1
|
Mou A, Li X, Li Z, Qu L, Dong Y, Wang Z, Zhang X, Xu Q. Comparative analysis of esophageal gland microbes between two body sizes of Gigantopelta aegis, a hydrothermal snail from the Southwest Indian Ridge. Microbiol Spectr 2025; 13:e0295924. [PMID: 39992146 PMCID: PMC11960433 DOI: 10.1128/spectrum.02959-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/02/2025] [Indexed: 02/25/2025] Open
Abstract
Microbial communities within animals provide nutritional foundation and energy supply for the hydrothermal ecosystem. The peltospirid snail Gigantopelta aegis forms large aggregation in the Longqi vent field on the Southwest Indian Ridge. This endemic species is characterized by a changeable diet and morphology, especially reflected in internal organs such as remarkably enlarged esophageal glands. Here, 16S full-length rRNA gene analysis was performed to compare the variations in esophageal gland microbiota between two body size groups (small and large) of G. aegis. Phyla Proteobacteria and Bacteroidetes were the dominant featured bacteria contributing to the microbial community. No significant differences between the small and large groups were revealed by the diversity index and principal component analysis (PCA) clustering. The differences were in the relative abundance of bacteria. Compared with small-sized snails, the larger ones housed more Thiogranum (9.94% to 34.86%) and fewer Sediminibacterium (29.38% to 4.54%). Functional prediction for all of the microbiota showed that the pathways related to metabolism appeared highly abundant in smaller G. aegis. However, for the larger ones, the most distinctive pathways were those of environmental information processing. Facultative symbiotic Sulfurovum was marked as a core node in the co-occurrence network and suggested an influence on habitat selection of G. aegis in hydrothermal fields. In summary, variations in bacteria composition and potential functions possibly reflected changes in the anatomical structure and dietary habits of G. aegis. These dominant bacteria shared capabilities in nutritional supplementation and ecological niche expansion in the host, potentially a key adaptation for hydrothermal survival.IMPORTANCEDominant in the Longqi hydrothermal vent Southwest Indian Ridge, Gigantopelta aegis was observed to undergo unique and significant morphological changes and diet shifts known as cryptometamorphosis. During this process, G. aegis developed a specialized bacteria-housing organ, the esophageal gland, in the later life stages. Our research discovered variations in esophageal gland microbes between different body size groups of snails. These bacteria were closely related to the development and health of G. aegis. Full-length 16S rRNA gene analysis revealed more Thiogranum and fewer Sediminibacterium, suggesting a potential association with environmental adaptation. In the small-sized group, the potential functions were enriched in metabolism, while in larger G. aegis individuals, predictions indicated adaptive functions such as environmental information processing. Also, symbiotic Sulfurovum could be one of the factors influencing the habitat selection of G. aegis. Understanding the complex relationship between benthic macrofauna and microbes helps us describe the mechanisms of survival in extreme environments.
Collapse
Affiliation(s)
- Anning Mou
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Xinlong Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Zhong Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Lingyun Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Yue Dong
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Zongling Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Xuelei Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, Xi'an, China
- Qingdao Marine Engineering Survey, Design and Research Institute Co., Ltd., Qingdao, China
| | - Qinzeng Xu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Qingdao Marine Engineering Survey, Design and Research Institute Co., Ltd., Qingdao, China
| |
Collapse
|
2
|
Li R, Cao X, Chen J, He T, Zhang Y, Wang W, Wang Y, Wang Y, Qiu Y, Xie M, Shi K, Xu Y, Zhang S, Liu P. Deciphering the impact of MreB on the morphology and pathogenicity of the aquatic pathogen Spiroplasma eriocheiris. Biol Direct 2024; 19:98. [PMID: 39444023 PMCID: PMC11515736 DOI: 10.1186/s13062-024-00537-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Spiroplasma eriocheiris has been proved to be a pathogen causing tremor disease of Eriocheir sinensis, it is also infectious to other aquatic crustaceans, resulting in a serious threat on the sustainable development of the aquaculture industry. S. eriocheiris is a helical-shaped microbe without a cell wall, and its motility is related to the cytoskeleton protein MreB which belongs to the actin superfamily and has five MreB homologs. RESULTS In this study, we purified MreB3, MreB4 and MreB5, and successfully prepared monoclonal antibodies. After S. eriocheiris treated with actin stabilizator Phalloidin and inhibitors A22, we found that Phalloidin and A22 affect the S. eriocheiris morphology by altering MreB expression. We confirmed that the ability of S. eriocheiris to invade E. sinensis was increased after treatment with Phalloidin, including that the morphology of E. sinensis blood lymphocytes was deteriorated, blood lymphocytes viability was decreased, peroxidase activity and cell necrosis were increased. On the contrary, the pathogenicity of S. eriocheiris decreased after treatment with A22. CONCLUSIONS Our findings suggest that the MreB protein in S. eriocheiris plays a crucial role in its morphology and pathogenicity, providing new insights into potential strategies for the prevention and control of S. eriocheiris infections.
Collapse
Affiliation(s)
- Rong Li
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Xiaohui Cao
- Jiangsu Marine Fisheries Research Institute, Nantong, Jiangsu, 226007, China
| | - Jiaxin Chen
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Tingting He
- Shaoxing Center for Disease Control and Prevention, 276 Century Street, Shaoxing, Zhejiang Province, 312000, China
| | - Yan Zhang
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Jiangsu, China
| | - Yaqi Wang
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Yifei Wang
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Yanyan Qiu
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Mengji Xie
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Kailin Shi
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Yuhua Xu
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Siyuan Zhang
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Peng Liu
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China.
| |
Collapse
|
3
|
Takahashi D, Miyata M, Fujiwara I. Assembly properties of Spiroplasma MreB involved in swimming motility. J Biol Chem 2023:104793. [PMID: 37150324 DOI: 10.1016/j.jbc.2023.104793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023] Open
Abstract
Bacterial actin MreB forms filaments formed of antiparallel double strand units. The wall-less helical bacterium Spiroplasma has five MreB homologs (MreB1-5), some of which are involved in an intra-cellular ribbon for driving the bacterium's swimming motility. Although the interaction between MreB units is important for understanding Spiroplasma swimming, the interaction modes of each ribbon component are unclear. Here, we examined the assembly properties of Spiroplasma eriocheiris MreB5 (SpeMreB5), one of the ribbon component proteins that forms sheets. Electron microscopy (EM) revealed that sheet formation was inhibited under acidic conditions and bundle structures were formed under acidic and neutral conditions with low ionic strength. We also used solution assays and identified four properties of SpeMreB5 bundles as follows: (I) bundle formation followed sheet formation; (II) electrostatic interactions were required for bundle formation; (III) the positively charged and unstructured C-terminal region contributed to promoting lateral interactions for bundle formation; and (IV) bundle formation required Mg2+ at neutral pH but was inhibited by divalent cations under acidic pH conditions. During these studies, we also characterized two aggregation modes of SpeMreB5 with distinct responses to ATP. These properties will shed light on SpeMreB5 assembly dynamics at the molecular level.
Collapse
Affiliation(s)
- Daichi Takahashi
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Makoto Miyata
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan; The OMU Advanced Research Center for Natural Science and Technology, Osaka Metropolitan University, Osaka, Japan
| | - Ikuko Fujiwara
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan; The OMU Advanced Research Center for Natural Science and Technology, Osaka Metropolitan University, Osaka, Japan; Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan.
| |
Collapse
|
4
|
Swimming Motility Assays of Spiroplasma. Methods Mol Biol 2023; 2646:373-381. [PMID: 36842131 DOI: 10.1007/978-1-0716-3060-0_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Spiroplasma swim in liquids without the use of the bacterial flagella. This small helical bacterium propels itself by generating kinks that travel down the cell body. The kink translation is unidirectional, from the leading pole to the lagging pole, during cell swimming in viscous environments. This protocol describes a swimming motility assay of Spiroplasma eriocheiris for visualizing kink translations of the absolute handedness of the body helix with optical microscopy.
Collapse
|
5
|
Purification and ATPase Activity Measurement of Spiroplasma MreB. Methods Mol Biol 2023; 2646:359-371. [PMID: 36842130 DOI: 10.1007/978-1-0716-3060-0_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Spiroplasma is a genus of wall-less helical bacteria with swimming motility unrelated to conventional types of bacterial motility machinery, such as flagella and pili. The swimming of Spiroplasma is suggested to be driven by five classes of MreB (MreB1-MreB5), which are members of the actin superfamily. In vitro studies of Spiroplasma MreBs have recently been conducted to evaluate their activities, such as ATPase, which is essential for the polymerization dynamics among classic actin superfamily proteins. In this chapter, we describe methods of purification and Pi release measurement of Spiroplasma MreBs using column chromatography and absorption spectroscopy with the molecular probe, 2-amino-6-mercapto-7-methylpurine riboside (MESG). Of note, the methods described here are applicable to other proteins that possess NTPase activity.
Collapse
|
6
|
Takahashi D, Miyata M. Sequence analyses of a lipoprotein conserved with bacterial actins responsible for swimming motility of wall-less helical Spiroplasma. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000713. [PMID: 37033705 PMCID: PMC10074174 DOI: 10.17912/micropub.biology.000713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/07/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023]
Abstract
Spiroplasma is a genus of pathogenic or commensal cell-wall-deficient helical bacterium. Spiroplasma -specific protein fibril and five classes of bacterial actins, MreB1-5, are involved in a helical ribbon structure responsible for helical-cell morphology and swimming motility. A gene for a hypothetical protein-SPE_1229, 7th protein-has been found in the locus coding mreB s. In this study, we characterized the 7th protein using in silico methods and found that it could be a lipoprotein whose gene is encoded downstream of mreB3 and conserved in a clade of Spiroplasma .
Collapse
Affiliation(s)
- Daichi Takahashi
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Makoto Miyata
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
- The OMU Advanced Research Center for Natural Science and Technology, Osaka Metropolitan University, Osaka, Japan
- Correspondence to: Makoto Miyata (
)
| |
Collapse
|
7
|
Kiyama H, Kakizawa S, Sasajima Y, Tahara YO, Miyata M. Reconstitution of a minimal motility system based on Spiroplasma swimming by two bacterial actins in a synthetic minimal bacterium. SCIENCE ADVANCES 2022; 8:eabo7490. [PMID: 36449609 PMCID: PMC9710875 DOI: 10.1126/sciadv.abo7490] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 10/14/2022] [Indexed: 05/24/2023]
Abstract
Motility is one of the most important features of life, but its evolutionary origin remains unknown. In this study, we focused on Spiroplasma, commensal, or parasitic bacteria. They swim by switching the helicity of a ribbon-like cytoskeleton that comprises six proteins, each of which evolved from a nucleosidase and bacterial actin called MreB. We expressed these proteins in a synthetic, nonmotile minimal bacterium, JCVI-syn3B, whose reduced genome was computer-designed and chemically synthesized. The synthetic bacterium exhibited swimming motility with features characteristic of Spiroplasma swimming. Moreover, combinations of Spiroplasma MreB4-MreB5 and MreB1-MreB5 produced a helical cell shape and swimming. These results suggest that the swimming originated from the differentiation and coupling of bacterial actins, and we obtained a minimal system for motility of the synthetic bacterium.
Collapse
Affiliation(s)
- Hana Kiyama
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Shigeyuki Kakizawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Yuya Sasajima
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Yuhei O. Tahara
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Makoto Miyata
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| |
Collapse
|
8
|
Cytoskeletal components can turn wall-less spherical bacteria into kinking helices. Nat Commun 2022; 13:6930. [PMID: 36376306 PMCID: PMC9663586 DOI: 10.1038/s41467-022-34478-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial cell shape is generally determined through an interplay between the peptidoglycan cell wall and cytoplasmic filaments made of polymerized MreB. Indeed, some bacteria (e.g., Mycoplasma) that lack both a cell wall and mreB genes consist of non-motile cells that are spherical or pleomorphic. However, other members of the same class Mollicutes (e.g., Spiroplasma, also lacking a cell wall) display a helical cell shape and kink-based motility, which is thought to rely on the presence of five MreB isoforms and a specific fibril protein. Here, we show that heterologous expression of Spiroplasma fibril and MreB proteins confers helical shape and kinking ability to Mycoplasma capricolum cells. Isoform MreB5 is sufficient to confer helicity and kink propagation to mycoplasma cells. Cryoelectron microscopy confirms the association of cytoplasmic MreB filaments with the plasma membrane, suggesting a direct effect on membrane curvature. However, in our experiments, the heterologous expression of MreBs and fibril did not result in efficient motility in culture broth, indicating that additional, unknown Spiroplasma components are required for swimming.
Collapse
|
9
|
Takahashi D, Fujiwara I, Sasajima Y, Narita A, Imada K, Miyata M. ATP-dependent polymerization dynamics of bacterial actin proteins involved in Spiroplasma swimming. Open Biol 2022; 12:220083. [PMID: 36285441 PMCID: PMC9597168 DOI: 10.1098/rsob.220083] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MreB is a bacterial protein belonging to the actin superfamily. This protein polymerizes into an antiparallel double-stranded filament that determines cell shape by maintaining cell wall synthesis. Spiroplasma eriocheiris, a helical wall-less bacterium, has five MreB homologous (SpeMreB1-5) that probably contribute to swimming motility. Here, we investigated the structure, ATPase activity and polymerization dynamics of SpeMreB3 and SpeMreB5. SpeMreB3 polymerized into a double-stranded filament with possible antiparallel polarity, while SpeMreB5 formed sheets which contained the antiparallel filament, upon nucleotide binding. SpeMreB3 showed slow Pi release owing to the lack of an amino acid motif conserved in the catalytic centre of MreB family proteins. Our SpeMreB3 crystal structures and analyses of SpeMreB3 and SpeMreB5 variants showed that the amino acid motif probably plays a role in eliminating a nucleophilic water proton during ATP hydrolysis. Sedimentation assays suggest that SpeMreB3 has a lower polymerization activity than SpeMreB5, though their polymerization dynamics are qualitatively similar to those of other actin superfamily proteins, in which pre-ATP hydrolysis and post-Pi release states are unfavourable for them to remain as filaments.
Collapse
Affiliation(s)
- Daichi Takahashi
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan,Graduate School of Science, Osaka City University, Osaka, Japan
| | - Ikuko Fujiwara
- Graduate School of Science, Osaka City University, Osaka, Japan,The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, Japan,Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Yuya Sasajima
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan,Graduate School of Science, Osaka City University, Osaka, Japan
| | - Akihiro Narita
- Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Katsumi Imada
- Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Makoto Miyata
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan,The OMU Advanced Research Center for Natural Science and Technology, Osaka Metropolitan University, Osaka, Japan,Graduate School of Science, Osaka City University, Osaka, Japan,The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, Japan
| |
Collapse
|
10
|
Masson F, Pierrat X, Lemaitre B, Persat A. The wall-less bacterium Spiroplasma poulsonii builds a polymeric cytoskeleton composed of interacting MreB isoforms. iScience 2021; 24:103458. [PMID: 34888500 PMCID: PMC8634037 DOI: 10.1016/j.isci.2021.103458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 11/20/2022] Open
Abstract
A rigid cell wall defines the morphology of most bacteria. MreB, a bacterial homologue of actin, plays a major role in coordinating cell wall biogenesis and defining cell shape. Spiroplasma are wall-less bacteria that robustly grow with a characteristic helical shape. Paradoxal to their lack of cell wall, the Spiroplasma genome contains five homologs of MreB (SpMreBs). Here, we investigate the function of SpMreBs in forming a polymeric cytoskeleton. We found that, in vivo, Spiroplasma maintain a high concentration of all MreB isoforms. By leveraging a heterologous expression system that bypasses the poor genetic tractability of Spiroplasma, we found that SpMreBs produced polymeric filaments of various morphologies. We characterized an interaction network between isoforms that regulate filament formation and patterning. Therefore, our results support the hypothesis where combined SpMreB isoforms would form an inner polymeric cytoskeleton in vivo that shapes the cell in a wall-independent manner. The five Spiroplasma MreB isoforms are extremely abundant proteins in vivo Each isoform produces filaments when expressed in a heterologous system SpMreBs form an interaction network that regulates filament length and shape
Collapse
Affiliation(s)
- Florent Masson
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Corresponding author
| | - Xavier Pierrat
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Alexandre Persat
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Corresponding author
| |
Collapse
|
11
|
Sasajima Y, Miyata M. Prospects for the Mechanism of Spiroplasma Swimming. Front Microbiol 2021; 12:706426. [PMID: 34512583 PMCID: PMC8432965 DOI: 10.3389/fmicb.2021.706426] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022] Open
Abstract
Spiroplasma are helical bacteria that lack a peptidoglycan layer. They are widespread globally as parasites of arthropods and plants. Their infectious processes and survival are most likely supported by their unique swimming system, which is unrelated to well-known bacterial motility systems such as flagella and pili. Spiroplasma swims by switching the left- and right-handed helical cell body alternately from the cell front. The kinks generated by the helicity shift travel down along the cell axis and rotate the cell body posterior to the kink position like a screw, pushing the water backward and propelling the cell body forward. An internal structure called the "ribbon" has been focused to elucidate the mechanisms for the cell helicity formation and swimming. The ribbon is composed of Spiroplasma-specific fibril protein and a bacterial actin, MreB. Here, we propose a model for helicity-switching swimming focusing on the ribbon, in which MreBs generate a force like a bimetallic strip based on ATP energy and switch the handedness of helical fibril filaments. Cooperative changes of these filaments cause helicity to shift down the cell axis. Interestingly, unlike other motility systems, the fibril protein and Spiroplasma MreBs can be traced back to their ancestors. The fibril protein has evolved from methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase, which is essential for growth, and MreBs, which function as a scaffold for peptidoglycan synthesis in walled bacteria.
Collapse
Affiliation(s)
- Yuya Sasajima
- Department of Biology, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Makoto Miyata
- Department of Biology, Graduate School of Science, Osaka City University, Osaka, Japan
- The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, Japan
| |
Collapse
|
12
|
Zheng R, Liu R, Shan Y, Cai R, Liu G, Sun C. Characterization of the first cultured free-living representative of Candidatus Izemoplasma uncovers its unique biology. ISME JOURNAL 2021; 15:2676-2691. [PMID: 33746205 PMCID: PMC8397711 DOI: 10.1038/s41396-021-00961-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023]
Abstract
Candidatus Izemoplasma, an intermediate in the reductive evolution from Firmicutes to Mollicutes, was proposed to represent a novel class of free-living wall-less bacteria within the phylum Tenericutes. Unfortunately, the paucity of pure cultures has limited further insights into their physiological and metabolic features as well as ecological roles. Here, we report the first successful isolation of an Izemoplasma representative from the deep-sea methane seep, strain zrk13, using a DNA degradation-driven method given Izemoplasma’s prominent DNA-degradation potentials. We further present a detailed description of the physiological, genomic and metabolic traits of the novel strain, which allows for the first time the reconstruction of the metabolic potential and lifestyle of a member of the tentatively defined Candidatus Izemoplasma. On the basis of the description of strain zrk13, the novel species and genus Xianfuyuplasma coldseepsis is proposed. Using a combined biochemical and transcriptomic method, we further show the supplement of organic matter, thiosulfate or bacterial genomic DNA could evidently promote the growth of strain zrk13. In particular, strain zrk13 could degrade and utilize the extracellular DNA for growth in both laboraterial and deep-sea conditions. Moreover, the predicted genes determining DNA-degradation broadly distribute in the genomes of other Izemoplasma members. Given that extracellular DNA is a particularly crucial phosphorus as well as nitrogen and carbon source for microorganisms in the seafloor, Izemoplasma bacteria are thought to be important contributors to the biogeochemical cycling in the deep ocean.
Collapse
Affiliation(s)
- Rikuan Zheng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Rui Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yeqi Shan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Ruining Cai
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Ge Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chaomin Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China. .,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
13
|
Takahashi D, Fujiwara I, Miyata M. Phylogenetic origin and sequence features of MreB from the wall-less swimming bacteria Spiroplasma. Biochem Biophys Res Commun 2020; 533:638-644. [PMID: 33066960 DOI: 10.1016/j.bbrc.2020.09.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 01/01/2023]
Abstract
Spiroplasma are wall-less bacteria which belong to the phylum Tenericutes that evolved from Firmicutes including Bacillus subtilis. Spiroplasma swim by a mechanism unrelated to widespread bacterial motilities, such as flagellar motility, and caused by helicity switching with kinks traveling along the helical cell body. The swimming force is likely generated by five classes of bacterial actin homolog MreBs (SMreBs 1-5) involved in the helical bone structure. We analyzed sequences of SMreBs to clarify their phylogeny and sequence features. The maximum likelihood method based on around 5000 MreB sequences showed that the phylogenetic tree was divided into several radiations. SMreBs formed a clade adjacent to the radiation of MreBH, an MreB isoform of Firmicutes. Sequence comparisons of SMreBs and Bacillus MreBs were also performed to clarify the features of SMreB. Catalytic glutamic acid and threonine were substituted to aspartic acid and lysine, respectively, in SMreB3. In SMreBs 2 and 4, amino acids involved in inter- and intra-protofilament interactions were significantly different from those in Bacillus MreBs. A membrane-binding region was not identified in most SMreBs 1 and 4 unlike many walled-bacterial MreBs. SMreB5 had a significantly longer C-terminal region than the other MreBs, which possibly forms protein-protein interactions. These features may support the functions responsible for the unique mechanism of Spiroplasma swimming.
Collapse
Affiliation(s)
- Daichi Takahashi
- Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Ikuko Fujiwara
- Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, 558-8585, Japan; The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Makoto Miyata
- Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, 558-8585, Japan; The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Sumiyoshi-ku, Osaka, 558-8585, Japan.
| |
Collapse
|
14
|
Harne S, Duret S, Pande V, Bapat M, Béven L, Gayathri P. MreB5 Is a Determinant of Rod-to-Helical Transition in the Cell-Wall-less Bacterium Spiroplasma. Curr Biol 2020; 30:4753-4762.e7. [PMID: 32976813 DOI: 10.1016/j.cub.2020.08.093] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/05/2020] [Accepted: 08/26/2020] [Indexed: 12/22/2022]
Abstract
In most rod-shaped bacteria, the spatial coordination of cell wall synthesis machinery by MreBs is the main theme for shape determination and maintenance in cell-walled bacteria [1-9]. However, how rod or spiral shapes are achieved and maintained in cell-wall-less bacteria is currently unknown. Spiroplasma, a helical Mollicute that lacks cell wall synthesis genes, encodes five MreB paralogs and a unique cytoskeletal protein fibril [10, 11]. Here, we show that MreB5, one of the five MreB paralogs, contributes to cell elongation and is essential for the transition from rod-to-helical shape in Spiroplasma. Comparative genomic and proteomic characterization of a helical and motile wild-type Spiroplasma strain and a non-helical, non-motile natural variant helped delineate the specific roles of MreB5. Moreover, complementation of the non-helical strain with MreB5 restored its helical shape and motility by a kink-based mechanism described for Spiroplasma [12]. Earlier studies had proposed that length changes in fibril filaments are responsible for the change in handedness of the helical cell and kink propagation during motility [13]. Through structural and biochemical characterization, we identify that MreB5 exists as antiparallel double protofilaments that interact with fibril and the membrane, and thus potentially assists in kink propagation. In summary, our study provides direct experimental evidence for MreB in maintaining cell length, helical shape, and motility-revealing the role of MreB in sculpting the cell in the absence of a cell wall.
Collapse
Affiliation(s)
- Shrikant Harne
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sybille Duret
- INRAE, University of Bordeaux, UMR 1332 BFP, Villenave d'Ornon, Bordeaux, France
| | - Vani Pande
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Mrinmayee Bapat
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Laure Béven
- INRAE, University of Bordeaux, UMR 1332 BFP, Villenave d'Ornon, Bordeaux, France.
| | - Pananghat Gayathri
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| |
Collapse
|
15
|
Harne S, Gayathri P, Béven L. Exploring Spiroplasma Biology: Opportunities and Challenges. Front Microbiol 2020; 11:589279. [PMID: 33193251 PMCID: PMC7609405 DOI: 10.3389/fmicb.2020.589279] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/28/2020] [Indexed: 11/13/2022] Open
Abstract
Spiroplasmas are cell-wall-deficient helical bacteria belonging to the class Mollicutes. Their ability to maintain a helical shape in the absence of cell wall and their motility in the absence of external appendages have attracted attention from the scientific community for a long time. In this review we compare and contrast motility, shape determination and cytokinesis mechanisms of Spiroplasma with those of other Mollicutes and cell-walled bacteria. The current models for rod-shape determination and cytokinesis in cell-walled bacteria propose a prominent role for the cell wall synthesis machinery. These models also involve the cooperation of the actin-like protein MreB and FtsZ, the bacterial homolog of tubulin. However the exact role of the cytoskeletal proteins is still under much debate. Spiroplasma possess MreBs, exhibit a rod-shape dependent helical morphology, and divide by an FtsZ-dependent mechanism. Hence, spiroplasmas represent model organisms for deciphering the roles of MreBs and FtsZ in fundamental mechanisms of non-spherical shape determination and cytokinesis in bacteria, in the absence of a cell wall. Identification of components implicated in these processes and deciphering their functions would require genetic experiments. Challenges in genetic manipulations in spiroplasmas are a major bottleneck in understanding their biology. We discuss advancements in genome sequencing, gene editing technologies, super-resolution microscopy and electron cryomicroscopy and tomography, which can be employed for addressing long-standing questions related to Spiroplasma biology.
Collapse
Affiliation(s)
- Shrikant Harne
- Indian Institute of Science Education and Research, Pune, India
| | | | - Laure Béven
- INRAE, UMR 1332, Biologie du Fruit et Pathologie, University of Bordeaux, Bordeaux, France
| |
Collapse
|
16
|
The evolution of spherical cell shape; progress and perspective. Biochem Soc Trans 2020; 47:1621-1634. [PMID: 31829405 PMCID: PMC6925525 DOI: 10.1042/bst20180634] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 01/29/2023]
Abstract
Bacterial cell shape is a key trait governing the extracellular and intracellular factors of bacterial life. Rod-like cell shape appears to be original which implies that the cell wall, division, and rod-like shape came together in ancient bacteria and that the myriad of shapes observed in extant bacteria have evolved from this ancestral shape. In order to understand its evolution, we must first understand how this trait is actively maintained through the construction and maintenance of the peptidoglycan cell wall. The proteins that are primarily responsible for cell shape are therefore the elements of the bacterial cytoskeleton, principally FtsZ, MreB, and the penicillin-binding proteins. MreB is particularly relevant in the transition between rod-like and spherical cell shape as it is often (but not always) lost early in the process. Here we will highlight what is known of this particular transition in cell shape and how it affects fitness before giving a brief perspective on what will be required in order to progress the field of cell shape evolution from a purely mechanistic discipline to one that has the perspective to both propose and to test reasonable hypotheses regarding the ecological drivers of cell shape change.
Collapse
|
17
|
Lo WS, Huang YY, Kuo CH. Winding paths to simplicity: genome evolution in facultative insect symbionts. FEMS Microbiol Rev 2018; 40:855-874. [PMID: 28204477 PMCID: PMC5091035 DOI: 10.1093/femsre/fuw028] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/28/2016] [Accepted: 07/10/2016] [Indexed: 02/07/2023] Open
Abstract
Symbiosis between organisms is an important driving force in evolution. Among the diverse relationships described, extensive progress has been made in insect–bacteria symbiosis, which improved our understanding of the genome evolution in host-associated bacteria. Particularly, investigations on several obligate mutualists have pushed the limits of what we know about the minimal genomes for sustaining cellular life. To bridge the gap between those obligate symbionts with extremely reduced genomes and their non-host-restricted ancestors, this review focuses on the recent progress in genome characterization of facultative insect symbionts. Notable cases representing various types and stages of host associations, including those from multiple genera in the family Enterobacteriaceae (class Gammaproteobacteria), Wolbachia (Alphaproteobacteria) and Spiroplasma (Mollicutes), are discussed. Although several general patterns of genome reduction associated with the adoption of symbiotic relationships could be identified, extensive variation was found among these facultative symbionts. These findings are incorporated into the established conceptual frameworks to develop a more detailed evolutionary model for the discussion of possible trajectories. In summary, transitions from facultative to obligate symbiosis do not appear to be a universal one-way street; switches between hosts and lifestyles (e.g. commensalism, parasitism or mutualism) occur frequently and could be facilitated by horizontal gene transfer. This review synthesizes the recent progress in genome characterization of insect-symbiotic bacteria, the emphases include (i) patterns of genome organization, (ii) evolutionary models and trajectories, and (iii) comparisons between facultative and obligate symbionts.
Collapse
Affiliation(s)
- Wen-Sui Lo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ya-Yi Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
18
|
Liu P, Zheng H, Meng Q, Terahara N, Gu W, Wang S, Zhao G, Nakane D, Wang W, Miyata M. Chemotaxis without Conventional Two-Component System, Based on Cell Polarity and Aerobic Conditions in Helicity-Switching Swimming of Spiroplasma eriocheiris. Front Microbiol 2017; 8:58. [PMID: 28217108 PMCID: PMC5289999 DOI: 10.3389/fmicb.2017.00058] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/09/2017] [Indexed: 11/13/2022] Open
Abstract
Spiroplasma eriocheiris is a pathogen that causes mass mortality in Chinese mitten crab, Eriocheir sinensis. S. eriocheiris causes tremor disease and infects almost all of the artificial breeding crustaceans, resulting in disastrous effects on the aquaculture economy in China. S. eriocheiris is a wall-less helical bacterium, measuring 2.0 to 10.0 μm long, and can swim up to 5 μm per second in a viscous medium without flagella by switching the cell helicity at a kink traveling from the front to the tail. In this study, we showed that S. eriocheiris performs chemotaxis without the conventional two-component system, a system commonly found in bacterial chemotaxis. The chemotaxis of S. eriocheiris was observed more clearly when the cells were cultivated under anaerobic conditions. The cells were polarized as evidenced by a tip structure, swimming in the direction of the tip, and were shown to reverse their swimming direction in response to attractants. Triton X-100 treatment revealed the internal structure, a dumbbell-shaped core in the tip that is connected by a flat ribbon, which traces the shortest line in the helical cell shape from the tip to the other pole. Sixteen proteins were identified as the components of the internal structure by mass spectrometry, including Fibril protein and four types of MreB proteins.
Collapse
Affiliation(s)
- Peng Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal UniversityJiangsu, China; Department of Biology, Graduate School of Science, Osaka City UniversityOsaka, Japan
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai Shanghai, China
| | - Qingguo Meng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University Jiangsu, China
| | - Natsuho Terahara
- Department of Biology, Graduate School of Science, Osaka City University Osaka, Japan
| | - Wei Gu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University Jiangsu, China
| | - Shengyue Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai Shanghai, China
| | - Guoping Zhao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai Shanghai, China
| | - Daisuke Nakane
- Department of Physics, Gakushuin University Tokyo, Japan
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University Jiangsu, China
| | - Makoto Miyata
- Department of Biology, Graduate School of Science, Osaka City UniversityOsaka, Japan; The OCU Advanced Research Institute for Natural Science and Technology, Osaka City UniversityOsaka, Japan
| |
Collapse
|
19
|
Abstract
As discovered over the past 25 years, the cytoskeletons of bacteria and archaea are complex systems of proteins whose central components are dynamic cytomotive filaments. They perform roles in cell division, DNA partitioning, cell shape determination and the organisation of intracellular components. The protofilament structures and polymerisation activities of various actin-like, tubulin-like and ESCRT-like proteins of prokaryotes closely resemble their eukaryotic counterparts but show greater diversity. Their activities are modulated by a wide range of accessory proteins but these do not include homologues of the motor proteins that supplement filament dynamics to aid eukaryotic cell motility. Numerous other filamentous proteins, some related to eukaryotic IF-proteins/lamins and dynamins etc, seem to perform structural roles similar to those in eukaryotes.
Collapse
Affiliation(s)
- Linda A Amos
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
20
|
Wada H. Structural mechanics and helical geometry of thin elastic composites. SOFT MATTER 2016; 12:7386-7397. [PMID: 27510457 DOI: 10.1039/c6sm01090c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Helices are ubiquitous in nature, and helical shape transition is often observed in residually stressed bodies, such as composites, wherein materials with different mechanical properties are glued firmly together to form a whole body. Inspired by a variety of biological examples, the basic physical mechanism responsible for the emergence of twisting and bending in such thin composite structures has been extensively studied. Here, we propose a simplified analytical model wherein a slender membrane tube undergoes a helical transition driven by the contraction of an elastic ribbon bound to the membrane surface. We analytically predict the curvature and twist of an emergent helix as functions of differential strains and elastic moduli, which are confirmed by our numerical simulations. Our results may help understand shapes observed in different biological systems, such as spiral bacteria, and could be applied to novel designs of soft machines and robots.
Collapse
Affiliation(s)
- Hirofumi Wada
- Department of Physics, Ritsumeikan University, Kusatsu, 525-8577 Shiga, Japan.
| |
Collapse
|
21
|
Miyata M, Hamaguchi T. Integrated Information and Prospects for Gliding Mechanism of the Pathogenic Bacterium Mycoplasma pneumoniae. Front Microbiol 2016; 7:960. [PMID: 27446003 PMCID: PMC4923136 DOI: 10.3389/fmicb.2016.00960] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 06/02/2016] [Indexed: 01/21/2023] Open
Abstract
Mycoplasma pneumoniae forms a membrane protrusion at a cell pole and is known to adhere to solid surfaces, including animal cells, and can glide on these surfaces with a speed up to 1 μm per second. Notably, gliding appears to be involved in the infectious process in addition to providing the bacteria with a means of escaping the host's immune systems. However, the genome of M. pneumoniae does not encode any of the known genes found in other bacterial motility systems or any conventional motor proteins that are responsible for eukaryotic motility. Thus, further analysis of the mechanism underlying M. pneumoniae gliding is warranted. The gliding machinery formed as the membrane protrusion can be divided into the surface and internal structures. On the surface, P1 adhesin, a 170 kDa transmembrane protein forms an adhesin complex with other two proteins. The internal structure features a terminal button, paired plates, and a bowl (wheel) complex. In total, the organelle is composed of more than 15 proteins. By integrating the currently available information by genetics, microscopy, and structural analyses, we have suggested a working model for the architecture of the organelle. Furthermore, in this article, we suggest and discuss a possible mechanism of gliding based on the structural model, in which the force generated around the bowl complex transmits through the paired plates, reaching the adhesin complex, resulting in the repeated catch of sialylated oligosaccharides on the host surface by the adhesin complex.
Collapse
Affiliation(s)
- Makoto Miyata
- Department of Biology, Graduate School of Science, Osaka City UniversityOsaka, Japan; The OCU Advanced Research Institute for Natural Science and Technology, Osaka City UniversityOsaka, Japan
| | - Tasuku Hamaguchi
- Department of Biology, Graduate School of Science, Osaka City UniversityOsaka, Japan; The OCU Advanced Research Institute for Natural Science and Technology, Osaka City UniversityOsaka, Japan
| |
Collapse
|
22
|
|
23
|
Zhang Y, Bao H, Miao F, Peng Y, Shen Y, Gu W, Meng Q, Wang W, Zhang J. Production and application of polyclonal and monoclonal antibodies against Spiroplasma eriocheiris. Sci Rep 2015; 5:17871. [PMID: 26639364 PMCID: PMC4671143 DOI: 10.1038/srep17871] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/06/2015] [Indexed: 11/09/2022] Open
Abstract
A new species of spiroplasma, Spiroplasma eriocheiris (S. eriocheiris), was identified as a lethal pathogen of tremor disease (TD) in Chinese mitten crab recently. In order to acquire appropriate biological and diagnostic tools for characterizing this newly discovered pathogen, 5 monoclonal antibodies (mAbs) and a polyclonal antibody (pAb) against S. eriocheiris were produced. Among the mAbs, 6F5, 7C8 and 12H5 lead to the deformation of S. eriocheiris. A peptide sequence, YMRDMQSGLPRY was identified as a mimic motif of MreB that is the cell shape determining protein of S. eriocheiris interacting with 3 mAbs. Furthermore, a double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) for detection of S. eriocheiris was established using the mAb and pAb we prepared. It detected as low as 0.1 μg/mL of S. eriocheiris. No cross-reaction was observed with three other common bacteria (Pseudomonas aeruginosa, Escherichia coli, and Bacillus subtilis) and the hemolymph samples of healthy Eriocheir sinensis. Collectively, our results indicated that the mAbs and pAb we prepared could be used in the analysis of S. eriocheiris membrane proteins mimotope and development of a diagnostic kit for S. eriocheiris infections.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Haixun Bao
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Fengqin Miao
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Yaqin Peng
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Yuqing Shen
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Wei Gu
- Jiangsu Key Laboratory for Biodiversity &Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Qingguo Meng
- Jiangsu Key Laboratory for Biodiversity &Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity &Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jianqiong Zhang
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| |
Collapse
|
24
|
Genome sequence of the Drosophila melanogaster male-killing Spiroplasma strain MSRO endosymbiont. mBio 2015; 6:mBio.02437-14. [PMID: 25827421 PMCID: PMC4453565 DOI: 10.1128/mbio.02437-14] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spiroplasmas are helical and motile members of a cell wall-less eubacterial group called Mollicutes. Although all spiroplasmas are associated with arthropods, they exhibit great diversity with respect to both their modes of transmission and their effects on their hosts; ranging from horizontally transmitted pathogens and commensals to endosymbionts that are transmitted transovarially (i.e., from mother to offspring). Here we provide the first genome sequence, along with proteomic validation, of an endosymbiotic inherited Spiroplasma bacterium, the Spiroplasma poulsonii MSRO strain harbored by Drosophila melanogaster. Comparison of the genome content of S. poulsonii with that of horizontally transmitted spiroplasmas indicates that S. poulsonii has lost many metabolic pathways and transporters, demonstrating a high level of interdependence with its insect host. Consistent with genome analysis, experimental studies showed that S. poulsonii metabolizes glucose but not trehalose. Notably, trehalose is more abundant than glucose in Drosophila hemolymph, and the inability to metabolize trehalose may prevent S. poulsonii from overproliferating. Our study identifies putative virulence genes, notably, those for a chitinase, the H2O2-producing glycerol-3-phosphate oxidase, and enzymes involved in the synthesis of the eukaryote-toxic lipid cardiolipin. S. poulsonii also expresses on the cell membrane one functional adhesion-related protein and two divergent spiralin proteins that have been implicated in insect cell invasion in other spiroplasmas. These lipoproteins may be involved in the colonization of the Drosophila germ line, ensuring S. poulsonii vertical transmission. The S. poulsonii genome is a valuable resource to explore the mechanisms of male killing and symbiont-mediated protection, two cardinal features of many facultative endosymbionts. Most insect species, including important disease vectors and crop pests, harbor vertically transmitted endosymbiotic bacteria. These endosymbionts play key roles in their hosts’ fitness, including protecting them against natural enemies and manipulating their reproduction in ways that increase the frequency of symbiont infection. Little is known about the molecular mechanisms that underlie these processes. Here, we provide the first genome draft of a vertically transmitted male-killing Spiroplasma bacterium, the S. poulsonii MSRO strain harbored by D. melanogaster. Analysis of the S. poulsonii genome was complemented by proteomics and ex vivo metabolic experiments. Our results indicate that S. poulsonii has reduced metabolic capabilities and expresses divergent membrane lipoproteins and potential virulence factors that likely participate in Spiroplasma-host interactions. This work fills a gap in our knowledge of insect endosymbionts and provides tools with which to decipher the interaction between Spiroplasma bacteria and their well-characterized host D. melanogaster, which is emerging as a model of endosymbiosis.
Collapse
|