1
|
Yue D, Zheng D, Yang L, Bai Y, Song Z, Li D, Yu X, Li Y. Berberine disrupts the high-affinity iron transport system to reverse the fluconazole-resistance in Candida albicans. Microb Pathog 2025; 200:107370. [PMID: 39929396 DOI: 10.1016/j.micpath.2025.107370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/31/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
Invasive fungal infection is usually caused by Candida albicans infection, which has a high incidence rate and mortality in critically ill patients. New drugs are needed to combat this pathogen since the limited treatment options currently available and increasing resistance to existing drugs. Berberine (BBR) is an active compound in Coptis chinensis, Phellodendron chinense and Radix berberidis, which is clinically used to treat inflammatory bowel disease, but its inhibitory effect on drug-resistant fungi has not been clarified. In this study, based on the evidence of BBR inhibiting the expression of azole-resistance genes, reducing cell adhesion and disrupting biofilm formation, transcriptome analysis revealed that the disruption of iron acquisition pathway may be the core link in BBR inhibiting drug-resistant fungi. Combined with the subsequent experimental results, including the reduction of intracellular ferrous ion content, the weakening of iron reductase activity and the overall downregulation of the coding gene of the high-affinity iron reduction system, it is speculated that the fungal growth defect under BBR treatment is the result of the interruption of the high-affinity iron acquisition pathway. Ftr1 plays a central role in the drug targeting of this transport system. Meanwhile, due to the iron deficiency within the cell, the biological function of mitochondria is impaired, ultimately leading to fungal death. This study not only reflects the application value of BBR in the clinical treatment of fungal infections, but also provides a potential strategy to address the current drug-resistance dilemma.
Collapse
Affiliation(s)
- Daifan Yue
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dongming Zheng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Nuclear Medicine, Ya'an People's Hospital, Ya'an, 625000, China
| | - Linlan Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuxin Bai
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhen Song
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dongmei Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaoqin Yu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yan Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
2
|
Ivan IM, Olaru OT, Popovici V, Chițescu CL, Popescu L, Luță EA, Ilie EI, Brașoveanu LI, Hotnog CM, Nițulescu GM, Boscencu R, Gîrd CE. Antioxidant and Cytotoxic Properties of Berberis vulgaris (L.) Stem Bark Dry Extract. Molecules 2024; 29:2053. [PMID: 38731544 PMCID: PMC11085362 DOI: 10.3390/molecules29092053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Berberis vulgaris (L.) has remarkable ethnopharmacological properties and is widely used in traditional medicine. The present study investigated B. vulgaris stem bark (Berberidis cortex) by extraction with 50% ethanol. The main secondary metabolites were quantified, resulting in a polyphenols content of 17.6780 ± 3.9320 mg Eq tannic acid/100 g extract, phenolic acids amount of 3.3886 ± 0.3481 mg Eq chlorogenic acid/100 g extract and 78.95 µg/g berberine. The dried hydro-ethanolic extract (BVE) was thoroughly analyzed using Ultra-High-Performance Liquid Chromatography coupled with High-Resolution Mass Spectrometry (UHPLC-HRMS/MS) and HPLC, and 40 bioactive phenolic constituents were identified. Then, the antioxidant potential of BVE was evaluated using three methods. Our results could explain the protective effects of Berberidis cortex EC50FRAP = 0.1398 mg/mL, IC50ABTS = 0.0442 mg/mL, IC50DPPH = 0.2610 mg/mL compared to ascorbic acid (IC50 = 0.0165 mg/mL). Next, the acute toxicity and teratogenicity of BVE and berberine-berberine sulfate hydrate (BS)-investigated on Daphnia sp. revealed significant BS toxicity after 24 h, while BVE revealed considerable toxicity after 48 h and induced embryonic developmental delays. Finally, the anticancer effects of BVE and BS were evaluated in different tumor cell lines after 24 and 48 h of treatments. The MTS assay evidenced dose- and time-dependent antiproliferative activity, which was higher for BS than BVE. The strongest diminution of tumor cell viability was recorded in the breast (MDA-MB-231), colon (LoVo) cancer, and OSCC (PE/CA-PJ49) cell lines after 48 h of exposure (IC50 < 100 µg/mL). However, no cytotoxicity was reported in the normal epithelial cells (HUVEC) and hepatocellular carcinoma (HT-29) cell lines. Extensive data analysis supports our results, showing a significant correlation between the BVE concentration, phenolic compounds content, antioxidant activity, exposure time, and the viability rate of various normal cells and cancer cell lines.
Collapse
Affiliation(s)
- Ionuț Mădălin Ivan
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (I.M.I.); (L.P.); (E.A.L.); (E.I.I.); (G.M.N.); (R.B.); (C.E.G.)
| | - Octavian Tudorel Olaru
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (I.M.I.); (L.P.); (E.A.L.); (E.I.I.); (G.M.N.); (R.B.); (C.E.G.)
| | - Violeta Popovici
- Center for Mountain Economics, “Costin C. Kiriţescu” National Institute of Economic Research (INCE-CEMONT), Romanian Academy, 725700 Vatra-Dornei, Romania
| | - Carmen Lidia Chițescu
- Faculty of Medicine and Pharmacy, “Dunărea de Jos” University of Galați, A.I. Cuza 35, 800010 Galați, Romania;
| | - Liliana Popescu
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (I.M.I.); (L.P.); (E.A.L.); (E.I.I.); (G.M.N.); (R.B.); (C.E.G.)
| | - Emanuela Alice Luță
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (I.M.I.); (L.P.); (E.A.L.); (E.I.I.); (G.M.N.); (R.B.); (C.E.G.)
| | - Elena Iuliana Ilie
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (I.M.I.); (L.P.); (E.A.L.); (E.I.I.); (G.M.N.); (R.B.); (C.E.G.)
| | - Lorelei Irina Brașoveanu
- Center of Immunology, “Stefan S. Nicolau” Institute of Virology, Romanian Academy, 285 Mihai Bravu Ave., 030304 Bucharest, Romania; (L.I.B.); (C.M.H.)
| | - Camelia Mia Hotnog
- Center of Immunology, “Stefan S. Nicolau” Institute of Virology, Romanian Academy, 285 Mihai Bravu Ave., 030304 Bucharest, Romania; (L.I.B.); (C.M.H.)
| | - George Mihai Nițulescu
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (I.M.I.); (L.P.); (E.A.L.); (E.I.I.); (G.M.N.); (R.B.); (C.E.G.)
| | - Rica Boscencu
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (I.M.I.); (L.P.); (E.A.L.); (E.I.I.); (G.M.N.); (R.B.); (C.E.G.)
| | - Cerasela Elena Gîrd
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (I.M.I.); (L.P.); (E.A.L.); (E.I.I.); (G.M.N.); (R.B.); (C.E.G.)
| |
Collapse
|
3
|
Savoji AB, Kaheni Y, Rezaei P, Farkhondeh T, Pourhanifeh MH, Samarghandian S. Therapeutic Effects of Berberine against Urological Cancers: Biological Potentials Based on Cellular Mechanisms. Curr Mol Med 2024; 24:1282-1290. [PMID: 37933211 DOI: 10.2174/0115665240263630231009050436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Urological cancers, encompassing prostate, kidney, and bladder cancers, pose significant global health challenges. Current treatment modalities, including chemotherapy, radiotherapy, and surgery, individually or in combination, have limitations in efficacy and are associated with notable morbidity and mortality. METHODS This review explores alternative therapeutic avenues, emphasizing the exploration of natural compounds, with a specific focus on berberine. Berberine's potential as a treatment for urological cancers is investigated through an extensive examination of cellular and molecular mechanisms. RESULTS The comprehensive analysis reveals promising anticancer properties associated with berberine, substantiated by a wealth of experimental studies. The agent's impact on urological cancers is discussed, highlighting notable findings related to its efficacy and safety profile. CONCLUSIONS Given the high mortality rates and potential side effects associated with current standard treatments for urological cancers, the exploration of alternative, effective, and safer options is imperative. This review underscores berberine's therapeutic potential, shedding light on its anticancer effects and encouraging further research in the pursuit of enhanced treatment strategies.
Collapse
Affiliation(s)
- Ali Bozorg Savoji
- Student Research Committee, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Yasamin Kaheni
- Student Research Committee, Islamic Azad University, Mashhad Medical Branch, Mashhad, Iran
| | - Pouria Rezaei
- Student Research Committee, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
4
|
Mia MAR, Dey D, Sakib MR, Biswas MY, Prottay AAS, Paul N, Rimti FH, Abdullah Y, Biswas P, Iftehimul M, Paul P, Sarkar C, El-Nashar HAS, El-Shazly M, Islam MT. The efficacy of natural bioactive compounds against prostate cancer: Molecular targets and synergistic activities. Phytother Res 2023; 37:5724-5754. [PMID: 37786304 DOI: 10.1002/ptr.8017] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/17/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023]
Abstract
Globally, prostate cancer (PCa) is regarded as a challenging health issue, and the number of PCa patients continues to rise despite the availability of effective treatments in recent decades. The current therapy with chemotherapeutic drugs has been largely ineffective due to multidrug resistance and the conventional treatment has restricted drug accessibility to malignant tissues, necessitating a higher dosage resulting in increased cytotoxicity. Plant-derived bioactive compounds have recently attracted a great deal of attention in the field of PCa treatment due to their potent effects on several molecular targets and synergistic effects with anti-PCa drugs. This review emphasizes the molecular mechanism of phytochemicals on PCa cells, the synergistic effects of compound-drug interactions, and stem cell targeting for PCa treatment. Some potential compounds, such as curcumin, phenethyl-isothiocyanate, fisetin, baicalein, berberine, lutein, and many others, exert an anti-PCa effect via inhibiting proliferation, metastasis, cell cycle progression, and normal apoptosis pathways. In addition, multiple studies have demonstrated that the isolated natural compounds: d-limonene, paeonol, lanreotide, artesunate, and bicalutamide have potential synergistic effects. Further, a significant number of natural compounds effectively target PCa stem cells. However, further high-quality studies are needed to firmly establish the clinical efficacy of these phytochemicals against PCa.
Collapse
Affiliation(s)
- Md Abdur Rashid Mia
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Dipta Dey
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Musfiqur Rahman Sakib
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Md Yeaman Biswas
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology (JUST), Jashore, Bangladesh
| | - Abdullah Al Shamsh Prottay
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Niloy Paul
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Fahmida Hoque Rimti
- Bachelor of Medicine and Surgery, Chittagong Medical College, Chawkbazar, Bangladesh
| | - Yusuf Abdullah
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Partha Biswas
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology (JUST), Jashore, Bangladesh
| | - Md Iftehimul
- Department of Fisheries and Marine Bioscience, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Priyanka Paul
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| |
Collapse
|
5
|
Waseem M, Wang BD. Promising Strategy of mPTP Modulation in Cancer Therapy: An Emerging Progress and Future Insight. Int J Mol Sci 2023; 24:5564. [PMID: 36982637 PMCID: PMC10051994 DOI: 10.3390/ijms24065564] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Cancer has been progressively a major global health concern. With this developing global concern, cancer determent is one of the most significant public health challenges of this era. To date, the scientific community undoubtedly highlights mitochondrial dysfunction as a hallmark of cancer cells. Permeabilization of the mitochondrial membranes has been implicated as the most considerable footprint in apoptosis-mediated cancer cell death. Under the condition of mitochondrial calcium overload, exclusively mediated by oxidative stress, an opening of a nonspecific channel with a well-defined diameter in mitochondrial membrane allows free exchange between the mitochondrial matrix and the extra mitochondrial cytosol of solutes and proteins up to 1.5 kDa. Such a channel/nonspecific pore is recognized as the mitochondrial permeability transition pore (mPTP). mPTP has been established for regulating apoptosis-mediated cancer cell death. It has been evident that mPTP is critically linked with the glycolytic enzyme hexokinase II to defend cellular death and reduce cytochrome c release. However, elevated mitochondrial Ca2+ loading, oxidative stress, and mitochondrial depolarization are critical factors leading to mPTP opening/activation. Although the exact mechanism underlying mPTP-mediated cell death remains elusive, mPTP-mediated apoptosis machinery has been considered as an important clamp and plays a critical role in the pathogenesis of several types of cancers. In this review, we focus on structure and regulation of the mPTP complex-mediated apoptosis mechanisms and follow with a comprehensive discussion addressing the development of novel mPTP-targeting drugs/molecules in cancer treatment.
Collapse
Affiliation(s)
- Mohammad Waseem
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
6
|
Chopra H, Bibi S, Goyal R, Gautam RK, Trivedi R, Upadhyay TK, Mujahid MH, Shah MA, Haris M, Khot KB, Gopan G, Singh I, Kim JK, Jose J, Abdel-Daim MM, Alhumaydhi FA, Emran TB, Kim B. Chemopreventive Potential of Dietary Nanonutraceuticals for Prostate Cancer: An Extensive Review. Front Oncol 2022; 12:925379. [PMID: 35903701 PMCID: PMC9315356 DOI: 10.3389/fonc.2022.925379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022] Open
Abstract
There are more than two hundred fifty different types of cancers, that are diagnosed around the world. Prostate cancer is one of the suspicious type of cancer spreading very fast around the world, it is reported that in 2018, 29430 patients died of prostate cancer in the United State of America (USA), and hence it is expected that one out of nine men diagnosed with this severe disease during their lives. Medical science has identified cancer at several stages and indicated genes mutations involved in the cancer cell progressions. Genetic implications have been studied extensively in cancer cell growth. So most efficacious drug for prostate cancer is highly required just like other severe diseases for men. So nutraceutical companies are playing major role to manage cancer disease by the recommendation of best natural products around the world, most of these natural products are isolated from plant and mushrooms because they contain several chemoprotective agents, which could reduce the chances of development of cancer and protect the cells for further progression. Some nutraceutical supplements might activate the cytotoxic chemotherapeutic effects by the mechanism of cell cycle arrest, cell differentiation procedures and changes in the redox states, but in other, it also elevate the levels of effectiveness of chemotherapeutic mechanism and in results, cancer cell becomes less reactive to chemotherapy. In this review, we have highlighted the prostate cancer and importance of nutraceuticals for the control and management of prostate cancer, and the significance of nutraceuticals to cancer patients during chemotherapy.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-milat University, Islamabad, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Rajat Goyal
- Maharishi Markandeshwar (MM) School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
- Maharishi Markandeshwar (MM) College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Rupesh K. Gautam
- Maharishi Markandeshwar (MM) School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
| | - Rashmi Trivedi
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | - Mohd Hasan Mujahid
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | | | - Muhammad Haris
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Kartik Bhairu Khot
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Gopika Gopan
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Jin Kyu Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jobin Jose
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
7
|
Zhang L, Liu Y, Zhou R, He B, Wang W, Zhang B. Cyclophilin D: Guardian or Executioner for Tumor Cells? Front Oncol 2022; 12:939588. [PMID: 35860554 PMCID: PMC9289278 DOI: 10.3389/fonc.2022.939588] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Cyclophilin D (CypD) is a peptide-proline cis-trans isomerase (PPIase) distributed in the mitochondrial matrix. CypD regulates the opening of the mitochondrial permeability conversion pore (mPTP) and mitochondrial bioenergetics through PPIase activity or interaction with multiple binding partners in mitochondria. CypD initially attracted attention due to its regulation of mPTP overopening-mediated cell death. However, recent studies on the effects of CypD on tumors have shown conflicting results. Although CypD has been proven to promote the aerobic glycolysis in tumor cells, its regulation of malignant characteristics such as the survival, invasion and drug resistance of tumor cells remains controversial. Here, we elaborate the main biological functions of CypD and its relationships with tumor progression identified in recent years, focusing on the dual role of CypD in tumors.
Collapse
Affiliation(s)
- Ling Zhang
- School of Nursing, Jining Medical University, Jining, China
- *Correspondence: Bin Zhang, ; Ling Zhang,
| | - Yi Liu
- School of Nursing, Jining Medical University, Jining, China
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Rou Zhou
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Baoyu He
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Wenjun Wang
- School of Nursing, Jining Medical University, Jining, China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
- *Correspondence: Bin Zhang, ; Ling Zhang,
| |
Collapse
|
8
|
Pathak K, Pathak MP, Saikia R, Gogoi U, Sahariah JJ, Zothantluanga JH, Samanta A, Das A. Cancer Chemotherapy via Natural Bioactive Compounds. Curr Drug Discov Technol 2022; 19:e310322202888. [PMID: 35362385 DOI: 10.2174/1570163819666220331095744] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/29/2021] [Accepted: 12/17/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Cancer-induced mortality is increasingly prevalent globally which skyrocketed the necessity to discover new/novel safe and effective anticancer drugs. Cancer is characterized by the continuous multiplication of cells in the human which is unable to control. Scientific research is drawing its attention towards naturally-derived bioactive compounds as they have fewer side effects compared to the current synthetic drugs used for chemotherapy. OBJECTIVE Drugs isolated from natural sources and their role in the manipulation of epigenetic markers in cancer are discussed briefly in this review article. METHODS With advancing medicinal plant biotechnology and microbiology in the past century, several anticancer phytomedicines were developed. Modern pharmacopeia contains at least 25% herbal-based remedy including clinically used anticancer drugs. These drugs mainly include the podophyllotoxin derivatives vinca alkaloids, curcumin, mistletoe plant extracts, taxanes, camptothecin, combretastatin, and others including colchicine, artesunate, homoharringtonine, ellipticine, roscovitine, maytanasin, tapsigargin,andbruceantin. RESULTS Compounds (psammaplin, didemnin, dolastin, ecteinascidin,and halichondrin) isolated from marine sources and animals such as microalgae, cyanobacteria, heterotrophic bacteria, invertebrates. They have been evaluated for their anticancer activity on cells and experimental animal models and used chemotherapy.Drug induced manipulation of epigenetic markers plays an important role in the treatment of cancer. CONCLUSION The development of a new drug from isolated bioactive compounds of plant sources has been a feasible way to lower the toxicity and increase their effectiveness against cancer. Potential anticancer therapeutic leads obtained from various ethnomedicinal plants, foods, marine, and microorganisms are showing effective yet realistically safe pharmacological activity. This review will highlight important plant-based bioactive compounds like curcumin, stilbenes, terpenes, other polyphenolic phyto-compounds, and structurally related families that are used to prevent/ ameliorate cancer. However, a contribution from all possible fields of science is still a prerequisite for discovering safe and effective anticancer drugs.
Collapse
Affiliation(s)
- Kalyani Pathak
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| | - Manash Pratim Pathak
- Faculty of Pharmaceutical Sciences, Assam down town University, Panikhaiti, Guwahati-781026, Assam, India
| | - Riya Saikia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| | - Urvashee Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| | - Jon Jyoti Sahariah
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| | - James H Zothantluanga
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| | - Abhishek Samanta
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| | - Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| |
Collapse
|
9
|
GNE-493 inhibits prostate cancer cell growth via Akt-mTOR-dependent and -independent mechanisms. Cell Death Dis 2022; 8:120. [PMID: 35296639 PMCID: PMC8927604 DOI: 10.1038/s41420-022-00911-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/18/2022] [Indexed: 11/27/2022]
Abstract
GNE-493 is a novel PI3K/mTOR dual inhibitor with improved metabolic stability, oral bioavailability, and excellent pharmacokinetic parameters. Here GNE-493 potently inhibited viability, proliferation, and migration in different primary and established (LNCaP and PC-3 lines) prostate cancer cells, and provoking apoptosis. GNE-493 blocked Akt-mTOR activation in primary human prostate cancer cells. A constitutively-active mutant Akt1 restored Akt-mTOR activation but only partially ameliorated GNE-493-induced prostate cancer cell death. Moreover, GNE-493 was still cytotoxic in Akt1/2-silenced primary prostate cancer cells. Significant oxidative stress and programmed necrosis cascade activation were detected in GNE-493-treated prostate cancer cells. Moreover, GNE-493 downregulated Sphingosine Kinase 1 (SphK1), causing ceramide accumulation in primary prostate cancer cells. Daily single dose GNE-493 oral administration robustly inhibited the growth of the prostate cancer xenograft in the nude mice. Akt-mTOR inactivation, SphK1 downregulation, ceramide level increase, and oxidative injury were detected in GNE-493-treated prostate cancer xenograft tissues. Together, GNE-493 inhibited prostate cancer cell growth possibly through the Akt-mTOR-dependent and -independent mechanisms.
Collapse
|
10
|
Bai B, Chen Q, Jing R, He X, Wang H, Ban Y, Ye Q, Xu W, Zheng C. Molecular Basis of Prostate Cancer and Natural Products as Potential Chemotherapeutic and Chemopreventive Agents. Front Pharmacol 2021; 12:738235. [PMID: 34630112 PMCID: PMC8495205 DOI: 10.3389/fphar.2021.738235] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is the second most common malignant cancer in males. It involves a complex process driven by diverse molecular pathways that closely related to the survival, apoptosis, metabolic and metastatic characteristics of aggressive cancer. Prostate cancer can be categorized into androgen dependent prostate cancer and castration-resistant prostate cancer and cure remains elusive due to the developed resistance of the disease. Natural compounds represent an extraordinary resource of structural scaffolds with high diversity that can offer promising chemical agents for making prostate cancer less devastating and curable. Herein, those natural compounds of different origins and structures with potential cytotoxicity and/or in vivo anti-tumor activities against prostate cancer are critically reviewed and summarized according to the cellular signaling pathways they interfere. Moreover, the anti-prostate cancer efficacy of many nutrients, medicinal plant extracts and Chinese medical formulations were presented, and the future prospects for the application of these compounds and extracts were discussed. Although the failure of conventional chemotherapy as well as involved serious side effects makes natural products ideal candidates for the treatment of prostate cancer, more investigations of preclinical and even clinical studies are necessary to make use of these medical substances reasonably. Therefore, the elucidation of structure-activity relationship and precise mechanism of action, identification of novel potential molecular targets, and optimization of drug combination are essential in natural medicine research and development.
Collapse
Affiliation(s)
- Bingke Bai
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Qianbo Chen
- Department of Anesthesiology, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Rui Jing
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xuhui He
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Hongrui Wang
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yanfei Ban
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Qi Ye
- Department of Biological Science, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weiheng Xu
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Chengjian Zheng
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
11
|
Jagetia GC. Anticancer Potential of Natural Isoquinoline Alkaloid Berberine. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2021; 000:000-000. [DOI: 10.14218/jerp.2021.00005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
AMPK activation by ASP4132 inhibits non-small cell lung cancer cell growth. Cell Death Dis 2021; 12:365. [PMID: 33824293 PMCID: PMC8024326 DOI: 10.1038/s41419-021-03655-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/25/2022]
Abstract
Activation of adenosine monophosphate-activated protein kinase (AMPK) is able to produce significant anti-non-small cell lung cancer (NSCLC) cell activity. ASP4132 is an orally active and highly effective AMPK activator. The current study tested its activity against NSCLC cells. In primary NSCLC cells and established cell lines (A549 and NCI-H1944) ASP4132 potently inhibited cell growth, proliferation and cell cycle progression as well as cell migration and invasion. Robust apoptosis activation was detected in ASP4132-treated NSCLC cells. Furthermore, ASP4132 treatment in NSCLC cells induced programmed necrosis, causing mitochondrial p53-cyclophilin D (CyPD)-adenine nucleotide translocase 1 (ANT1) association, mitochondrial depolarization and medium lactate dehydrogenase release. In NSCLC cells ASP4132 activated AMPK signaling, induced AMPKα1-ACC phosphorylation and increased AMPK activity. Furthermore, AMPK downstream events, including mTORC1 inhibition, receptor tyrosine kinases (PDGFRα and EGFR) degradation, Akt inhibition and autophagy induction, were detected in ASP4132-treated NSCLC cells. Importantly, AMPK inactivation by AMPKα1 shRNA, knockout (using CRISPR/Cas9 strategy) or dominant negative mutation (T172A) almost reversed ASP4132-induced anti-NSCLC cell activity. Conversely, a constitutively active AMPKα1 (T172D) mimicked and abolished ASP4132-induced actions in NSCLC cells. In vivo, oral administration of a single dose of ASP4132 largely inhibited NSCLC xenograft growth in SCID mice. AMPK activation, mTORC1 inhibition and EGFR-PDGFRα degradation as well as Akt inhibition and autophagy induction were detected in ASP4132-treated NSCLC xenograft tumor tissues. Together, activation of AMPK by ASP4132 potently inhibits NSCLC cell growth in vitro and in vivo.
Collapse
|
13
|
Hussain Y, Mirzaei S, Ashrafizadeh M, Zarrabi A, Hushmandi K, Khan H, Daglia M. Quercetin and Its Nano-Scale Delivery Systems in Prostate Cancer Therapy: Paving the Way for Cancer Elimination and Reversing Chemoresistance. Cancers (Basel) 2021; 13:1602. [PMID: 33807174 PMCID: PMC8036441 DOI: 10.3390/cancers13071602] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/04/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer is the second most leading and prevalent malignancy around the world, following lung cancer. Prostate cancer is characterized by the uncontrolled growth of cells in the prostate gland. Prostate cancer morbidity and mortality have grown drastically, and intensive prostate cancer care is unlikely to produce adequate outcomes. The synthetic drugs for the treatment of prostate cancer in clinical practice face several challenges. Quercetin is a natural flavonoid found in fruits and vegetables. Apart from its beneficial effects, its plays a key role as an anti-cancer agent. Quercetin has shown anticancer potential, both alone and in combination. Therefore, the current study was designed to collect information from the literature regarding its therapeutic significance in the treatment of prostate cancer. Studies performed both in vitro and in vivo have confirmed that quercetin effectively prevents prostate cancer through different underlying mechanisms. Promising findings have also been achieved in clinical trials regarding the pharmacokinetics and human applications of quercetin. In the meantime, epidemiological studies have shown a negative correlation between the consumption of quercetin and the incidence of prostate cancer, and have indicated a chemopreventive effect of quercetin on prostate cancer in animal models. The major issues associated with quercetin are its low bioavailability and rapid metabolism, and these require priority attention. Chemoresistance is another main negative feature concerning prostate cancer treatment. This review highlights the chemotherapeutic effect, chemo preventive effect, and chemoresistance elimination potential of quercetin in prostate cancer. The underlying mechanisms for elimination of prostate cancer and eradication of resistance, either alone or in combination with other agents, are also discussed. In addition, the nanoscale delivery of quercetin is underpinned along with possible directions for future study.
Collapse
Affiliation(s)
- Yaseen Hussain
- Lab of Control Release and Drug Delivery System, College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China;
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran 1477893855, Iran;
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul 34956, Turkey;
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey;
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417466191, Iran;
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
14
|
Yu J, Zhong B, Xiao Q, Du L, Hou Y, Sun HS, Lu JJ, Chen X. Induction of programmed necrosis: A novel anti-cancer strategy for natural compounds. Pharmacol Ther 2020; 214:107593. [PMID: 32492512 DOI: 10.1016/j.pharmthera.2020.107593] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2020] [Indexed: 02/08/2023]
Abstract
Cell death plays a critical role in organism development and the pathogenesis of diseases. Necrosis is considered a non-programmed cell death in an extreme environment. Recent advances have provided solid evidence that necrosis could be programmed and quite a few types of programmed necrosis, such as necroptosis, ferroptosis, pyroptosis, paraptosis, mitochondrial permeability transition-driven necrosis, and oncosis, have been identified. The specific biomarkers, detailed signaling, and precise pathophysiological importance of programmed necrosis are yet to be clarified, but these forms of necrosis provide novel strategies for the treatment of various diseases, including cancer. Natural compounds are a unique source of lead compounds for the discovery of anti-cancer drugs. Natural compounds can induce both apoptosis and programmed necrosis. In this review, we summarized the recent progress of programmed necrosis and introduced their natural inducers. Noptosis, which is a novel type of programmed necrosis that is strictly dependent on NAD(P)H: quinone oxidoreductase 1-derived oxidative stress was proposed. Furthermore, the anti-cancer strategies that take advantage of programmed necrosis and the main concerns from the scientific community in this regard were discussed.
Collapse
Affiliation(s)
- Jie Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Bingling Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Qingwen Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Lida Du
- Department of Surgery, University of Toronto, Ontario, Canada
| | - Ying Hou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Hong-Shuo Sun
- Department of Surgery, University of Toronto, Ontario, Canada
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
15
|
De Marchi U, Fernandez-Martinez S, de la Fuente S, Wiederkehr A, Santo-Domingo J. Mitochondrial ion channels in pancreatic β-cells: Novel pharmacological targets for the treatment of Type 2 diabetes. Br J Pharmacol 2020; 178:2077-2095. [PMID: 32056196 PMCID: PMC8246559 DOI: 10.1111/bph.15018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/18/2022] Open
Abstract
Pancreatic beta‐cells are central regulators of glucose homeostasis. By tightly coupling nutrient sensing and granule exocytosis, beta‐cells adjust the secretion of insulin to the circulating blood glucose levels. Failure of beta‐cells to augment insulin secretion in insulin‐resistant individuals leads progressively to impaired glucose tolerance, Type 2 diabetes, and diabetes‐related diseases. Mitochondria play a crucial role in β‐cells during nutrient stimulation, linking the metabolism of glucose and other secretagogues to the generation of signals that promote insulin secretion. Mitochondria are double‐membrane organelles containing numerous channels allowing the transport of ions across both membranes. These channels regulate mitochondrial energy production, signalling, and cell death. The mitochondria of β‐cells express ion channels whose physio/pathological role is underappreciated. Here, we describe the mitochondrial ion channels identified in pancreatic β‐cells, we further discuss the possibility of targeting specific β‐cell mitochondrial channels for the treatment of Type 2 diabetes, and we finally highlight the evidence from clinical studies. LINKED ARTICLES This article is part of a themed issue on Cellular metabolism and diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.10/issuetoc
Collapse
Affiliation(s)
| | - Silvia Fernandez-Martinez
- Division of Clinical Pharmacology and Toxicology, Centre de Recherche Clinique, HUG, Genève, Switzerland
| | - Sergio de la Fuente
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
16
|
Keap1-targeting microRNA-941 protects endometrial cells from oxygen and glucose deprivation-re-oxygenation via activation of Nrf2 signaling. Cell Commun Signal 2020; 18:32. [PMID: 32102665 PMCID: PMC7045607 DOI: 10.1186/s12964-020-0526-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/29/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mimicking ischemia-reperfusion injury, oxygen and glucose deprivation (OGD)-re-oxygenation (OGDR) applied to endometrial cells produces significant oxidative stress and programmed necrosis, which can be inhibited by nuclear-factor-E2-related factor 2 (Nrf2) signaling. MicroRNA (miRNA)-induced repression of Keap1, a Nrf2 suppressor protein that facilitates Nrf2 degradation, is novel strategy to activate Nrf2 cascade. METHODS MicroRNA-941 (miR-941) was exogenously expressed in HESC and primary human endometrial cells, and the Nrf2 pathway examined by Western blotting and real-time quantitative PCR analysis. The endometrial cells were treated with OGDR, cell programmed necrosis and apoptosis were tested. RESULTS MiR-941 is a novel Keap1-targeting miRNA that regulates Nrf2 activity. In T-HESC cells and primary human endometrial cells, ectopic overexpression of miR-941 suppressed Keap1 3'-UTR (untranslated region) expression and downregulated its mRNA/protein expression, leading to activation of the Nrf2 cascade. Conversely, inhibition of miR-941 elevated Keap1 expression and activity in endometrial cells, resulting in suppression of Nrf2 activation. MiR-941 overexpression in endometrial cells attenuated OGDR-induced oxidative stress and programmed necrosis, whereas miR-941 inhibition enhanced oxidative stress and programmed necrosis. MiR-941 overexpression and inhibition were completely ineffective in Keap1-/Nrf2-KO T-HESC cells (using CRISPR/Cas9 strategy). Restoring Keap1 expression, using an UTR-depleted Keap1 construct, abolished miR-941-induced anti-OGDR activity in T-HESC cells. Thus Keap1-Nrf2 cascade activation is required for miR-941-induced endometrial cell protection. CONCLUSIONS Targeting Keap1 by miR-941 activates Nrf2 cascade to protect human endometrial cells from OGDR-induced oxidative stress and programmed necrosis. Video Abstract.
Collapse
|
17
|
Fontana F, Raimondi M, Marzagalli M, Di Domizio A, Limonta P. Natural Compounds in Prostate Cancer Prevention and Treatment: Mechanisms of Action and Molecular Targets. Cells 2020; 9:cells9020460. [PMID: 32085497 PMCID: PMC7072821 DOI: 10.3390/cells9020460] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/10/2020] [Accepted: 02/15/2020] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa) represents a major cause of cancer mortality among men in developed countries. Patients with recurrent disease initially respond to androgen-deprivation therapy, but the tumor eventually progresses into castration-resistant PCa; in this condition, tumor cells acquire the ability to escape cell death and develop resistance to current therapies. Thus, new therapeutic approaches for PCa management are urgently needed. In this setting, natural products have been extensively studied for their anti-PCa activities, such as tumor growth suppression, cell death induction, and inhibition of metastasis and angiogenesis. Additionally, numerous studies have shown that phytochemicals can specifically target the androgen receptor (AR) signaling, as well as the PCa stem cells (PCSCs). Interestingly, many clinical trials have been conducted to test the efficacy of nutraceuticals in human subjects, and they have partially confirmed the promising results obtained in vitro and in preclinical models. This article summarizes the anti-cancer mechanisms and therapeutic potentials of different natural compounds in the context of PCa prevention and treatment.
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (F.F.); (M.R.); (M.M.); (A.D.D.)
| | - Michela Raimondi
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (F.F.); (M.R.); (M.M.); (A.D.D.)
| | - Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (F.F.); (M.R.); (M.M.); (A.D.D.)
| | - Alessandro Di Domizio
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (F.F.); (M.R.); (M.M.); (A.D.D.)
- SPILLOproject, 20037 Paderno Dugnano, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (F.F.); (M.R.); (M.M.); (A.D.D.)
- Correspondence: ; Tel.: +39-0250318213
| |
Collapse
|
18
|
Xu HB, Zheng YF, Wu D, Li Y, Zhou LN, Chen YG. microRNA-1203 targets and silences cyclophilin D to protect human endometrial cells from oxygen and glucose deprivation-re-oxygenation. Aging (Albany NY) 2020; 12:3010-3024. [PMID: 32041924 PMCID: PMC7041737 DOI: 10.18632/aging.102795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/12/2020] [Indexed: 02/06/2023]
Abstract
Oxygen and glucose deprivation (OGD)-re-oxygenation (OGDR) stimulation to the human endometrial cells mimics ischemia-reperfusion injury. Cyclophilin D (CypD)-dependent programmed necrosis pathway mediates OGDR-induced cytotoxicity to human endometrial cells. We here identified a novel CypD-targeting miRNA, microRNA-1203 (miR-1203). In T-HESC and primary human endometrial cells, ectopic overexpression of miR-1203, using a lentiviral construct, potently downregulated the CypD 3’-untranslated region (3’-UTR) activity and its expression. Both were however upregulated in endometrial cells with forced miR-1203 inhibition by its anti-sense sequence. Functional studies demonstrated that ectopic miR-1203 overexpression in endometrial cells alleviated OGDR-induced programmed necrosis, inhibiting mitochondrial CypD-p53-adenine nucleotide translocator 1 association, mitochondrial depolarization, reactive oxygen species production, and medium lactate dehydrogenase release. Contrarily OGDR-induced programmed necrosis and cytotoxicity were intensified with forced miR-1203 inhibition in endometrial cells. Significantly, ectopic miR-1203 overexpression or inhibition failed to change OGDR-induced cytotoxicity in CypD-knockout T-HESC cells. Furthermore, ectopic miR-1203 overexpression was unable to protect T-HESC endometrial cells from OGDR when CypD was restored by an UTR-depleted CypD construct. Collectively, these results show that miR-1203 targets and silences CypD to protect human endometrial cells from OGDR
Collapse
Affiliation(s)
- Hong-Bin Xu
- Obstetrics and Gynecology Department, The First Affiliated Hospital of Soochow University, Suzhou, China.,Obstetrics and Gynecology Department, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yu-Fan Zheng
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Di Wu
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Ya Li
- The Central Lab, North District, Suzhou Municipal Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Li-Na Zhou
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, China
| | - You-Guo Chen
- Obstetrics and Gynecology Department, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
19
|
Sun Q, Shen X, Wang P, Ma J, Sha W. Targeting cyclophilin-D by miR-1281 protects human macrophages from Mycobacterium tuberculosis-induced programmed necrosis and apoptosis. Aging (Albany NY) 2019; 11:12661-12673. [PMID: 31884421 PMCID: PMC6949086 DOI: 10.18632/aging.102593] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022]
Abstract
Mycobacterium tuberculosis (MTB) infection induces cytotoxicity to host human macrophages. The underlying signaling mechanisms are largely unknown. Here we discovered that MTB infection induced programmed necrosis in human macrophages, causing mitochondrial cyclophilin-D (CypD)-p53-adenine nucleotide translocator type 1 association, mitochondrial depolarization and lactate dehydrogenase medium release. In human macrophages MTB infection-induced programmed necrosis and apoptosis were largely attenuated by CypD inhibition (by cyclosporin A), silencing and knockout, but intensified with ectopic CypD overexpression. Further studies identified microRNA-1281 as a CypD-targeting miRNA. Ectopic overexpression of microRNA-1281 decreased CypD 3'-untranslated region activity and its expression, protecting human macrophages from MTB-induced programmed necrosis and apoptosis. Conversely, microRNA-1281 inhibition in human macrophages, by the anti-sense sequence, increased CypD expression and potentiated MTB-induced cytotoxicity. Importantly, in CypD-KO macrophages miR-1281 overexpression or inhibition was ineffective against MTB infection. Restoring CypD expression, by an untranslated region-depleted CypD construct, reversed miR-1281-induced cytoprotection against MTB in human macrophages. Collectively, these results show that targeting CypD by miR-1281 protects human macrophages from MTB-induced programmed necrosis and apoptosis.
Collapse
Affiliation(s)
- Qin Sun
- Clinic and Research Center of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaona Shen
- Clinic and Research Center of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peng Wang
- Clinic and Research Center of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Ma
- Clinic and Research Center of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Sha
- Clinic and Research Center of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Ma YC, Zhu YL, Su N, Ke Y, Fan XX, Shi XJ, Liu HM, Wang AF. A novel ent-kaurane diterpenoid analog, DN3, selectively kills human gastric cancer cells via acting directly on mitochondria. Eur J Pharmacol 2019; 848:11-22. [DOI: 10.1016/j.ejphar.2019.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 11/25/2022]
|
21
|
Bachmann M, Costa R, Peruzzo R, Prosdocimi E, Checchetto V, Leanza L. Targeting Mitochondrial Ion Channels to Fight Cancer. Int J Mol Sci 2018; 19:ijms19072060. [PMID: 30011966 PMCID: PMC6073807 DOI: 10.3390/ijms19072060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/14/2022] Open
Abstract
In recent years, several experimental evidences have underlined a new role of ion channels in cancer development and progression. In particular, mitochondrial ion channels are arising as new oncological targets, since it has been proved that most of them show an altered expression during tumor development and the pharmacological targeting of some of them have been demonstrated to be able to modulate cancer growth and progression, both in vitro as well as in vivo in pre-clinical mouse models. In this scenario, pharmacology of mitochondrial ion channels would be in the near future a new frontier for the treatment of tumors. In this review, we discuss the new advances in the field, by focusing our attention on the improvements in new drug developments to target mitochondrial ion channels.
Collapse
Affiliation(s)
| | - Roberto Costa
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | - Roberta Peruzzo
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | - Elena Prosdocimi
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | | | - Luigi Leanza
- Department of Biology, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
22
|
Liu Z, Li L, Xue B. Effect of ganoderic acid D on colon cancer Warburg effect: Role of SIRT3/cyclophilin D. Eur J Pharmacol 2018; 824:72-77. [PMID: 29374515 DOI: 10.1016/j.ejphar.2018.01.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/31/2017] [Accepted: 01/22/2018] [Indexed: 01/11/2023]
Abstract
Ganoderic acid D (GAD) is a highly oxygenated tetracyclic triterpenoid. This study aims to assess the effects of GAD on the energy metabolism of colon cancer through the regulation of SIRT3 expression and whether this effect is related to acetylated cyclophilin D. The results demonstrated that GAD inhibits the energy reprogramming of colon cancer cells including glucose uptake, lactate production, pyruvate and acetyl-coenzyme production in colon cancer cells. Meanwhile, GAD upregulated the protein expression of SIRT3. Furthermore, the interruption of SIRT3 expression significantly reversed all the effects of SIRT3 on the energy reprogramming of colon cancer. In addition, GAD induced the deacetylated cyclophilin D (CypD) by SIRT3, whereas SIRT3-shRNA inhibited its combining effect on CypD. The energy reprogramming effects of GAD on colon cancer seem to be mediated by SIRT3 upregulation via acetylated CypD inhibition.
Collapse
Affiliation(s)
- Zhendong Liu
- Tibet Agriculture and Animal Husbandry University, China
| | - Liang Li
- Tibet Agriculture and Animal Husbandry University, China
| | - Bei Xue
- Tibet Agriculture and Animal Husbandry University, China.
| |
Collapse
|
23
|
McCubrey JA, Lertpiriyapong K, Steelman LS, Abrams SL, Yang LV, Murata RM, Rosalen PL, Scalisi A, Neri LM, Cocco L, Ratti S, Martelli AM, Laidler P, Dulińska-Litewka J, Rakus D, Gizak A, Lombardi P, Nicoletti F, Candido S, Libra M, Montalto G, Cervello M. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging (Albany NY) 2018; 9:1477-1536. [PMID: 28611316 PMCID: PMC5509453 DOI: 10.18632/aging.101250] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/04/2017] [Indexed: 02/07/2023]
Abstract
Natural products or nutraceuticals have been shown to elicit anti-aging, anti-cancer and other health-enhancing effects. A key target of the effects of natural products may be the regulation of microRNA (miR) expression which results in cell death or prevents aging, diabetes, cardiovascular and other diseases. This review will focus on a few natural products, especially on resveratrol (RES), curcumin (CUR) and berberine (BBR). RES is obtained from the skins of grapes and other fruits and berries. RES may extend human lifespan by activating the sirtuins and SIRT1 molecules. CUR is isolated from the root of turmeric (Curcuma longa). CUR is currently used in the treatment of many disorders, especially in those involving an inflammatory process. CUR and modified derivatives have been shown to have potent anti-cancer effects, especially on cancer stem cells (CSC). BBR is also isolated from various plants (e.g., Coptis chinensis) and has been used for centuries in traditional medicine to treat diseases such as adult- onset diabetes. Understanding the benefits of these and other nutraceuticals may result in approaches to improve human health.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Steve L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Ramiro M Murata
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.,Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Aurora Scalisi
- Unit of Oncologic Diseases, ASP-Catania, Catania 95100, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Piotr Laidler
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | | | - Dariusz Rakus
- Department of Animal Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | | | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy.,Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| |
Collapse
|
24
|
Meng MB, Wang HH, Cui YL, Wu ZQ, Shi YY, Zaorsky NG, Deng L, Yuan ZY, Lu Y, Wang P. Necroptosis in tumorigenesis, activation of anti-tumor immunity, and cancer therapy. Oncotarget 2018; 7:57391-57413. [PMID: 27429198 PMCID: PMC5302997 DOI: 10.18632/oncotarget.10548] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/20/2016] [Indexed: 02/05/2023] Open
Abstract
While the mechanisms underlying apoptosis and autophagy have been well characterized over recent decades, another regulated cell death event, necroptosis, remains poorly understood. Elucidating the signaling networks involved in the regulation of necroptosis may allow this form of regulated cell death to be exploited for diagnosis and treatment of cancer, and will contribute to the understanding of the complex tumor microenvironment. In this review, we have summarized the mechanisms and regulation of necroptosis, the converging and diverging features of necroptosis in tumorigenesis, activation of anti-tumor immunity, and cancer therapy, as well as attempts to exploit this newly gained knowledge to provide therapeutics for cancer.
Collapse
Affiliation(s)
- Mao-Bin Meng
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Huan-Huan Wang
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yao-Li Cui
- Department of Lymphoma, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Zhi-Qiang Wu
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yang-Yang Shi
- Stanford University School of Medicine, Stanford, CA, United States of America
| | - Nicholas G Zaorsky
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | - Lei Deng
- Department of Thoracic Cancer and Huaxi Student Society of Oncology Research, West China Hospital, West China School of Medicine, Sichuan University, Sichuan Province, China
| | - Zhi-Yong Yuan
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - You Lu
- Department of Thoracic Cancer and Huaxi Student Society of Oncology Research, West China Hospital, West China School of Medicine, Sichuan University, Sichuan Province, China
| | - Ping Wang
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
25
|
Ginseng Rh2 protects endometrial cells from oxygen glucose deprivation/re-oxygenation. Oncotarget 2017; 8:105703-105713. [PMID: 29285285 PMCID: PMC5739672 DOI: 10.18632/oncotarget.22390] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/27/2017] [Indexed: 01/22/2023] Open
Abstract
In this study, oxygen glucose deprivation/re-oxygenation (OGDR) was applied to cultured endometrial cells to mimic ischemic-reperfusion injuries. We also tested the potential effect of Ginseng Rh2 (GRh2) against the process. In established T-HESC human endometrial cells and primary murine endometrial cells, GRh2 largely inhibited OGDR-induced viability reduction and cell death. Remarkably, OGDR induced programmed necrosis in the endometrial cells, evidenced by cyclophilin D-p53-adenine nucleotide translocator 1 (ANT-1) mitochondrial association, mitochondrial depolarization, reactive oxygen species production, and lactate dehydrogenase release. Notably, such effects by OGDR were largely attenuated with co-treatment of GRh2. Further, cyclophilin D inhibition or knockdown also protected endometrial cells from OGDR. On the other hand, forced over-expression of cyclophilin D facilitated OGDR-induced T-HESC cell necrosis, which was dramatically inhibited by GRh2. Together, GRh2 protects endometrial cells from OGDR possibly via inhibiting CypD-dependent programmed necrosis pathway.
Collapse
|
26
|
Zheng K, Zhang Q, Lin G, Li Y, Sheng Z, Wang J, Chen L, Lu HH. Activation of Akt by SC79 protects myocardiocytes from oxygen and glucose deprivation (OGD)/re-oxygenation. Oncotarget 2017; 8:14978-14987. [PMID: 28122357 PMCID: PMC5362459 DOI: 10.18632/oncotarget.14785] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/11/2017] [Indexed: 12/21/2022] Open
Abstract
SC79 is a novel Akt activator. The current study tested its potential effect against oxygen and glucose deprivation (OGD)/re-oxygenation-induced myocardial cell death. We showed that SC79 activated Akt and protected H9c2 myocardial cells and primary murine myocardiocytes from OGD/re-oxygenation. Reversely, Akt inhibitor MK-2206 or Akt1 shRNA knockdown almost completely abolished SC79-mediated myocardial cytoprotection. SC79 treatment in H9c2 cells inhibited OGD/re-oxygenation-induced programmed necrosis pathway, evidenced by mitochondrial depolarization and cyclophilin D-p53-ANT-1 (adenine nucleotide translocator 1) association. Further, SC79 activated Akt downstream NF-E2-related factor 2 (NRF2) signaling to suppress OGD/re-oxygenation-induced reactive oxygen species (ROS) production. Reversely, NRF2 shRNA knockdown in H9c2 cells largely attenuated SC79-induced ROS scavenging ability and cytoprotection against OGD/re-oxygenation. Together, we conclude that activation of Akt by SC79 protects myocardial cells from OGD/re-oxygenation.
Collapse
Affiliation(s)
- Koulong Zheng
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Qing Zhang
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Gang Lin
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Yefei Li
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Zhenqiang Sheng
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Jue Wang
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Liang Chen
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Hui-He Lu
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
27
|
Xiong J, Wang L, Fei XC, Jiang XF, Zheng Z, Zhao Y, Wang CF, Li B, Chen SJ, Janin A, Gale RP, Zhao WL. MYC is a positive regulator of choline metabolism and impedes mitophagy-dependent necroptosis in diffuse large B-cell lymphoma. Blood Cancer J 2017; 7:e0. [PMID: 28686226 PMCID: PMC5549253 DOI: 10.1038/bcj.2017.61] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/19/2017] [Accepted: 06/01/2017] [Indexed: 02/07/2023] Open
Abstract
The activation of oncogenes can reprogram tumor cell metabolism. Here, in diffuse large B-cell lymphoma (DLBCL), serum metabolomic analysis revealed that oncogenic MYC could induce aberrant choline metabolism by transcriptionally activating the key enzyme phosphate cytidylyltransferase 1 choline-α (PCYT1A). In B-lymphoma cells, as a consequence of PCYT1A upregulation, MYC impeded lymphoma cells undergo a mitophagy-dependent necroptosis. In DLBCL patients, overexpression of PCYT1A was in parallel with an increase in tumor MYC, as well as a decrease in serum choline metabolite phosphatidylcholine levels and an International Prognostic Index, indicating intermediate-high or high risk. Both in vitro and in vivo, lipid-lowering alkaloid berberine (BBR) exhibited an anti-lymphoma activity through inhibiting MYC-driven downstream PCYT1A expression and inducing mitophagy-dependent necroptosis. Collectively, PCYT1A was upregulated by MYC, which resulted in the induction of aberrant choline metabolism and the inhibition of B-lymphoma cell necroptosis. Referred as a biomarker for DLBCL progression, PCYT1A can be targeted by BBR, providing a potential lipid-modifying strategy in treating MYC-High lymphoma.
Collapse
Affiliation(s)
- J Xiong
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai Rui Jin Hospital, Shanghai, China
| | - L Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai Rui Jin Hospital, Shanghai, China
| | - X-C Fei
- Department of Pathology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - X-F Jiang
- Department of Nuclear Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Z Zheng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai Rui Jin Hospital, Shanghai, China
| | - Y Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai Rui Jin Hospital, Shanghai, China
| | - C-F Wang
- Department of Pathology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - B Li
- Department of Nuclear Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - S-J Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai Rui Jin Hospital, Shanghai, China
| | - A Janin
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai Rui Jin Hospital, Shanghai, China.,Laboratory of Pathology, Paris Diderot University, U1165 Inserm, Paris, France
| | - R P Gale
- Haematology Research Centre, Division of Experimental Medicine, Department of Medicine, Imperial College London, London, UK
| | - W-L Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai Rui Jin Hospital, Shanghai, China
| |
Collapse
|
28
|
Zhang L, He D, Li K, Liu H, Wang B, Zheng L, Li J. Emodin targets mitochondrial cyclophilin D to induce apoptosis in HepG2 cells. Biomed Pharmacother 2017; 90:222-228. [PMID: 28363167 DOI: 10.1016/j.biopha.2017.03.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/10/2017] [Accepted: 03/18/2017] [Indexed: 12/21/2022] Open
Abstract
Emodin has demonstrated potent anticancer activity in human hepatocarcinoma cells and animal models, however, the cellular targets of emodin have not been fully defined. Here we report that emodin induces the dysfunction of mitochondria and the apoptosis in HepG2 cells through an enrichment in mitochondria. Specifically, A mitochondrial matrix protein (cyclophilin D, CyPD) is involved in emodin-induced apoptosis, and the inhibitor of CyPD (cyclosporin A) could almost completely suppressing the apoptosis; Moreover, as the expression of CyPD could be effectively inhibited by antioxidant N-acetyl-l-cysteine and epidermal growth factor (the activator of ERK), reactive oxygen species and ERK might be involved in the relevant role of CyPD. A further molecule-docking discloses the existence of three hydrogen-bonds in CyPD-emodin complex. Thus, target localization and CyPD in mitochondria provides an insight into the action of emodin in the treatment of liver cancer.
Collapse
Affiliation(s)
- Ling Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Dian He
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Kun Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Hongli Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Baitao Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Lifang Zheng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| | - Jiazhong Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
29
|
The novel cyclophilin D inhibitor compound 19 protects retinal pigment epithelium cells and retinal ganglion cells from UV radiation. Biochem Biophys Res Commun 2017; 487:807-812. [DOI: 10.1016/j.bbrc.2017.04.128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 04/23/2017] [Indexed: 12/23/2022]
|
30
|
Xie J, Li Q, Ding X, Gao Y. GSK1059615 kills head and neck squamous cell carcinoma cells possibly via activating mitochondrial programmed necrosis pathway. Oncotarget 2017; 8:50814-50823. [PMID: 28881606 PMCID: PMC5584207 DOI: 10.18632/oncotarget.15135] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/11/2017] [Indexed: 12/12/2022] Open
Abstract
This study tested the anti-head and neck squamous cell carcinoma (HNSCC) cell activity by GSK1059615, a novel PI3K and mTOR dual inhibitor. GSK1059615 inhibited survival and proliferation of established (SCC-9, SQ20B and A253 lines) and primary human HNSCC cells. GSK1059615 blocked PI3K-AKT-mTOR activation in HNSCC cells. Intriguingly, GSK1059615 treatment in HNSCC cells failed to provoke apoptosis, but induced programmed necrosis. The latter was tested by mitochondria depolarization, ANT-1-cyclophilin-D mitochondrial association and lactate dehydrogenase (LDH) release. Reversely, mPTP blockers (sanglifehrin A, cyclosporin A and bongkrekic acid) or cyclophilin-D shRNA dramatically alleviated GSK1059615-induced SCC-9 cell death. Further studies demonstrated that GSK1059615 i.p. injection suppressed SCC-9 tumor growth in nude mice, which was compromised with co-administration with cyclosporin A. Thus, targeting PI3K-AKT-mTOR pathway by GSK1059615 possibly provokes programmed necrosis pathway to kill HNSCC cells.
Collapse
Affiliation(s)
- Jing Xie
- Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Quan Li
- Center of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xi Ding
- Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yunyun Gao
- Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
31
|
Dong YY, Zhuang YH, Cai WJ, Liu Y, Zou WB. The mitochondrion interfering compound NPC-26 exerts potent anti-pancreatic cancer cell activity in vitro and in vivo. Tumour Biol 2016; 37:15053-15063. [PMID: 27658776 DOI: 10.1007/s13277-016-5403-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/13/2016] [Indexed: 12/22/2022] Open
Abstract
The development of novel anti-pancreatic cancer agents is extremely important. Here, we investigated the anti-pancreatic cancer activity by NPC-26, a novel mitochondrion interfering compound. We showed that NPC-26 was anti-proliferative and cytotoxic to human pancreatic cancer cells, possibly via inducing caspase-9-dependent cell apoptosis. Pharmacological inhibition or shRNA-mediated silence of caspase-9 attenuated NPC-26-induced pancreatic cancer cell death and apoptosis. Further, NPC-26 treatment led to mitochondrial permeability transition pore (mPTP) opening in the cancer cells, which was evidenced by mitochondrial depolarization, ANT-1(adenine nucleotide translocator-1)-Cyp-D (cyclophilin-D) association and oxidative phosphorylation disturbance. mPTP blockers (cyclosporin and sanglifehrin A) or shRNA-mediated knockdown of key mPTP components (Cyp-D and ANT-1) dramatically attenuated NPC-26-induced pancreatic cancer cell apoptosis. Importantly, we showed that NPC-26, at a low concentration, potentiated gemcitabine-induced mPTP opening and subsequent pancreatic cancer cell apoptosis. In vivo, NPC-26 intraperitoneal injection significantly suppressed the growth of PANC-1 xenograft tumors in nude mice. Meanwhile, NPC-26 sensitized gemcitabine-mediated anti-pancreatic cancer activity in vivo. In summary, the results of this study suggest that NPC-26, alone or together with gemcitabine, potently inhibits pancreatic cancer cells possibly via disrupting mitochondrion.
Collapse
Affiliation(s)
- Yang-Yang Dong
- Department of Surgical Oncology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, 362000, China.
| | - Yi-Huang Zhuang
- Department of Surgical Oncology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, 362000, China
| | - Wen-Jie Cai
- Department of Surgical Oncology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, 362000, China
| | - Yan Liu
- Department of Surgical Oncology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, 362000, China
| | - Wen-Bing Zou
- Department of Surgical Oncology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, 362000, China
| |
Collapse
|
32
|
Biasutto L, Azzolini M, Szabò I, Zoratti M. The mitochondrial permeability transition pore in AD 2016: An update. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:2515-30. [PMID: 26902508 DOI: 10.1016/j.bbamcr.2016.02.012] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/13/2022]
Abstract
Over the past 30years the mitochondrial permeability transition - the permeabilization of the inner mitochondrial membrane due to the opening of a wide pore - has progressed from being considered a curious artifact induced in isolated mitochondria by Ca(2+) and phosphate to a key cell-death-inducing process in several major pathologies. Its relevance is by now universally acknowledged and a pharmacology targeting the phenomenon is being developed. The molecular nature of the pore remains to this day uncertain, but progress has recently been made with the identification of the FOF1 ATP synthase as the probable proteic substrate. Researchers sharing this conviction are however divided into two camps: these believing that only the ATP synthase dimers or oligomers can form the pore, presumably in the contact region between monomers, and those who consider that the ring-forming c subunits in the FO sector actually constitute the walls of the pore. The latest development is the emergence of a new candidate: Spastic Paraplegia 7 (SPG7), a mitochondrial AAA-type membrane protease which forms a 6-stave barrel. This review summarizes recent developments of research on the pathophysiological relevance and on the molecular nature of the mitochondrial permeability transition pore. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy
| | - Michele Azzolini
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy
| | - Ildikò Szabò
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biology, Viale G. Colombo 3, 35121 Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy.
| |
Collapse
|
33
|
Peruzzo R, Biasutto L, Szabò I, Leanza L. Impact of intracellular ion channels on cancer development and progression. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2016; 45:685-707. [PMID: 27289382 PMCID: PMC5045486 DOI: 10.1007/s00249-016-1143-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 12/13/2022]
Abstract
Cancer research is nowadays focused on the identification of possible new targets in order to try to develop new drugs for curing untreatable tumors. Ion channels have emerged as "oncogenic" proteins, since they have an aberrant expression in cancers compared to normal tissues and contribute to several hallmarks of cancer, such as metabolic re-programming, limitless proliferative potential, apoptosis-resistance, stimulation of neo-angiogenesis as well as cell migration and invasiveness. In recent years, not only the plasma membrane but also intracellular channels and transporters have arisen as oncological targets and were proposed to be associated with tumorigenesis. Therefore, the research is currently focusing on understanding the possible role of intracellular ion channels in cancer development and progression on one hand and, on the other, on developing new possible drugs able to modulate the expression and/or activity of these channels. In a few cases, the efficacy of channel-targeting drugs in reducing tumors has already been demonstrated in vivo in preclinical mouse models.
Collapse
Affiliation(s)
| | - Lucia Biasutto
- CNR Institute of Neuroscience, Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padua, Padua, Italy
- CNR Institute of Neuroscience, Padua, Italy
| | - Luigi Leanza
- Department of Biology, University of Padua, Padua, Italy.
| |
Collapse
|
34
|
Li ST, Chen NN, Qiao YB, Zhu WL, Ruan JW, Zhou XZ. SC79 rescues osteoblasts from dexamethasone though activating Akt-Nrf2 signaling. Biochem Biophys Res Commun 2016; 479:54-60. [PMID: 27614310 DOI: 10.1016/j.bbrc.2016.09.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 09/05/2016] [Indexed: 11/29/2022]
Abstract
Dexamethasone (Dex) causes osteoblast cell injuries. In the present research, we tested the potential effect of SC79, a novel and specific Akt activator, against Dex in osteoblasts. In primary murine osteoblasts and osteoblastic MC3T3-E1 cells, pretreatment with SC79 significantly attenuated Dex-induced cell death. Further, Dex-induced mitochondrial permeability transition pore (mPTP) opening, cytochrome C release and apoptosis activation were dramatically alleviated with SC79 pretreatment in above cells. At the molecular level, SC79 activated Akt, which was indispensable for subsequent osteoblast protection against Dex. Akt inhibitors (LY294002, perifosine and MK-2206) blocked SC79-induced Akt activation and abolished its anti-Dex actions in osteoblasts. Further, SC79 activated Akt downstream Nrf2 (NF-E2-related factor 2) signaling and attenuated Dex-induced oxidative stress in osteoblasts. Nrf2 shRNA knockdown or S40T mutation almost reversed SC79-mediated anti-oxidant and cytoprotective activities in osteoblasts. Together, these results suggest that SC79 activates Akt-Nrf2 signaling to protect osteoblasts from Dex.
Collapse
Affiliation(s)
- Song-Tao Li
- The Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Nan-Nan Chen
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yin-Biao Qiao
- Department of Surgery, The Third Hospital Affiliated to Soochow University, Changzhou City, Jiangsu, 213003, China
| | - Wei-Li Zhu
- Changshu Entry-Exit Inspection and Quarantine Bureau, Changshu, China
| | - Jian-Wei Ruan
- The Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China; The Department of Orthopedics, Taizhou Municipal Hospital, Taizhou City, Zhejiang, China.
| | - Xiao-Zhong Zhou
- The Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
35
|
Wang HY, Yu HZ, Huang SM, Zheng YL. p53, Bcl-2 and cox-2 are involved in berberine hydrochloride-induced apoptosis of HeLa229 cells. Mol Med Rep 2016; 14:3855-61. [PMID: 27601129 DOI: 10.3892/mmr.2016.5696] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 07/21/2016] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the effects of berberine hydrochloride on the proliferation and apoptosis of HeLa229 human cervical cancer cells. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to examine the cytotoxicity of berberine hydrochloride against HeLa229 cells. The effects of berberine hydrochloride on the apoptosis of HeLa229 cells was detected by immunofluorescence and flow cytometry, and the mRNA expression levels of p53, B‑cell lymphoma 2 (Bcl‑2) and cyclooxygenase‑2 (cox‑2) were analyzed by reverse transcription-quantitative polymerase chain reaction. Berberine hydrochloride inhibited the proliferation of HeLa229 cells in a dose‑dependent manner; minimum cell viability (3.61%) was detected following treatment with 215.164 µmol/l berberine hydrochloride and the half maximal inhibitory concentration value was 42.93 µmol/l following treatment for 72 h. In addition, berberine hydrochloride induced apoptosis in HeLa229 cells in a dose‑ and time‑dependent manner. Berberine hydrochloride upregulated the mRNA expression levels of p53, and downregulated mRNA expression levels of Bcl‑2 and cox‑2, in a dose‑dependent manner. In conclusion, berberine hydrochloride inhibited the proliferation and induced apoptosis of HeLa229 cells, potentially via the upregulation of p53 and the downregulation of Bcl‑2 and cox‑2 mRNA expression levels.
Collapse
Affiliation(s)
- Hai-Yan Wang
- Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang, Hubei 441053, P.R. China
| | - Hai-Zhong Yu
- Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang, Hubei 441053, P.R. China
| | - Sheng-Mou Huang
- Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang, Hubei 441053, P.R. China
| | - Yu-Lan Zheng
- Department of Respiratory Disease, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| |
Collapse
|
36
|
Kim SY, Jeong HC, Hong SK, Lee MO, Cho SJ, Cha HJ. Quercetin induced ROS production triggers mitochondrial cell death of human embryonic stem cells. Oncotarget 2016; 8:64964-64973. [PMID: 29029404 PMCID: PMC5630304 DOI: 10.18632/oncotarget.11070] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022] Open
Abstract
Small molecules to selectively induce cell death of undifferentiated human pluripotent stem cells (hPSCs) have been developed with the aim of lowering the risk of teratoma formation during hPSC-based cell therapy. In this context, we have reported that Quercetin (QC) induces cell death selectively in hESCs via p53 mitochondrial localization. However, the detailed molecular mechanism by which hESCs undergo selective cell death induced by QC remains unclear. Herein, we demonstrate that mitochondrial reactive oxygen species (ROS), strongly induced by QC in human embryonic stem cells (hESCs) but not in human dermal fibroblasts (hDFs), were responsible for QC-mediated hESC's cell death. Increased p53 protein stability and subsequent mitochondrial localization by QC treatment triggered mitochondrial cell death only in hESCs. Of interest, peptidylprolyl isomerase D [PPID, also called cyclophilin D (CypD)], which functions in mitochondrial permeability transition and mitochondrial cell death, was highly expressed in hESCs. Inhibition of CypD by cyclosporine A (CsA) clearly inhibited the QC-mediated loss of mitochondrial membrane potential and mitochondrial cell death. These results suggest that p53 and CypD in the mitochondria are critical for the QC-mediated induction of cell death in hESCs.
Collapse
Affiliation(s)
- So-Yeon Kim
- College of Natural Sciences, Department of Life Sciences, Sogang University, Seoul 121-742, Korea
| | - Ho-Chang Jeong
- College of Natural Sciences, Department of Life Sciences, Sogang University, Seoul 121-742, Korea
| | - Soon-Ki Hong
- College of Natural Sciences, Department of Life Sciences, Sogang University, Seoul 121-742, Korea
| | - Mi-Ok Lee
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Korea
| | - Seung-Ju Cho
- College of Natural Sciences, Department of Life Sciences, Sogang University, Seoul 121-742, Korea
| | - Hyuk-Jin Cha
- College of Natural Sciences, Department of Life Sciences, Sogang University, Seoul 121-742, Korea
| |
Collapse
|
37
|
Guo F, Liu SQ, Gao XH, Zhang LY. AICAR induces AMPK-independent programmed necrosis in prostate cancer cells. Biochem Biophys Res Commun 2016; 474:277-283. [PMID: 27103440 DOI: 10.1016/j.bbrc.2016.04.077] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 04/16/2016] [Indexed: 10/21/2022]
Abstract
AICAR (5-Aminoimidazole-4-carboxamide riboside or acadesine) is an AMP-activated protein kinase (AMPK) agonist, which induces cytotoxic effect to several cancer cells. Its potential activity in prostate cancer cells and the underlying signaling mechanisms have not been extensively studied. Here, we showed that AICAR primarily induced programmed necrosis, but not apoptosis, in prostate cancer cells (LNCaP, PC-3 and PC-82 lines). AICAR's cytotoxicity to prostate cancer cells was largely attenuated by the necrosis inhibitor necrostatin-1. Mitochondrial protein cyclophilin-D (CYPD) is required for AICAR-induced programmed necrosis. CYPD inhibitors (cyclosporin A and sanglifehrin A) as well as CYPD shRNAs dramatically attenuated AICAR-induced prostate cancer cell necrosis and cytotoxicity. Notably, AICAR-induced cell necrosis appeared independent of AMPK, yet requiring reactive oxygen species (ROS) production. ROS scavengers (N-acetylcysteine and MnTBAP), but not AMPKα shRNAs, largely inhibited prostate cancer cell necrosis and cytotoxicity by AICAR. In summary, the results of the present study demonstrate mechanistic evidences that AMPK-independent programmed necrosis contributes to AICAR's cytotoxicity in prostate cancer cells.
Collapse
Affiliation(s)
- Feng Guo
- Department of Urology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province 250013, China
| | - Shuang-Qing Liu
- Department of Urology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province 250013, China
| | - Xing-Hua Gao
- Department of Urology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province 250013, China
| | - Long-Yang Zhang
- Department of Urology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province 250013, China.
| |
Collapse
|
38
|
Novoderezhkina EA, Zhivotovsky BD, Gogvadze VG. Induction of unspecific permeabilization of mitochondrial membrane and its role in cell death. Mol Biol 2016. [DOI: 10.1134/s0026893316010167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Xie X, Zhao Y, Ma CY, Xu XM, Zhang YQ, Wang CG, Jin J, Shen X, Gao JL, Li N, Sun ZJ, Dong DL. Dimethyl fumarate induces necroptosis in colon cancer cells through GSH depletion/ROS increase/MAPKs activation pathway. Br J Pharmacol 2015; 172:3929-43. [PMID: 25953698 DOI: 10.1111/bph.13184] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 04/17/2015] [Accepted: 04/23/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Dimethyl fumarate (DMF) is a newly approved drug for the treatment of relapsing forms of multiple sclerosis and relapsing-remitting multiple sclerosis. Here, we investigated the effects of DMF and its metabolites mono-methylfumarate (MMF and methanol) on different gastrointestinal cancer cell lines and the underlying molecular mechanisms involved. EXPERIMENTAL APPROACH Cell viability was measured by the MTT or CCK8 assay. Protein expressions were measured by Western blot analysis. LDH release, live- and dead-cell staining, intracellular GSH levels, and mitochondrial membrane potential were examined by using commercial kits. KEY RESULTS DMF but not MMF induced cell necroptosis, as demonstrated by the pharmacological tool necrostatin-1, transmission electron microscopy, LDH and HMGB1 release in CT26 cells. The DMF-induced decrease in cellular GSH levels as well as cell viability and increase in reactive oxygen species (ROS) were inhibited by co-treatment with GSH and N-acetylcysteine (NAC) in CT26 cells. DMF activated JNK, p38 and ERK MAPKs in CT26 cells and JNK, p38 and ERK inhibitors partially reversed the DMF-induced decrease in cell viability. GSH or NAC treatment inhibited DMF-induced JNK, p38, and ERK activation in CT26 cells. DMF but not MMF increased autophagy responses in SGC-7901, HCT116, HT29 and CT26 cancer cells, but autophagy inhibition did not prevent the DMF-induced decrease in cell viability. CONCLUSION AND IMPLICATIONS DMF but not its metabolite MMF induced necroptosis in colon cancer cells through a mechanism involving the depletion of GSH, an increase in ROS and activation of MAPKs.
Collapse
Affiliation(s)
- Xin Xie
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Yu Zhao
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Chun-Yan Ma
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Xiao-Ming Xu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Yan-Qiu Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Chen-Guang Wang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Jing Jin
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Xin Shen
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Jin-Lai Gao
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Na Li
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Zhi-Jie Sun
- Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin, China
| | - De-Li Dong
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| |
Collapse
|
40
|
Nonautophagic cytoplasmic vacuolation death induction in human PC-3M prostate cancer by curcumin through reactive oxygen species -mediated endoplasmic reticulum stress. Sci Rep 2015; 5:10420. [PMID: 26013662 PMCID: PMC4445067 DOI: 10.1038/srep10420] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/13/2015] [Indexed: 12/13/2022] Open
Abstract
The antiapoptotic and antiautophagic abilities of cancer cells constitute a major challenge for anticancer drug treatment. Strategies for triggering nonapoptotic or nonautophagic cell death may improve therapeutic efficacy against cancer. Curcumin has been reported to exhibit cancer chemopreventive properties. Herein, we report that curcumin induced apoptosis in LNCaP, DU145, and PC-3 cells but triggered extensive cytoplasmic vacuolation in PC-3M cells. Electron microscopic images showed that the vacuoles lacked intracellular organelles and were derived from the endoplasmic reticulum (ER). Moreover, curcumin-induced vacuolation was not reversed by an apoptosis- or autophagy-related inhibitor, suggesting that vacuolation-mediated cell death differs from classical apoptotic and autophagic cell death. Mechanistic investigations revealed that curcumin treatment upregulated the ER stress markers CHOP and Bip/GRP78 and the autophagic marker LC3-II. In addition, curcumin induced ER stress by triggering ROS generation, which was supported by the finding that treating cells with the antioxidant NAC alleviated curcumin-mediated ER stress and vacuolation-mediated death. An in vivo PC-3M orthotopic prostate cancer model revealed that curcumin reduced tumor growth by inducing ROS production followed by vacuolation-mediated cell death. Overall, our results indicated that curcumin acts as an inducer of ROS production, which leads to nonapoptotic and nonautophagic cell death via increased ER stress.
Collapse
|
41
|
Rasola A, Bernardi P. Reprint of "The mitochondrial permeability transition pore and its adaptive responses in tumor cells". Cell Calcium 2015; 58:18-26. [PMID: 25828565 DOI: 10.1016/j.ceca.2015.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 02/07/2023]
Abstract
This review covers recent progress on the nature of the mitochondrial permeability transition pore (PTP) – a key effector in the mitochondrial pathways to cell death – and on the adaptive responses of tumor cells that desensitize the PTP to Ca(2+) and reactive oxygen species (ROS), thereby playing an important role in the resistance of tumors to cell death. The discovery that the PTP forms from dimers of F-ATP synthase; and the definition of the Ca(2+)- and ROS-dependent signaling pathways affecting the transition of the F-ATP synthase from an energy-conserving to an energy-dissipating device open new perspectives for therapeutic intervention in cancer cells.
Collapse
Affiliation(s)
- Andrea Rasola
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Italy.
| | - Paolo Bernardi
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Italy.
| |
Collapse
|
42
|
Song JH, Lee JE, Cho KM, Park SH, Kim HJ, Kim YC, Kim TS. 5-diphenylacetamido-indirubin-3′-oxime as a novel mitochondria-targeting agent with anti-leukemic activities. Mol Carcinog 2015; 55:611-21. [DOI: 10.1002/mc.22307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/14/2015] [Accepted: 02/04/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Ju Han Song
- Division of Life Sciences; School of Life Sciences and Biotechnology; Korea University; Seoul Republic of Korea
| | - Jung-Eun Lee
- Department of Life Science; Gwangju Institute of Science and Technology; Gwangju Republic of Korea
| | - Kyung-Min Cho
- Division of Life Sciences; School of Life Sciences and Biotechnology; Korea University; Seoul Republic of Korea
| | - Su-Ho Park
- Division of Life Sciences; School of Life Sciences and Biotechnology; Korea University; Seoul Republic of Korea
| | - Hyeoung-Joon Kim
- Genome Research Center for Hematopoietic Diseases; Chonnam National University Hwasun Hospital; Hwasun Republic of Korea
| | - Yong-Chul Kim
- Department of Life Science; Gwangju Institute of Science and Technology; Gwangju Republic of Korea
| | - Tae Sung Kim
- Division of Life Sciences; School of Life Sciences and Biotechnology; Korea University; Seoul Republic of Korea
| |
Collapse
|
43
|
Rasola A, Bernardi P. The mitochondrial permeability transition pore and its adaptive responses in tumor cells. Cell Calcium 2014; 56:437-45. [PMID: 25454774 PMCID: PMC4274314 DOI: 10.1016/j.ceca.2014.10.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 01/12/2023]
Abstract
This review covers recent progress on the nature of the mitochondrial permeability transition pore (PTP) - a key effector in the mitochondrial pathways to cell death - and on the adaptive responses of tumor cells that desensitize the PTP to Ca(2+) and reactive oxygen species (ROS), thereby playing an important role in the resistance of tumors to cell death. The discovery that the PTP forms from dimers of F-ATP synthase; and the definition of the Ca(2+)- and ROS-dependent signaling pathways affecting the transition of the F-ATP synthase from an energy-conserving to an energy-dissipating device open new perspectives for therapeutic intervention in cancer cells.
Collapse
Affiliation(s)
- Andrea Rasola
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Italy.
| | - Paolo Bernardi
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Italy.
| |
Collapse
|