Background Kindlin-2 is one of the Kindlin family members which are evolutionarily conserved focal adhesion proteins with integrin β-binding affinity. Recently, accumulative studies have suggested that Kindlin-2 plays important roles in tumor biology. However, the prognostic significance of Kindlin-2 in patients with solid tumors remains controversial. Therefore, this study aimed to clarify the prognostic value of Kindlin-2 in solid tumors via meta-analysis. Methods A comprehensive search was performed in PubMed, Embase, Web of Science and EBSCO for all relevant studies reporting the prognostic significance of Kindlin-2 expression in solid cancer patients. The summary hazard ratio (HR) and corresponding 95% confidence interval (CI) were calculated to estimate the association between Kindlin-2 expression with survival of solid cancer patients. Results We included 14 eligible studies containing 1869 patients in our meta-analysis. The pooled results indicated that high Kindlin-2 expression was significantly associated with poor overall survival (OS) (pooled HR 1.66, 95% CI 1.44–1.92, P < 0.0001), disease-free survival (DFS)/recurrence-free survival (RFS)/progression-free survival (PFS) (pooled HR 1.73, 95% CI 1.16–2.57, P = 0.0067). For certain tumor types, high Kindlin-2 expression was significantly correlated with a poor outcome in patients with solid tumors, including pancreatic ductal adenocarcinoma (DFS/RFS/PFS), esophageal squamous cell carcinoma (OS, DFS/RFS/PFS), hepatocellular carcinoma (OS), clear cell renal cell carcinoma (OS), bladder cancer (OS, DFS/RFS/PFS), chondrosarcoma (OS), osteosarcoma (OS), gastric cancer (DFS/RFS/PFS), and glioma (OS). Conclusions Our meta-analysis demonstrated that high Kindlin-2 expression might indicate poor outcome in patients with solid tumors and could serve as a prognostic biomarker for solid cancer patients.
Collapse
Affiliation(s)
- Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Kaige Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| |
Collapse
|
8
|
Wang P, Chu W, Zhang X, Li B, Wu J, Qi L, Yu Y, Zhang H. Kindlin-2 interacts with and stabilizes DNMT1 to promote breast cancer development. Int J Biochem Cell Biol 2018; 105:41-51. [PMID: 30287284 DOI: 10.1016/j.biocel.2018.09.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/27/2018] [Accepted: 09/29/2018] [Indexed: 12/12/2022]
Abstract
Integrin-interacting protein Kindlin-2, as a focal adhesion protein, promotes growth and progression of breast cancer. However, the precise mechanism that underlie the role of Kindlin-2 in breast cancer is elusive. Here, we report that the expression of Kindlin-2 positively correlated with DNA methyltransferase 1(DNMT1) in breast cancer patients. Further, we found that DNMT1 was upregulated in mammary gland tissues of mammary specific Kindlin-2 transgenic mice. More importantly, high expression of DNMT1 was observed in mammary tumors formed by Kindlin-2 transgenic mice. On the basis of these observations, DNMT inhibitor 5-aza-CdR was used and found its treatment strongly decreased Kindlin-2-induced breast cancer cell proliferation and migration. Mechanistically, Kindlin-2 increased the stability of DNA methyltransferase DNMT1 through interaction with DNMT1 and methylated CpG islands in the E-cadherin promoter. Kindlin-2 increased the occupancy of DNMT1 at E-cadherin promoter, thereby suppressing E-cadherin expression. Taken together, our data reveal that Kindlin-2 promotes breast cancer development by enhancing the stability of DNMT1.
Collapse
Affiliation(s)
- Peng Wang
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Wenhui Chu
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Xi Zhang
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Bing Li
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Junzhou Wu
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Lihua Qi
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Yu Yu
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China.
| | - Hongquan Zhang
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
9
|
Sahana J, Nassef MZ, Wehland M, Kopp S, Krüger M, Corydon TJ, Infanger M, Bauer J, Grimm D. Decreased E-Cadherin in MCF7 Human Breast Cancer Cells Forming Multicellular Spheroids Exposed to Simulated Microgravity. Proteomics 2018; 18:e1800015. [PMID: 29785723 DOI: 10.1002/pmic.201800015] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/27/2018] [Indexed: 12/23/2022]
Abstract
MCF7 human breast cancer cells were cultured under normal gravity (1 g) and on a random positioning machine (RPM) preventing sedimentation. After 2 weeks, adherent 1 g-control and adherent RPM cells (AD) as well as multicellular spheroids (MCS) were harvested. AD and MCS had been exposed to the RPM in the same culture flask. In a subsequent proteome analysis, the majority of the proteins detected showed similar label-free quantification (LFQ) scores in each of the respective subpopulations, but in both AD or MCS cultures, proteins were also found whose LFQs deviated at least twofold from their counterparts in the 1 g-control cells. They included the cell junction protein E-cadherin, which was diminished in MCS cells, where proteins of the E-cadherin autodegradation pathway were enhanced and c-Src (proto-oncogene tyrosine-protein kinase c-Src) was detected. Spheroid formation was prevented by inhibition of c-Src but promoted by antibodies blocking E-cadherin activity. An interaction analysis of the detected proteins that are involved in forming and regulating junctions or adhesion complexes and in E-cadherin autodegradation indicated connections between the two protein groups. This suggests that the balance of proteins that up- or downregulate E-cadherin mediates the tendency of MCF7 cells to form MCS during RPM exposure.
Collapse
Affiliation(s)
- Jayashree Sahana
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Mohamed Zakaria Nassef
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Sascha Kopp
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.,Department of Ophthalmology, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Johann Bauer
- Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.,Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany.,Gravitational Biology and Translational Regenerative Medicine, Faculty of Medicine and Mechanical Engineering, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| |
Collapse
|
10
|
Fu Y, Yu W, Cai H, Lu A. Forecast of actin-binding proteins as the oncotarget in osteosarcoma - a review of mechanism, diagnosis and therapy. Onco Targets Ther 2018; 11:1553-1561. [PMID: 29593421 PMCID: PMC5865567 DOI: 10.2147/ott.s159894] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma (OS) is the most common bone malignant tumor with a high rate of lung metastasis and principally emerges in children and adolescents. Although neoadjuvant chemotherapy is widely used around the world, a high rate of chemoresistance occurs and frequently generates a poor prognosis. Therefore, finding a new appropriate prognostic marker for OS is a valuable research direction, which will give patients a better chance to receive proper therapy. Actin-binding proteins (ABPs) are a group of proteins that interact with actin cytoskeleton and play a crucial role in the regulation of the cell motility and morphology in eukaryotes. Meanwhile, ABPs also act as a bridge between the cytomembrane and nucleus, which transmit the outside-in and inside-out signals in cytoplasm. Furthermore, ABPs alter the dynamic structure of actin and regulate the invasion and metastasis of cancer. Hence, ABPs have a wide application in predicting the prognosis, and may be new targets, in tumor therapy. This review focuses on a series of ABPs and discusses their modulatory functions. It provides a new insight into the classification of ABPs’ functions in the process of invasion and metastasis in OS and illuminates the potential ability in predicting the prognosis of OS patients.
Collapse
Affiliation(s)
- Yucheng Fu
- Department of Surgical Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Wei Yu
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Hongliu Cai
- Department of Surgical Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Anwei Lu
- Department of Surgical Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
11
|
Zhan J, Zhang H. Kindlins: Roles in development and cancer progression. Int J Biochem Cell Biol 2018; 98:93-103. [PMID: 29544897 DOI: 10.1016/j.biocel.2018.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 12/15/2022]
Abstract
The Kindlins are FERM domain proteins comprising three members (Kindlin-1, -2 and -3) which are evolutionarily conserved. Kindlins bind with β-integrin cytoplasmic tails and execute broad biological functions including directed cell migration, proliferation, differentiation and survival. In light of more and more evidence point to the importance of Kindlin family members in normal development and human diseases especially in cancers, we aim to portrait the profile of Kindlins in the regulation of embryonic development and cancer progression. We first summarize all the known binding proteins for individual member of Kindlin family. We then outline the Kindlin-regulated signaling pathways including Wnt/β-catenin, TGFβ, EGFR, and Hedgehog signalings. Furthermore, we descript the pivotal role of Kindlins in embryonic development in detail with notions that Kindlin-1 is highly expressed in endo/ectodermal originated tissues, Kindlin-2 is highly expressed in mesoderm-derived tissues and Kindlin-3 is highly expressed in mesoderm- and ectoderm-derived tissues. Deregulation of Kindlins is generally reported in cancers from different organs. We also briefly descript the role of Kindlins in other diseases. Finally, we update the recent understanding of how Kindlins are regulated and modified as well as the degradation mechanism of Kindlins, respectively.
Collapse
Affiliation(s)
- Jun Zhan
- Peking University Health Science Center, Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), and State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Hongquan Zhang
- Peking University Health Science Center, Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), and State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China.
| |
Collapse
|
12
|
Ou Y, Zhao Z, Zhang W, Wu Q, Wu C, Liu X, Fu M, Ji N, Wang D, Qiu J, Zhang L, Yu C, Song Y, Zhan Q. Kindlin-2 interacts with β-catenin and YB-1 to enhance EGFR transcription during glioma progression. Oncotarget 2018; 7:74872-74885. [PMID: 27713156 PMCID: PMC5342708 DOI: 10.18632/oncotarget.12439] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/11/2016] [Indexed: 11/25/2022] Open
Abstract
Kindlin-2 promotes carcinogenesis through regulation of cell-cell and cell-extracellular matrix adhesion. However, the role of Kindlin-2 in glioma has not been elucidated. We investigated Kindlin-2 expression in 188 human glioma tissue samples. High Kindlin-2 expression was correlated with high pathological grade and a worse prognosis. Kindlin-2 promoted glioma cell motility and proliferation both in vitro and in vivo. Importantly, Kindlin-2 activated the EGFR pathway and increased EGFR mRNA levels. In addition to up-regulating Y-box binding protein-1 (YB-1) and β-catenin expression, Kindlin-2 formed a transcriptional complex with YB-1 and β-catenin that bound to the EGFR promoter and enhanced transcription. The β-catenin/YB-1/EGFR pathway was required for Kindlin-2-mediated functions. Our data provide a better understanding of the mechanisms underlying glioma progression, and suggest that Kindlin-2 may be a biomarker and therapeutic target in glioma.
Collapse
Affiliation(s)
- Yunwei Ou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China.,State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China.,Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China.,China National Clinical Research Center for Neurological Diseases, Beijing 100050, China
| | - Zitong Zhao
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Weimin Zhang
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qingnan Wu
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department of Biology and Shenzhen Key Laboratory of Cell Microenvironment, South University of Science and Technology of China, Shenzhen, 518055, China
| | - Xuefeng Liu
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ming Fu
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Dan Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Jiaji Qiu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Chunjiang Yu
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
13
|
Li M, Pei X, Wang G, Zhan J, Du J, Jiang H, Tang Y, Zhang H, He H. Kindlin-2 promotes clear cell renal cell carcinoma progression through the Wnt signaling pathway. Oncol Rep 2017; 38:1551-1560. [DOI: 10.3892/or.2017.5789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/22/2017] [Indexed: 11/06/2022] Open
|
14
|
Li Z, Wu X, Gu L, Shen Q, Luo W, Deng C, Zhou Q, Chen X, Li Y, Lim Z, Wang X, Wang J, Yang X. Long non-coding RNA ATB promotes malignancy of esophageal squamous cell carcinoma by regulating miR-200b/Kindlin-2 axis. Cell Death Dis 2017. [PMID: 28640252 PMCID: PMC5520904 DOI: 10.1038/cddis.2017.245] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the leading causes of cancer-related death, especially in China. In addition, the prognosis of late stage patients is extremely poor. However, the biological significance of the long non-coding RNA lnc-ATB and its potential role in ESCC remain to be documented. In this study, we investigated the role of lnc-ATB and the underlying mechanism promoting its oncogenic activity in ESCC. Expression of lnc-ATB was higher in ESCC tissues and cell lines than that in normal counterparts. Upregulated lnc-ATB served as an independent prognosis predictor of ESCC patients. Moreover, loss-of-function assays in ESCC cells showed that knockdown of lnc-ATB inhibited cell proliferation and migration both in vitro and in vivo. Mechanistic investigation indicated that lnc-ATB exerted oncogenic activities via regulating Kindlin-2, as the anti-migration role of lnc-ATB silence was attenuated by ectopic expression of Kindlin-2. Further analysis showed that lnc-ATB functions as a molecular sponge for miR-200b and Kindlin-2. Dysregulated miR-200b/Kindlin-2 signaling mediated the oncogenic activity of lnc-ATB in ESCC. Our results suggest that lnc-ATB predicts poor prognosis and may serve as a potential therapeutic target for ESCC patients.
Collapse
Affiliation(s)
- Zhongwen Li
- Department of Oncology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiaoliang Wu
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, China.,State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ling Gu
- State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Puer University, Puer, China
| | - Qi Shen
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Wen Luo
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Chuangzhong Deng
- State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qianghua Zhou
- State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xinru Chen
- State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanjie Li
- The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - ZuanFu Lim
- WVU Cancer Institute, Mary Babb Randolph Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Xing Wang
- State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiahong Wang
- State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Xianzi Yang
- State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
15
|
Yoshida N, Masamune A, Hamada S, Kikuta K, Takikawa T, Motoi F, Unno M, Shimosegawa T. Kindlin-2 in pancreatic stellate cells promotes the progression of pancreatic cancer. Cancer Lett 2017; 390:103-114. [PMID: 28093281 DOI: 10.1016/j.canlet.2017.01.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/02/2016] [Accepted: 01/10/2017] [Indexed: 01/10/2023]
Abstract
Pancreatic stellate cells (PSCs) play a pivotal role in pancreatic fibrosis associated with pancreatic ductal adenocarcinoma (PDAC). Kindlin-2 is a focal adhesion protein that regulates the activation of integrins. This study aimed to clarify the role of kindlin-2 in PSCs in pancreatic cancer. Kindlin-2 expression in 79 resected pancreatic cancer tissues was examined by immunohistochemical staining. Kindlin-2-knockdown immortalized human PSCs were established using small interfering RNA. Pancreatic cancer cells were treated with conditioned media of PSCs, and the cell proliferation and migration were examined. SUIT-2 pancreatic cancer cells were subcutaneously injected into nude mice alone or with PSCs and the size of the tumors was monitored. Kindlin-2 expression was observed in PDAC and the peritumoral stroma. Stromal kindlin-2 expression was associated with shorter recurrence-free survival time after R0 resection. Knockdown of kindlin-2 resulted in decreased proliferation, migration, and cytokine expression in PSCs. The PSC-induced proliferation and migration of pancreatic cancer cells were suppressed by kindlin-2 knockdown in PSCs. In vivo, co-injection of PSCs increased the size of the tumors, but this effect was abolished by kindlin-2 knockdown in PSCs. In conclusion, kindlin-2 in PSCs promoted the progression of pancreatic cancer.
Collapse
Affiliation(s)
- Naoki Yoshida
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuhiro Kikuta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuya Takikawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fuyuhiko Motoi
- Division of Hepato-Biliary-Pancreatic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Michiaki Unno
- Division of Hepato-Biliary-Pancreatic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
16
|
Feng C, Wee WK, Chen H, Ong LT, Qu J, Tan HF, Tan SM. Expression of kindlin-3 in melanoma cells impedes cell migration and metastasis. Cell Adh Migr 2016; 11:419-433. [PMID: 27715393 DOI: 10.1080/19336918.2016.1243645] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Kindlins are a small family of 4.1-ezrin-radixin-moesin (FERM)-containing cytoplasmic proteins. Kindlin-3 is expressed in platelets, hematopoietic cells, and endothelial cells. Kindlin-3 promotes integrin activation, clustering and outside-in signaling. Aberrant expression of kindlin-3 was reported in melanoma and breast cancer. Intriguingly, kindlin-3 has been reported to either positively or negatively regulate cancer cell metastasis. In this study, we sought to clarify the expression of kindlin-3 in melanoma cells and its role in melanoma metastasis. Two widely used metastatic mouse and human melanoma cell lines B16-F10 and M10, respectively, were examined and found to lack kindlin-3 mRNA and protein expression. When kindlin-3 was ectopically expressed in these cells, cell migration was markedly reduced. These are attributed to aberrant Rac1 and RhoA activation and overt membrane ruffling. Our data demonstrate for the first time that despite its well established role as a positive regulator of integrin-mediated cell adhesion, aberrant expression of kindlin-3 could lead to imbalanced RhoGTPases signaling that impedes rather than promotes cell migration.
Collapse
Affiliation(s)
- Chen Feng
- a School of Biological Sciences, Nanyang Technological University , Singapore
| | - Wei-Kiat Wee
- a School of Biological Sciences, Nanyang Technological University , Singapore
| | - Huizhi Chen
- b School of Materials Science & Engineering, Nanyang Technological University , Nanyang Avenue, Singapore
| | - Li-Teng Ong
- a School of Biological Sciences, Nanyang Technological University , Singapore
| | - Jing Qu
- a School of Biological Sciences, Nanyang Technological University , Singapore
| | - Hui-Foon Tan
- a School of Biological Sciences, Nanyang Technological University , Singapore
| | - Suet-Mien Tan
- a School of Biological Sciences, Nanyang Technological University , Singapore
| |
Collapse
|
17
|
Rognoni E, Ruppert R, Fässler R. The kindlin family: functions, signaling properties and implications for human disease. J Cell Sci 2016; 129:17-27. [PMID: 26729028 DOI: 10.1242/jcs.161190] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The kindlin (or fermitin) family of proteins comprises three members (kindlin-1,-2 and -3) of evolutionarily conserved focal adhesion (FA) proteins, whose best-known task is to increase integrin affinity for a ligand (also referred as integrin activation) through binding of β-integrin tails. The consequence of kindlin-mediated integrin activation and integrin-ligand binding is cell adhesion, spreading and migration, assembly of the extracellular matrix (ECM), cell survival, proliferation and differentiation. Another hallmark of kindlins is their involvement in disease. Mutations in the KINDLIN-1 (also known as FERMT1) gene cause Kindler syndrome (KS)--in which mainly skin and intestine are affected, whereas mutations in the KINDLIN-3 (also known as FERMT3) gene cause leukocyte adhesion deficiency type III (LAD III), which is characterized by impaired extravasation of blood effector cells and severe, spontaneous bleedings. Also, aberrant expression of kindlins in various forms of cancer and in tissue fibrosis has been reported. Although the malfunctioning of integrins represent a major cause leading to kindlin-associated diseases, increasing evidence also point to integrin-independent functions of kindlins that play an important role in the pathogenesis of certain disease aspects. Furthermore, isoform-specific kindlin functions have been discovered, explaining, for example, why loss of kindlins differentially affects tissue stem cell homeostasis or tumor development. This Commentary focuses on new and isoform-specific kindlin functions in different tissues and discusses their potential role in disease development and progression.
Collapse
Affiliation(s)
- Emanuel Rognoni
- Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Raphael Ruppert
- Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Reinhard Fässler
- Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| |
Collapse
|
18
|
Abstract
Kindlins are 4.1-ezrin-ridixin-moesin (FERM) domain containing proteins. There are three kindlins in mammals, which share high sequence identity. Kindlin-1 is expressed primarily in epithelial cells, kindlin-2 is widely distributed and is particularly abundant in adherent cells, and kindlin-3 is expressed primarily in hematopoietic cells. These distributions are not exclusive; some cells express multiple kindlins, and transformed cells often exhibit aberrant expression, both in the isoforms and the levels of kindlins. Great interest in the kindlins has emerged from the recognition that they play major roles in controlling integrin function. In vitro studies, in vivo studies of mice deficient in kindlins, and studies of patients with genetic deficiencies of kindlins have clearly established that they regulate the capacity of integrins to mediate their functions. Kindlins are adaptor proteins; their function emanate from their interaction with binding partners, including the cytoplasmic tails of integrins and components of the actin cytoskeleton. The purpose of this review is to provide a brief overview of kindlin structure and function, a consideration of their binding partners, and then to focus on the relationship of each kindlin family member with cancer. In view of many correlations of kindlin expression levels and neoplasia and the known association of integrins with tumor progression and metastasis, we consider whether regulation of kindlins or their function would be attractive targets for treatment of cancer.
Collapse
Affiliation(s)
- Edward F Plow
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mitali Das
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Katarzyna Bialkowska
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Khalid Sossey-Alaoui
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
19
|
Yang JR, Pan TJ, Yang H, Wang T, Liu W, Liu B, Qian WH. Kindlin-2 promotes invasiveness of prostate cancer cells via NF-κB-dependent upregulation of matrix metalloproteinases. Gene 2016; 576:571-6. [DOI: 10.1016/j.gene.2015.11.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/28/2015] [Accepted: 11/04/2015] [Indexed: 12/27/2022]
|