1
|
Huang Z, Iqbal Z, Zhao Z, Liu J, Alabsi AM, Shabbir M, Mahmood A, Liang Y, Li W, Deng Z. Cellular crosstalk in the bone marrow niche. J Transl Med 2024; 22:1096. [PMID: 39627858 PMCID: PMC11613879 DOI: 10.1186/s12967-024-05900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/19/2024] [Indexed: 12/08/2024] Open
Abstract
The bone marrow niche is a special microenvironment that comprises elements, including hematopoietic stem cells, osteoblasts, and endothelial cells, and helps maintain their characteristic functions. Here, we elaborate on the crosstalk between various cellular components, hematopoietic stem cells, and other cells in the bone marrow niche. We further explain the mechanism of preserving equilibrium in the bone marrow niche, which is crucial for the directional regulation of bone reconstruction and repair. Additionally, we elucidate the intercommunication among osteocytes, the regulation of osteoblast maturation and activation by lymphocytes, the deficiency of megakaryocytes that can markedly impair osteoblast formation, and the mechanism of interaction between macrophages and mesenchymal stem cells in the bone marrow niche. Finally, we discussed the new immunotherapies for bone tumors in the BM niche. In this review, we aimed to provide a candid overview of the crosstalk among bone marrow niche cells and to highlight new concepts underlying the unknown mechanisms of hematopoiesis and bone reconstruction. Thus, this review may provide a more comprehensive understanding of the role of these niche cells in improving hematopoietic function and help identify their therapeutic potential for different diseases in the future.
Collapse
Affiliation(s)
- Zeqi Huang
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - Zoya Iqbal
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - Zhe Zhao
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - Jianquan Liu
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - A M Alabsi
- Faculty of Dentistry, MAHSA University, Selangor, Malaysia
- School of Dentistry, Management and Science University, University Drive, Off Persiaran Olahraga, 40100 ShahAlam, Selangor, Malaysia
| | - Maryam Shabbir
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Ayesha Mahmood
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Yujie Liang
- Faculty of Dentistry, MAHSA University, Selangor, Malaysia.
- Department of Child and Adolescent Psychiatry, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518020, China.
| | - Wencui Li
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China.
| | - Zhiqin Deng
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China.
| |
Collapse
|
2
|
Chen S, Zhang Q, Huang D, Lin R, Chen S. Rapid and simple isolation of precartilaginous stem cells: A novel approach without immunomagnetic bead sorting. Heliyon 2024; 10:e32617. [PMID: 39183881 PMCID: PMC11341325 DOI: 10.1016/j.heliyon.2024.e32617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 08/27/2024] Open
Abstract
Objective The present investigation was designed to devise a rapid and straightforward technique for the isolation of rat precartilaginous stem cells (PCSCs) that eschews the use of immunomagnetic bead sorting. Method Rat neonates within 24 h of birth were selected for this study. Microsurgical techniques were used to harvest the femur, tibia, and the musculature of the knee joint. The ring of LaCroix between the metaphysis of the femur and the epiphysis was excised and divided into fragments of approximately 1 mm³. Tissue sections were cultured in Dulbecco's modified Eagle's medium(DMEM)/F12 medium supplemented with 20 % fetal bovine serum and 1 % penicillin-streptomycin. Cell digestion and passaging were performed using trypsin when cells reached 70%-80 % confluence. Third-generation cells underwent immunofluorescence staining and flow cytometry to evaluate fibroblast growth factor receptor-3(FGFR-3) and proliferating cell nuclear antigen(PCNA) expression, while β-galactosidase staining was used to determine cellular senescence. Results Within two days of isolation, numerous short spindle-shaped cells exhibiting distinct refractive properties were observed around the tissue fragments. These cells began to proliferate within 2-3 days and displayed ample cytoplasm. Adherent cells adopted various morphologies, including angular, triangular, and elongated spindles. By the fifth day, more than 80 % of the culture dish surface was covered with elongated cells, with some arranged in patterns reminiscent of whirlpools. Significant FGFR-3 and PCNA expression was confirmed via immunofluorescence in the third-generation cells. Additionally, flow cytometry identified that the proportion of cells positive for FGFR-3 and PCNA exceeded 98 %. Notably, the cells preserved their proliferative capacity through nine passages in vitro, with a marginal proportion showing senescence as indicated by β-galactosidase staining alone. Conclusion The developed tissue adherence protocol was used to successfully isolate PCSCs with positive FGFR-3 and PCNA expression, rendering the immunomagnetic bead sorting superfluous. The expression of FGFR-3 and PCNA in the isolated cells persisted through the ninth passage in vitro with minimal senescence.
Collapse
Affiliation(s)
- Song Chen
- Department of Orthopedics, Fuzhou Second General Hospital, 47th Shangteng Road of Cangshan District, Fuzhou, 350007, Fujian Province, China
| | - Qingshuang Zhang
- Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Shangjie Town, Minhou County, Fuzhou, 350108, Fujian Province, China
| | - Dianhua Huang
- Department of Orthopedics, Fuzhou Second General Hospital, 47th Shangteng Road of Cangshan District, Fuzhou, 350007, Fujian Province, China
| | - Ran Lin
- Department of Orthopedics, Fuzhou Second General Hospital, 47th Shangteng Road of Cangshan District, Fuzhou, 350007, Fujian Province, China
| | - Shunyou Chen
- Department of Orthopedics, Fuzhou Second General Hospital, 47th Shangteng Road of Cangshan District, Fuzhou, 350007, Fujian Province, China
- Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Shangjie Town, Minhou County, Fuzhou, 350108, Fujian Province, China
| |
Collapse
|
3
|
Paradoxical Duel Role of Collagen in Rheumatoid Arthritis: Cause of Inflammation and Treatment. Bioengineering (Basel) 2022; 9:bioengineering9070321. [PMID: 35877372 PMCID: PMC9311863 DOI: 10.3390/bioengineering9070321] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
In biology, collagen-biomaterial regulates several signaling mechanisms of bone and immune cells involved in tissue repair and any imbalance in collagen turnover may affect the homeostasis of cells, becoming a major cause of several complications. In this case, the administration of oral collagen may play a potential role in returning cells to their normal function. For several decades, the beneficial effects of collagen have been explored widely, and thus many commercial products are available in cosmetics, food, and biomedical fields. For instance, collagen-based-products have been widely used to treat the complications of cartilage-related-disorders. Many researchers are reporting the anti-arthritogenic properties of collagen-based materials. In contrast, collagen, especially type-II collagen (CII), has been widely used to induce arthritis by immunization in an animal-model with or without adjuvants, and the potentially immunogenic-properties of collagen have been continuously reported for a long time. Additionally, the immune tolerance of collagen is mainly regulated by the T-lymphocytes and B-cells. This controversial hypothesis is getting more and more evidence nowadays from both sides to support its mechanism. Therefore, this review links the gap between the arthritogenic and anti-arthritogenic effects of collagen and explored the actual mechanism to understand the fundamental concept of collagen in arthritis. Accordingly, this review opens-up several unrevealed scientific knots of collagen and arthritis and helps the researchers understand the potential use of collagen in therapeutic applications.
Collapse
|
4
|
Deng Z, Zhang Q, Zhao Z, Li Y, Chen X, Lin Z, Deng Z, Liu J, Duan L, Wang D, Li W. Crosstalk between immune cells and bone cells or chondrocytes. Int Immunopharmacol 2021; 101:108179. [PMID: 34601329 DOI: 10.1016/j.intimp.2021.108179] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/10/2021] [Accepted: 09/18/2021] [Indexed: 01/12/2023]
Abstract
The term "osteoimmunology" was coined to denote the bridge between the immune system and the skeletal system. Osteoimmunology is interdisciplinary, and a full understanding and development of this "bridge" will provide an in-depth understanding of the switch between body health and disease development. B lymphocytes can promote the maturation and differentiation of osteoclasts, and osteoclasts have a negative feedback effect on B lymphocytes. Different subtypes of T lymphocytes regulate osteoclasts in different directions. T lymphocytes have a two-way regulatory effect on osteoblasts, while B lymphocytes have minimal regulatory effects on osteoblasts. In contrast, osteoblasts can promote the differentiation and maturation of T lymphocytes and B lymphocytes. Different immune cells have different effects on chondrocytes; some cooperate with each other, while some antagonize each other. In a healthy adult body, bone resorption and bone formation are in a dynamic balance under the action of multiple mechanisms. In this review, we summarize the interactions and key signaling molecular mechanisms between each type of cell in the immune system and the skeletal system.
Collapse
Affiliation(s)
- Zhiqin Deng
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital/ the First Hospital Affiliated to Shenzhen University, Shenzhen 518000, China
| | - Qian Zhang
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital/ the First Hospital Affiliated to Shenzhen University, Shenzhen 518000, China
| | - Zhe Zhao
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital/ the First Hospital Affiliated to Shenzhen University, Shenzhen 518000, China
| | - Yongshen Li
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital/ the First Hospital Affiliated to Shenzhen University, Shenzhen 518000, China
| | - Xiaoqiang Chen
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital/ the First Hospital Affiliated to Shenzhen University, Shenzhen 518000, China
| | - Zicong Lin
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital/ the First Hospital Affiliated to Shenzhen University, Shenzhen 518000, China
| | - Zhenhan Deng
- Department of Sports Medicine, Shenzhen Second People's Hospital/ the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518000, China
| | - Jianquan Liu
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital/ the First Hospital Affiliated to Shenzhen University, Shenzhen 518000, China
| | - Li Duan
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital/ the First Hospital Affiliated to Shenzhen University, Shenzhen 518000, China
| | - Daping Wang
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital/ the First Hospital Affiliated to Shenzhen University, Shenzhen 518000, China.
| | - Wencui Li
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital/ the First Hospital Affiliated to Shenzhen University, Shenzhen 518000, China.
| |
Collapse
|
5
|
Wang Q, Wang J, Gu X, Feng D, Li D, Jiang T. MicroRNA-124-3p inhibits the differentiation of precartilaginous stem cells into nucleus pulposus-like cells via targeting FSTL1. Exp Ther Med 2021; 22:725. [PMID: 34007334 PMCID: PMC8120511 DOI: 10.3892/etm.2021.10157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 03/18/2021] [Indexed: 11/05/2022] Open
Abstract
MicroRNA (miRNA/miR)-124-3p has been extensively studied in tumor biology and stem cells. However, little is known regarding its functional roles in the differentiation of precartilaginous stem cells (PSCs) into nucleus pulposus-like cells (NPLCs). In the present study, using miRNA microarray screening, it was demonstrated that the miRNA expression profiles differed between rat primary PSCs and TGF-β1-induced differentiated NPLCs, and that miR-124-3p was significantly differentially expressed during the differentiation of PSCs to NPLCs. Furthermore, RT-qPCR analysis verified that miR-124-3p expression was decreased during PSC differentiation, with the lowest levels being detected at the later stages. Subsequent experiments revealed that miR-124-3p overexpression significantly decreased the expression of the extracellular matrix proteins, aggrecan and collagen type II, which was accompanied by a significant decrease in follistatin-related protein 1 (FSTL1) expression levels. Moreover, bioinformatics analysis indicated that FSTL1 was a potential target of miR-124-3p, which was additionally verified using luciferase reporter assays. Taken together, these data revealed a specific regulatory pathway of miR-124-3p, which negatively regulated its target gene, FSTL1, during the differentiation of PSCs to NPLCs, and suggested a functional role for miR-124-3p in the differentiation of PSCs.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Junfang Wang
- Department of Orthopedics, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Xiaofeng Gu
- Department of Orthopedics, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Dehong Feng
- Department of Orthopedics, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Ding Li
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Tao Jiang
- Department of Orthopedics, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| |
Collapse
|
6
|
Xiao L, Zhang H, Yang X, Mahati S, Wu G, Xiaheding Y, Bao YX, Xiao H. Role of phosphatidylinositol 3-kinase signaling pathway in radiation-induced liver injury. Kaohsiung J Med Sci 2020; 36:990-997. [PMID: 32729224 DOI: 10.1002/kjm2.12279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 06/02/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1) is one of critical cytokines in radiation-induced liver injury. Hepatic stellate cells (HSC) are activated in the early stage of radiation-induced liver injury. However, it is currently unclear whether phosphatidylinositol 3-kinase (PI3K/Akt) signal pathway is activated in radiation-induced liver injury. Herein, male Sprague-Dawley rats were irradiated with 6 MV X-rays (30 Gy) on the right liver. Next, Hematoxylin and eosin staining, Masson staining, and electron microscopy were performed to examine pathological changes. Immunohistochemistry was performed to assess the expression of TGF-β1, α-SMA, and p-Akt (S473) in liver tissues. In vitro, rat HSC cell line HSC-T6 cells were given different doses of 6 MV X-ray irradiation (10 and 20 Gy) and treated with LY294002. The expression of α-SMA and p-Akt in mRNA and protein levels were measured by reverse transcription-polymerase chain reactioin (RT-PCR) and Western blot. TGF-β1 expression was detected by enzyme-linked immuno sorbent assay (ELISA). After irradiation, the liver tissues showed obvious pathological changes, indicating the establishment of the radiation-induced liver injury. Expression levels of TGF-β1, α-SMA, and p-Akt (S473) protein in liver tissues were significantly increased after irradiation, and this increase was in a time-dependent manner, suggesting the activation of HSC and PI3K/Akt signal pathway. in vitro experiments showed that the TGF-β1 secreted by HSCs, and the expression of Akt and α-SMA at mRNA and protein levels were significantly increased in irradiation groups. However, the expression of TGF-β1, Akt, and α-SMA were significantly decreased in PI3K/Akt signal pathway inhibitor LY294002-treated group. Our results suggest that during radiation-induced liver injury, HSCs are activated by TGF-β1-mediated PI3K/Akt signal pathway.
Collapse
Affiliation(s)
- Lei Xiao
- Cancer Center of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- School of Public Health of Xinjiang Medical University, Urumqi, China
| | - Hua Zhang
- Cancer Center of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xin Yang
- Cancer Center of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Shaya Mahati
- Cancer Center of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ge Wu
- Cancer Center of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yiliyaer Xiaheding
- Cancer Center of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yong-Xing Bao
- Cancer Center of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hui Xiao
- School of Public Health of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
7
|
Hwang HS, Lee MH, Kim HA. TGF-β1-induced expression of collagen type II and ACAN is regulated by 4E-BP1, a repressor of translation. FASEB J 2020; 34:9531-9546. [PMID: 32485037 DOI: 10.1096/fj.201903003r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/01/2020] [Accepted: 05/08/2020] [Indexed: 12/30/2022]
Abstract
Eukaryotic initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) binds eIF4E and represses protein translation by displacing it from the mRNA. In this study, we investigated the influence of 4E-BP1 translational apparatus on the regulation of transforming growth factor-beta 1 (TGF-β1)-induced anabolic signaling in chondrocytes. The level of 4E-BP1 expression was significantly higher in human OA cartilage than normal cartilage. TGF-β1 increased total protein synthesis, including aggrecan (ACAN) and collagen type II (Col II), together with activation of Akt/mTOR signaling pathway. mTOR silencing significantly suppressed ACAN and Col II expressions through decreasing TGF-β1-induced phosphorylation of 4E-BP1. On the contrary, 4E-BP1 knockdown promoted total protein synthesis but suppressed Col II and ACAN expressions with decreased expression of Smad2/3 and Smad4 and increased expression of inhibitory Smad6 and Smad7. TGF-β1 suppressed the interaction of 4E-BP1 and eIF4E and subsequently enhanced protein synthesis. Furthermore, 4E-BP1 regulated translation levels of inhibitory Smads, which decreased the accumulation of nuclear Smad2/3 complexes on the promoter of ACAN and Col II genes, subsequently affecting transcription of ACAN and Col II. These results demonstrated that TGF-β1-modulated phosphorylation of 4EBP1 plays a role in the expression of Col II and ACAN through differential alteration of Smad signaling pathway.
Collapse
Affiliation(s)
- Hyun Sook Hwang
- Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Kyunggi, Korea.,Institute for Skeletal Aging, Hallym University, Chunchon, Korea
| | - Mi Hyun Lee
- Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Kyunggi, Korea.,Institute for Skeletal Aging, Hallym University, Chunchon, Korea
| | - Hyun Ah Kim
- Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Kyunggi, Korea.,Institute for Skeletal Aging, Hallym University, Chunchon, Korea
| |
Collapse
|
8
|
28-Hydroxy-3-oxoolean-12-en-29-oic Acid, a Triterpene Acid from Celastrus Orbiculatus Extract, Inhibits the Migration and Invasion of Human Gastric Cancer Cells In Vitro. Molecules 2019; 24:molecules24193513. [PMID: 31569766 PMCID: PMC6803947 DOI: 10.3390/molecules24193513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 12/29/2022] Open
Abstract
Gastric cancer is the fifth most common tumor and has the third-highest mortality rate among various malignant tumors, and the survival rate of patients is low. Celastrus orbiculatus extract has been shown to inhibit the activity of a variety of tumors. This study explored the inhibitory effect of the oleanane-type triterpenoid acid 28-hydroxy-3-oxoolean-12-en-29-oic acid molecule from Celastrus orbiculatus extract on gastric cancer cell invasion and metastasis and determined its mechanism. 28-Hydroxy-3-oxoolean-12-en-29-oic acid was first diluted to various concentrations and then used to treat SGC-7901 and BGC-823 cells. Cell proliferation was assessed by an MTT (thiazole blue) assay. Transwell and wound healing assays were used to assess cell invasion and migration. High-content imaging technology was used to further observe the effects of the drug on cell invasion and migration. Western blotting was used to assess the effects on the expression of matrix metalloproteinases (MMPs) and the effects on epithelial-mesenchymal transition (EMT)-related proteins and phosphorylation-related proteins. We found that 28-Hydroxy-3-oxoolean-12-en-29-oic acid inhibited the migration and invasion of SGC-7901 and BGC-823 gastric cancer cells in a dose-dependent manner. Consequently, 28-hydroxy-3-oxoolean-12-en-29-oic acid decreased the expression of EMT-related proteins and MMPs in gastric cancer cells and reduced protein phosphorylation, inhibiting the migration and invasion of gastric cancer cells.
Collapse
|
9
|
Pizzolatti ALA, Gaudig F, Seitz D, Roesler CRM, Salmoria GV. Glucosamine Hydrochloride and N-Acetylglucosamine Influence the Response of Bovine Chondrocytes to TGF-β3 and IGF in Monolayer and Three-Dimensional Tissue Culture. Tissue Eng Regen Med 2019; 15:781-791. [PMID: 30603596 DOI: 10.1007/s13770-018-0150-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 01/14/2023] Open
Abstract
Background Glucosamine hydrochloride (GlcN·HCl) has been shown to inhibit cell growth and matrix synthesis, but not with N-acetyl-glucosamine (GlcNAc) supplementation. This effect might be related to an inhibition of critical growth factors (GF), or to a different metabolization of the two glucosamine derivatives. The aim of the present study was to evaluate the synergy between GlcN·HCl, GlcNAc, and GF on proliferation and cartilage matrix synthesis. Method Bovine chondrocytes were cultivated in monolayers for 48 h and in three-dimensional (3D) chitosan scaffolds for 30 days in perfusion bioreactors. Serum-free (SF) medium was supplemented with either growth factors (GF) TGF-β (5 ng mL-1) and IGF-I (10 ng mL-1), GlcN·HCl or GlcNAc at 1mM each or both. Six groups were compared according to medium supplementation: (a) SF control; (b) SF + GlcN·HCl; (c) SF + GlcNAc; (d) SF + GF; (e) SF + GF + GlcN·HCl; and (f) SF + GF + GlcNAc. Cell proliferation, proteoglycan, collagen I (COL1), and collagen II (COL2) synthesis were evaluated. Results The two glucosamines showed opposite effects in monolayer culture: GlcN·HCl significantly reduced proliferation and GlcNAc significantly augmented cellular metabolism. In the 30 days 3D culture, the GlcN·HCl added to GF stimulated cell proliferation more than when compared to GF only, but the proteoglycan synthesis was smaller than GF. However, GlcNAc added to GF improved the cell proliferation and proteoglycan synthesis more than when compared to GF and GF/GlcN·HCl. The synthesis of COL1 and COL2 was observed in all groups containing GF. Conclusion GlcN·HCl and GlcNAc increased cell growth and stimulated COL2 synthesis in long-time 3D culture. However, only GlcNAc added to GF improved proteoglycan synthesis.
Collapse
Affiliation(s)
- André Luiz A Pizzolatti
- 1Laboratory of Biomechanical Engineering (LEBm), University Hospital, Department of Mechanical Engineering, Federal University of Santa Catarina, St. Maria Flora Pausewang, Florianópolis, SC 88036-800 Brazil.,2CAPES Foundation, Ministry of Education of Brazil, St. ERL-Norte, Brasília, DF 70.040-020 Brazil
| | - Florian Gaudig
- Friedrich Baur Biomed Center, Bayreuth, St. Ludwig-Thoma- 36c, 95447 Bayreuth, Bavaria Germany.,4University of Bayreuth, St. University 30, 95447 Bayreuth, Bavaria Germany
| | - Daniel Seitz
- Friedrich Baur Biomed Center, Bayreuth, St. Ludwig-Thoma- 36c, 95447 Bayreuth, Bavaria Germany.,4University of Bayreuth, St. University 30, 95447 Bayreuth, Bavaria Germany
| | - Carlos R M Roesler
- 1Laboratory of Biomechanical Engineering (LEBm), University Hospital, Department of Mechanical Engineering, Federal University of Santa Catarina, St. Maria Flora Pausewang, Florianópolis, SC 88036-800 Brazil
| | - Gean Vitor Salmoria
- 1Laboratory of Biomechanical Engineering (LEBm), University Hospital, Department of Mechanical Engineering, Federal University of Santa Catarina, St. Maria Flora Pausewang, Florianópolis, SC 88036-800 Brazil
| |
Collapse
|
10
|
Li S, Ma YM, Zheng PS, Zhang P. GDF15 promotes the proliferation of cervical cancer cells by phosphorylating AKT1 and Erk1/2 through the receptor ErbB2. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:80. [PMID: 29636108 PMCID: PMC5894198 DOI: 10.1186/s13046-018-0744-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/25/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Growth differentiation factor 15 (GDF15) is a member of the TGF-β superfamily, and evidence suggests that a substantial amount of GDF15 is secreted in various human cancers, such as ovarian cancer, prostate cancer, and breast cancer, among others. However, the function of GDF15 in cervical cancer has not yet been reported. METHODS Immunohistochemistry was used to detect GDF15 expression in normal cervix and in different cervical cancer lesions. Cell growth curves, MTT, tumor formation assays and flow cytometry were utilized to observe the effects of ectopic GDF15 expression on the proliferation and cell cycle of cervical cancer cells. Real-time PCR, western blotting and immunoprecipitation assays were conducted to measure the expression of genes related to the cell cycle and the PI3K/AKT and MAPK/ERK signaling pathways. A chromatin immunoprecipitation assay was performed to confirm whether C-myc bound to a specific region of the GDF15 promoter. Inhibitor treatment and immunoprecipitation assays were employed to identify the association between GDF15 and ErbB2. RESULTS GDF15 expression gradually increased during the progression of cervical carcinogenesis. GDF15 promoted cervical cancer cell proliferation via exogenous rhGDF15 treatment or the use of gene editing technology in vitro and in vivo and significantly accelerated the cell cycle transition from G0/G1 to S phase. The expression of p-ErbB2, p-AKT1, p-Erk1/2, CyclinD1 and CyclinE1 was up-regulated and the expression of p21 was down-regulated in GDF15-overexpressing and rhGDF15-treated cervical cancer cells. C-myc trans-activated GDF15 expression by binding to the E-box motifs in the promoter of GDF15 and contributed to the positive feedback of GDF15/C-myc/GDF15. Furthermore, GDF15 bound to ErbB2 in a protein complex in cervical cancer cells. CONCLUSIONS Our data demonstrated that GDF15 promoted the proliferation of cervical cancer cells via the up-regulation of CyclinD1 and CyclinE1 and the down-regulation of p21 through both the PI3K/AKT and MAPK/ERK signaling pathways in a complex with ErbB2.
Collapse
Affiliation(s)
- Shan Li
- Department of Reproductive Medicine, the First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Shaanxi, Xi'an, 710061, People's Republic of China
| | - Yan-Min Ma
- Department of Reproductive Medicine, the First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Shaanxi, Xi'an, 710061, People's Republic of China
| | - Peng-Sheng Zheng
- Department of Reproductive Medicine, the First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Shaanxi, Xi'an, 710061, People's Republic of China. .,Section of Cancer Stem Cell Research, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of the People's Republic of China, Xi'an, People's Republic of China.
| | - Ping Zhang
- Department of Reproductive Medicine, the First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Shaanxi, Xi'an, 710061, People's Republic of China.
| |
Collapse
|
11
|
Qu Y, Zhang H, Duan J, Liu R, Deng T, Bai M, Huang D, Li H, Ning T, Zhang L, Wang X, Ge S, Zhou L, Zhong B, Ying G, Ba Y. MiR-17-5p regulates cell proliferation and migration by targeting transforming growth factor-β receptor 2 in gastric cancer. Oncotarget 2017; 7:33286-96. [PMID: 27120811 PMCID: PMC5078094 DOI: 10.18632/oncotarget.8946] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/28/2016] [Indexed: 12/13/2022] Open
Abstract
TGFBR2 serves as an initial regulator of the TGF-β signaling pathway, and loss or reduction of its expression leads to uncontrolled cell growth and invasion. TGFBR2 plays a crucial role in the carcinogenesis and malignant process of gastric cancer, but the mechanism remains unclear. In this study, we found that TGFBR2 protein levels were consistently upregulated in gastric cancer tissues, whereas TGFBR2 mRNA levels varied among these tissues, indicating that a post-transcriptional mechanism is involved in the regulation of TGFBR2. MiRNAs are known to regulate gene expression at the post-transcriptional level. Therefore, we performed bioinformatics analyses to search for miRNAs potentially targeting TGFBR2. MiR-17-5p was found to bind to the 3'UTR of TGFBR2 mRNA, and further validation of this specific binding was performed through a reporter assay. An inverse correlation between miR-17-5p and TGFBR2 protein was observed in gastric cancer tissues. Cell studies revealed that miR-17-5p negatively regulated TGFBR2 expression by directly binding to the 3'UTR of TGFBR2 mRNA, thereby promoting cell growth and migration. We also validated the role of TGFBR2 using siRNA and an overexpression plasmid. The results of our study suggest a novel regulatory network in gastric cancer mediated by miR-17-5p and TGFBR2 and may indicate that TGFBR2 could serve as a new therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Yanjun Qu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Haiyang Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Jingjing Duan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Rui Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Ting Deng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Ming Bai
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Dingzhi Huang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Hongli Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Tao Ning
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Le Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Xia Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Shaohua Ge
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Likun Zhou
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Benfu Zhong
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Guoguang Ying
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yi Ba
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| |
Collapse
|
12
|
Li Z, Fei H, Wang Z, Zhu T. Low‑dose halofuginone inhibits the synthesis of type I collagen without influencing type II collagen in the extracellular matrix of chondrocytes. Mol Med Rep 2017; 16:3290-3298. [PMID: 28713920 PMCID: PMC5547978 DOI: 10.3892/mmr.2017.7009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 05/24/2017] [Indexed: 12/28/2022] Open
Abstract
Full‑thickness and large area defects of articular cartilage are unable to completely repair themselves and require surgical intervention, including microfracture, autologous or allogeneic osteochondral grafts, and autologous chondrocyte implantation. A large proportion of regenerative cartilage exists as fibrocartilage, which is unable to withstand impacts in the same way as native hyaline cartilage, owing to excess synthesis of type I collagen in the matrix. The present study demonstrated that low‑dose halofuginone (HF), a plant alkaloid isolated from Dichroa febrifuga, may inhibit the synthesis of type I collagen without influencing type II collagen in the extracellular matrix of chondrocytes. In addition, HF was revealed to inhibit the phosphorylation of mothers against decapentaplegic homolog (Smad)2/3 and promoted Smad7 expression, as well as decrease the synthesis of type I collagen synthesis. Results from the present study indicated that HF treatment suppressed the synthesis of type I collagen by inhibiting the transforming growth factor‑β signaling pathway in chondrocytes. These results may provide an alternative solution to the problems associated with fibrocartilage, and convert fibrocartilage into hyaline cartilage at the mid‑early stages of cartilage regeneration. HF may additionally be used to improve monolayer expansion or 3D cultures of seed cells for the tissue engineering of cartilage.
Collapse
Affiliation(s)
- Zeng Li
- Department of Respiratory, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110015, P.R. China
| | - Hao Fei
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Zhen Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Tianyi Zhu
- Department of Respiratory, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110015, P.R. China
| |
Collapse
|
13
|
Kroczynska B, Blyth GT, Rafidi RL, Majchrzak-Kita B, Xu L, Saleiro D, Kosciuczuk EM, Jemielity J, Su B, Altman JK, Eklund EA, Fish EN, Platanias LC. Central Regulatory Role for SIN1 in Interferon γ (IFNγ) Signaling and Generation of Biological Responses. J Biol Chem 2017; 292:4743-4752. [PMID: 28174303 DOI: 10.1074/jbc.m116.757666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/30/2017] [Indexed: 12/25/2022] Open
Abstract
The precise signaling mechanisms by which type II IFN receptors control expression of unique genes to induce biological responses remain to be established. We provide evidence that Sin1, a known element of the mammalian target of rapamycin complex 2 (mTORC2), is required for IFNγ-induced phosphorylation and activation of AKT and that such activation mediates downstream regulation of mTORC1 and its effectors. These events play important roles in the assembly of the eukaryotic translation initiation factor 4F (eIF4F) and mRNA translation of IFN-stimulated genes. Interestingly, IFNγ-induced tyrosine phosphorylation of STAT1 is reduced in cells with targeted disruption of Sin1, leading to decreased transcription of several IFNγ-inducible genes in an mTORC2-independent manner. Additionally, our studies establish that Sin1 is essential for generation of type II IFN-dependent antiviral effects and antiproliferative responses in normal and malignant hematopoiesis. Together, our findings establish an important role for Sin1 in both transcription and translation of IFN-stimulated genes and type II IFN-mediated biological responses, involving both mTORC2-dependent and -independent functions.
Collapse
Affiliation(s)
- Barbara Kroczynska
- From the Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, and.,the Department of Radiation Oncology, Northwestern University, Chicago, Illinois 60611
| | - Gavin T Blyth
- From the Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, and
| | - Robert L Rafidi
- From the Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, and
| | - Beata Majchrzak-Kita
- the Toronto General Research Institute, University Health Network, and Department of Immunology, University of Toronto, Toronto, Ontario M5G 2M1, Canada
| | - Lucy Xu
- From the Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, and
| | - Diana Saleiro
- From the Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, and
| | - Ewa M Kosciuczuk
- From the Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, and.,the Division of Hematology-Oncology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| | - Jacek Jemielity
- the Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Bing Su
- the Department of Immunobiology and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut 06520, and.,the Shanghai Institute of Immunology and Department of Microbiology and Immunology, Shanghai JiaoTong University School of Medicine, Shanghai 200000, China
| | - Jessica K Altman
- From the Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, and.,the Division of Hematology-Oncology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| | - Elizabeth A Eklund
- From the Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, and.,the Division of Hematology-Oncology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| | - Eleanor N Fish
- the Toronto General Research Institute, University Health Network, and Department of Immunology, University of Toronto, Toronto, Ontario M5G 2M1, Canada
| | - Leonidas C Platanias
- From the Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, and .,the Division of Hematology-Oncology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| |
Collapse
|
14
|
Semba RD, Trehan I, Gonzalez-Freire M, Kraemer K, Moaddel R, Ordiz MI, Ferrucci L, Manary MJ. Perspective: The Potential Role of Essential Amino Acids and the Mechanistic Target of Rapamycin Complex 1 (mTORC1) Pathway in the Pathogenesis of Child Stunting. Adv Nutr 2016; 7:853-65. [PMID: 27633102 PMCID: PMC5015042 DOI: 10.3945/an.116.013276] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Stunting is the best summary measure of chronic malnutrition in children. Approximately one-quarter of children under age 5 worldwide are stunted. Lipid-based or micronutrient supplementation has little to no impact in reducing stunting, which suggests that other critical dietary nutrients are missing. A dietary pattern of poor-quality protein is associated with stunting. Stunted children have significantly lower circulating essential amino acids than do nonstunted children. Inadequate dietary intakes of essential amino acids could adversely affect growth, because amino acids are required for synthesis of proteins. The master growth regulation pathway, the mechanistic target of rapamycin complex 1 (mTORC1) pathway, is exquisitely sensitive to amino acid availability. mTORC1 integrates cues such as nutrients, growth factors, oxygen, and energy to regulate growth of bone, skeletal muscle, nervous system, gastrointestinal tract, hematopoietic cells, immune effector cells, organ size, and whole-body energy balance. mTORC1 represses protein and lipid synthesis and cell and organismal growth when amino acids are deficient. Over the past 4 decades, the main paradigm for child nutrition in developing countries has been micronutrient malnutrition, with relatively less attention paid to protein. In this Perspective, we present the view that essential amino acids and the mTORC1 pathway play a key role in child growth. The current assumption that total dietary protein intake is adequate for growth among most children in developing countries needs re-evaluation.
Collapse
Affiliation(s)
- Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD;
| | - Indi Trehan
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
| | | | - Klaus Kraemer
- Sight and Life, Basel, Switzerland; and Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | | | - M Isabel Ordiz
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
| | | | - Mark J Manary
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
15
|
Lee PT, Li WJ. Chondrogenesis of Embryonic Stem Cell-Derived Mesenchymal Stem Cells Induced by TGFβ1 and BMP7 Through Increased TGFβ Receptor Expression and Endogenous TGFβ1 Production. J Cell Biochem 2016; 118:172-181. [PMID: 27292615 DOI: 10.1002/jcb.25623] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/10/2016] [Indexed: 12/21/2022]
Abstract
For decades stem cells have proven to be invaluable to the study of tissue development. More recently, mesenchymal stem cells (MSCs) derived from embryonic stem cells (ESCs) (ESC-MSCs) have emerged as a cell source with great potential for the future of biomedical research due to their enhanced proliferative capability compared to adult tissue-derived MSCs and effectiveness of musculoskeletal lineage-specific cell differentiation compared to ESCs. We have previously compared the properties and differentiation potential of ESC-MSCs to bone marrow-derived MSCs. In this study, we evaluated the potential of TGFβ1 and BMP7 to induce chondrogenic differentiation of ESC-MSCs compared to that of TGFβ1 alone and further investigated the cellular phenotype and intracellular signaling in response to these induction conditions. Our results showed that the expression of cartilage-associated markers in ESC-MSCs induced by the TGFβ1 and BMP7 combination was increased compared to induction with TGFβ1 alone. The TGFβ1 and BMP7 combination upregulated the expression of TGFβ receptor and the production of endogenous TGFβs compared to TGFβ1 induction. The growth factor combination also increasingly activated both of the TGF and BMP signaling pathways, and inhibition of the signaling pathways led to reduced chondrogenesis of ESC-MSCs. Our findings suggest that by adding BMP7 to TGFβ1-supplemented induction medium, ESC-MSC chondrogenesis is upregulated through increased production of endogenous TGFβ and activities of TGFβ and BMP signaling. J. Cell. Biochem. 118: 172-181, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Patrick T Lee
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin.,Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Wan-Ju Li
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
16
|
Abeyrathna P, Kovacs L, Han W, Su Y. Calpain-2 activates Akt via TGF-β1-mTORC2 pathway in pulmonary artery smooth muscle cells. Am J Physiol Cell Physiol 2016; 311:C24-34. [PMID: 27099352 DOI: 10.1152/ajpcell.00295.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 04/18/2016] [Indexed: 01/29/2023]
Abstract
Calpain is a family of calcium-dependent nonlysosomal neutral cysteine endopeptidases. Akt is a serine/threonine kinase that belongs to AGC kinases and plays important roles in cell survival, growth, proliferation, angiogenesis, and cell metabolism. Both calpain and Akt are the downstream signaling molecules of platelet-derived growth factor (PDGF) and mediate PDGF-induced collagen synthesis and proliferation of pulmonary artery smooth muscle cells (PASMCs) in pulmonary vascular remodeling. We found that inhibitions of calpain-2 by using calpain inhibitor MDL28170 and calpain-2 small interfering RNA attenuated Akt phosphorylations at serine-473 (S473) and threonine-308 (T308), as well as collagen synthesis and cell proliferation of PASMCs induced by PDGF. Overexpression of calpain-2 in PASMCs induced dramatic increases in Akt phosphorylations at S473 and T308. Moreover, knockout of calpain attenuated Akt phosphorylations at S473 and T308 in smooth muscle of pulmonary arterioles of mice with chronic hypoxic pulmonary hypertension. The cell-permeable-specific transforming growth factor (TGF)-β receptor inhibitor SB431542 attenuated Akt phosphorylations at both S473 and T308 induced by PDGF and by overexpressed calpain-2 in PASMCs. Furthermore, SB-431452 and knocking down activin receptor-like kinase-5 significantly reduced PDGF-induced collagen synthesis and cell proliferation of PASMCs. Nevertheless, neutralizing extracellular TGF-β1 using a cell-impermeable TGF-β1 neutralizing antibody did not affect PDGF-induced Akt phosphorylations at S473 and T308. Furthermore, inhibition of mammalian target of rapamycin complex 2 (mTORC2) by knocking down its component protein Rictor prevented Akt phosphorylations at S473 and T308 induced by PDGF and by overexpressed calpain-2. These data provide first evidence supporting that calpain-2 upregulates PDGF-induced Akt phosphorylation in pulmonary vascular remodeling via an intracrine TGF-β1/mTORC2 mechanism.
Collapse
Affiliation(s)
- Prasanna Abeyrathna
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Laszlo Kovacs
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Weihong Han
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Yunchao Su
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia; Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia; and Research Service, Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| |
Collapse
|
17
|
Tsai TL, Wang B, Squire MW, Guo LW, Li WJ. Endothelial cells direct human mesenchymal stem cells for osteo- and chondro-lineage differentiation through endothelin-1 and AKT signaling. Stem Cell Res Ther 2015; 6:88. [PMID: 25998005 PMCID: PMC4416238 DOI: 10.1186/s13287-015-0065-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 08/20/2014] [Accepted: 03/25/2015] [Indexed: 02/08/2023] Open
Abstract
Introduction Human mesenchymal stem cells (hMSCs) reside in a perivascular niche of the body, suggesting that they interact closely with vascular endothelial cells (ECs) through cell-cell interaction or paracrine signaling to maintain cell functions. Endothelin-1 (ET1) is a paracrine factor mainly secreted by ECs. We thus hypothesize that ECs can regulate cellular activities of hMSCs and direct their stem cell fate. Methods We investigated whether co-cultured human aortic endothelial cells (HAECs) were able to regulate expression of potency- and lineage-related markers in bone marrow-derived hMSCs. We further explored the regulatory effects of ET1 on cell proliferation, expression of surface antigens and pluripotency-related markers, and multilineage differentiation in hMSCs. Activation of the AKT signaling pathway in hMSCs was also analyzed to identify its mechanistic role in the ET1-induced regulation. Results Co-cultured HAECs enhanced expression of mesenchymal lineage-related markers in hMSCs. Treatment of ET receptor antagonist downregulated the increased expression of CBFA1 in hMSCs cultured with HAEC-conditioned medium. hMSCs treated with ET1 showed cell proliferation and expression of surface antigens, CD73, CD90, and CD105, comparable with those without ET1 treatment. ET1-treated hMSCs also expressed upregulated mRNA transcript levels of OCT3/4, NANOG, CBFA1 and SOX9. When induced for lineage-specific differentiation, hMSCs pre-treated with ET1 showed enhanced osteogenesis and chondrogenesis. However, adipogenic differentiation of hMSCs was not affected by ET1 pretreatment. We further showed that the ET1-induced regulation was mediated by activation of AKT signaling. Conclusion Our results demonstrate that ET1 secreted by HAECs can direct bone marrow-derived hMSCs for osteo- and chondro-lineage differentiation through activation of the AKT signaling pathway, suggesting that ET1 plays a crucial role in regulation of hMSC activity. Our findings may help understand how hMSCs interact with ECs in a perivascular niche. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0065-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tsung-Lin Tsai
- Department of Orthopedics and Rehabilitation, Laboratory of Musculoskeletal Biology and Regenerative Medicine, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 5051, Madison, WI, 53705, USA. .,Department of Biomedical Engineering, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 5051, Madison, WI 53705, USA.
| | - Bowen Wang
- Department of Surgery, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 5151, Madison, WI 53705, USA.
| | - Matthew W Squire
- Department of Orthopedics and Rehabilitation, Laboratory of Musculoskeletal Biology and Regenerative Medicine, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 5051, Madison, WI, 53705, USA.
| | - Lian-Wang Guo
- Department of Surgery, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 5151, Madison, WI 53705, USA.
| | - Wan-Ju Li
- Department of Orthopedics and Rehabilitation, Laboratory of Musculoskeletal Biology and Regenerative Medicine, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 5051, Madison, WI, 53705, USA. .,Department of Biomedical Engineering, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 5051, Madison, WI 53705, USA.
| |
Collapse
|