1
|
Su CL, Chang PM, Liang WZ. Exploring the Ca 2+ signaling and cytotoxicity induced by the alantolactone in breast cancer cells and its potential implications in treatment using the Ca 2+ chelating agent BAPTA-AM. Toxicol Res (Camb) 2025; 14:tfaf044. [PMID: 40352253 PMCID: PMC12061657 DOI: 10.1093/toxres/tfaf044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/09/2025] [Accepted: 03/17/2025] [Indexed: 05/14/2025] Open
Abstract
Alantolactone, a bioactive sesquiterpene lactone derived from the roots of Inula helenium (elecampane), has garnered attention in biomedical and pharmacological research for its diverse therapeutic properties, including anticancer, anti-inflammatory, antimicrobial, and antioxidant activities. Despite its well-documented bioactivity, the effects of alantolactone on calcium ion (Ca2+) signaling and the underlying mechanisms in human breast cancer cells remain poorly understood. This study explored how alantolactone influences intracellular Ca2+ levels ([Ca2+]i), cell viability, and the role of Ca2+-dependent pathways in T-47D human breast cancer cells. Specifically, it examined the relationship between Ca2+ signaling and cytotoxicity in cells exposed to alantolactone, with or without the Ca2+ chelator BAPTA-AM. The findings reveal that alantolactone (25-75 μM) increases [Ca2+]i in a concentration-dependent manner, while concentrations of 25-100 μM induce cytotoxicity, an effect that can be reversed by BAPTA-AM pre-treatment. Removing extracellular Ca2+ significantly inhibits Ca2+ influx, and both SKF96365 and 2-APB, modulators of store-operated Ca2+ channels, block the alantolactone-induced Ca2+ entry. Additionally, in a Ca2+-free environment, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+ pump, suppresses the alantolactone-induced rise in [Ca2+]i, while alantolactone reduces the [Ca2+]i increase triggered by thapsigargin. Moreover, inhibiting phospholipase C (PLC) with U73122 abolishes the alantolactone-induced [Ca2+]i elevation. These results suggest that alantolactone-induced cell death in T-47D cells is Ca2+-dependent, involving Ca2+ entry via store-operated channels and Ca2+ release from the endoplasmic reticulum, with PLC playing a pivotal role. Importantly, the ability of BAPTA-AM to reverse alantolactone's cytotoxic effects highlights its potential therapeutic significance in breast cancer research.
Collapse
Affiliation(s)
- Chun-Lang Su
- Chung Jen Junior College of Nursing, Health Science and Management, No. 217, Hung-Mao-Pi, Chia-Yi City 60077, Taiwan
- Department of Rehabilitation, Tung Wah Hospital, No. 16, Lane 272, Section 3, Jishan Rd, Zhushan Township, Nantou County 557, Taiwan
| | - Po-Min Chang
- Department of Surgery, Kaohsiung Veterans General Hospital, No. 386, Dazhong 1st Rd, Zuoying Dist, Kaohsiung City 813414, Taiwan
| | - Wei-Zhe Liang
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, No. 20, Weixin Rd, Yanpu Township, Pingtung County 907101, Taiwan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, No. 386, Dazhong 1st Rd, Zuoying Dist, Kaohsiung City 813414, Taiwan
| |
Collapse
|
2
|
Pourhajibagher M, Bahrami R, Bahador A. Application of photosensitive dental materials as a novel antimicrobial option in dentistry: A literature review. J Dent Sci 2024; 19:762-772. [PMID: 38618073 PMCID: PMC11010690 DOI: 10.1016/j.jds.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/23/2023] [Indexed: 04/16/2024] Open
Abstract
The formation of dental plaque is well-known for its role in causing various oral infections, such as tooth decay, inflammation of the dental pulp, gum disease, and infections of the oral mucosa like peri-implantitis and denture stomatitis. These infections primarily affect the local area of the mouth, but if not treated, they can potentially lead to life-threatening conditions. Traditional methods of mechanical and chemical antimicrobial treatment have limitations in fully eliminating microorganisms and preventing the formation of biofilms. Additionally, these methods can contribute to the development of drug-resistant microorganisms and disrupt the natural balance of oral bacteria. Antimicrobial photodynamic therapy (aPDT) is a technique that utilizes low-power lasers with specific wavelengths in combination with a photosensitizing agent called photosensitizer to kill microorganisms. By inducing damage through reactive oxygen species (ROS), aPDT offers a new approach to addressing dental plaque and associated microbial biofilms, aiming to improve oral health outcomes. Recently, photosensitizers have been incorporated into dental materials to create photosensitive dental materials. This article aimed to review the use of photosensitive dental materials for aPDT as an innovative antimicrobial option in dentistry, with the goal of enhancing oral health.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rashin Bahrami
- Dental Sciences Research Center, Department of Orthodontics, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Wang X, Wang L, Fekrazad R, Zhang L, Jiang X, He G, Wen X. Polyphenolic natural products as photosensitizers for antimicrobial photodynamic therapy: recent advances and future prospects. Front Immunol 2023; 14:1275859. [PMID: 38022517 PMCID: PMC10644286 DOI: 10.3389/fimmu.2023.1275859] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) has become a potent contender in the fight against microbial infections, especially in the context of the rising antibiotic resistance crisis. Recently, there has been significant interest in polyphenolic natural products as potential photosensitizers (PSs) in aPDT, given their unique chemical structures and inherent antimicrobial properties. Polyphenolic natural products, abundant and readily obtainable from natural sources, are generally regarded as safe and highly compatible with the human body. This comprehensive review focuses on the latest developments and future implications of using natural polyphenols as PSs in aPDT. Paramount polyphenolic compounds, including curcumin, hypericin, quercetin, hypocrellin, celastrol, riboflavin, resveratrol, gallic acid, and aloe emodin, are elaborated upon with respect to their structural characteristics, absorption properties, and antimicrobial effects. Furthermore, the aPDT mechanism, specifically its targeted action on microbial cells and biofilms, is also discussed. Polyphenolic natural products demonstrate immense potential as PSs in aPDT, representing a promising alternate approach to counteract antibiotic-resistant bacteria and biofilm-related infections.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lian Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Reza Fekrazad
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Lu Zhang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Wen
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Contini C, Kuntz J, Massing U, Merfort I, Winkler K, Pütz G. On the validity of fluorimetric intracellular calcium detection: Impact of lipid components. Biochem Biophys Res Commun 2023; 643:186-191. [PMID: 36621114 DOI: 10.1016/j.bbrc.2022.12.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 11/30/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
We investigated the effects of different lipids on the activity of the angiotensin II type 1 receptor (AT1R). As calcium plays a key role in the signaling of the AT1R, we used the calcium-sensitive fluorescence indicators fura-2 to detect intracellular calcium release upon stimulation with the agonist angiotensin II. At first sight, cells preincubated with Very low-density lipoprotein (VLDL) showed a reduced calcium release triggered by angiontensin II compared to untreated control. However, on closer examination, this result seemed to be an artifact. Incubation with VLDL reduced also the amount of intracellular fura-2, as measured by fluorescence in the isosbestic point. Additionally, the maximal obtainable ratio, obtained after complete saturation with calcium ions, was reduced in cells preincubated with VLDL. These findings rendered our initial results questionable. We report the results of our work and our suggestions regarding the experimental setup to contribute to the understanding of the interpretation of fura-2 measurements and to avoid erroneous conclusions.
Collapse
Affiliation(s)
- Christine Contini
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg im Breisgau, Germany.
| | - Julia Kuntz
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg im Breisgau, Germany
| | - Ulrich Massing
- Andreas Hettich GmbH & Co KG, Bismarckallee 7, 79098 Freiburg im Breisgau, Germany
| | - Irmgard Merfort
- Institute of Pharmaceutical Biology and Biotechnology, University of Freiburg, Stefan-Meier-Straße 19 VF, 79104 Freiburg im Breisgau, Germany
| | - Karl Winkler
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg im Breisgau, Germany
| | - Gerhard Pütz
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg im Breisgau, Germany
| |
Collapse
|
5
|
Schubert R, Gaynullina D, Shvetsova A, Tarasova OS. Myography of isolated blood vessels: Considerations for experimental design and combination with supplementary techniques. Front Physiol 2023; 14:1176748. [PMID: 37168231 PMCID: PMC10165122 DOI: 10.3389/fphys.2023.1176748] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
The study of the mechanisms of regulation of vascular tone is an urgent task of modern science, since diseases of the cardiovascular system remain the main cause of reduction in the quality of life and mortality of the population. Myography (isometric and isobaric) of isolated blood vessels is one of the most physiologically relevant approaches to study the function of cells in the vessel wall. On the one hand, cell-cell interactions as well as mechanical stretch of the vessel wall remain preserved in myography studies, in contrast to studies on isolated cells, e.g., cell culture. On the other hand, in vitro studies in isolated vessels allow control of numerous parameters that are difficult to control in vivo. The aim of this review was to 1) discuss the specifics of experimental design and interpretation of data obtained by myography and 2) highlight the importance of the combined use of myography with various complementary techniques necessary for a deep understanding of vascular physiology.
Collapse
Affiliation(s)
- Rudolf Schubert
- Physiology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- *Correspondence: Rudolf Schubert,
| | - Dina Gaynullina
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Olga S. Tarasova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
- State Research Center of the Russian Federation, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
Bootman MD, Allman S, Rietdorf K, Bultynck G. Deleterious effects of calcium indicators within cells; an inconvenient truth. Cell Calcium 2018; 73:82-87. [DOI: 10.1016/j.ceca.2018.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/03/2018] [Accepted: 04/11/2018] [Indexed: 01/20/2023]
|
7
|
Qian LL, Sun MQ, Wang RX, Lu T, Wu Y, Dang SP, Tang X, Ji Y, Liu XY, Zhao XX, Wang W, Chai Q, Pan M, Yi F, Zhang DM, Lee HC. Mechanisms of BK Channel Activation by Docosahexaenoic Acid in Rat Coronary Arterial Smooth Muscle Cells. Front Pharmacol 2018; 9:223. [PMID: 29636681 PMCID: PMC5881017 DOI: 10.3389/fphar.2018.00223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/27/2018] [Indexed: 02/05/2023] Open
Abstract
Aim: Docosahexaenoic acid (DHA) is known to activate the vascular large-conductance calcium-activated potassium (BK) channels and has protective effects on the cardiovascular system. However, the underlying mechanisms through which DHA activates BK channels remain unclear. In this study, we determined such mechanisms by examining the effects of different concentrations of DHA on BK channels in freshly isolated rat coronary arterial smooth muscle cells (CASMCs) using patch clamp techniques. Methods and Results: We found that BK channels are the major potassium currents activated by DHA in rat CASMCs and the effects of DHA on BK channels are concentration dependent with a bimodal distribution. At concentrations of <1 μM, DHA activated whole-cell BK currents with an EC50 of 0.24 ± 0.05 μM and the activation effects were abolished by pre-incubation with SKF525A (10 μM), a cytochrome P450 (CYP) epoxygenase inhibitor, suggesting the role of DHA-epoxide. High concentrations of DHA (1-10 μM) activated whole-cell BK currents with an EC50 of 2.38 ± 0.22 μM and the activation effects were unaltered by pre-incubation with SKF525A. Single channel studies showed that the open probabilities of BK channels were unchanged in the presence of low concentrations of DHA, while significantly increased with high concentrations of DHA. In addition, DHA induced a dose-dependent increase in cytosolic calcium concentrations with an EC50 of 0.037 ± 0.01 μM via phospholipase C (PLC)-inositol triphosphate (IP3)-Ca2+ signal pathway, and inhibition of this pathway reduced DHA-induced BK activation. Conclusion: These results suggest that DHA can activate BK channels by multiple mechanisms. Low concentration DHA-induced BK channel activation is mediated through CYP epoxygenase metabolites, while high concentration DHA can directly activate BK channels. In addition, DHA at low and high concentrations can both activate BK channels by elevated cytosolic calcium through the PLC-IP3-Ca2+ signal pathway.
Collapse
Affiliation(s)
- Ling-Ling Qian
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical UniversityWuxi, China
| | - Man-Qing Sun
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical UniversityWuxi, China
| | - Ru-Xing Wang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical UniversityWuxi, China
| | - Tong Lu
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ying Wu
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical UniversityWuxi, China
| | - Shi-Peng Dang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical UniversityWuxi, China
| | - Xu Tang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical UniversityWuxi, China
| | - Yuan Ji
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical UniversityWuxi, China
| | - Xiao-Yu Liu
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical UniversityWuxi, China
| | - Xiao-Xi Zhao
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical UniversityWuxi, China
| | - Wen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qiang Chai
- Department of Physiology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China
| | - Min Pan
- Department of Cardiology, Affiliated Hospital Nantong University, Nantong, China
| | - Fu Yi
- Department of Cardiovascular Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | - Hon-Chi Lee
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
8
|
Tang X, Qian LL, Wang RX, Yao Y, Dang SP, Wu Y, Wang W, Ji Y, Sun MQ, Xia DY, Liu XY, Zhang DM, Chai Q, Lu T. Regulation of Coronary Arterial Large Conductance Ca2+-Activated K+ Channel Protein Expression and Function by n-3 Polyunsaturated Fatty Acids in Diabetic Rats. J Vasc Res 2017; 54:329-343. [PMID: 29040972 DOI: 10.1159/000479870] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/28/2017] [Indexed: 12/22/2022] Open
Abstract
AIM The objective of this study was to examine the effects of n-3 polyunsaturated fatty acids (n-3 PUFAs) on coronary arterial large conductance Ca2+-activated K+ (BK) channel function in coronary smooth muscle cells (SMCs) of streptozotocin-induced diabetic rats. METHODS The effects of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on coronary BK channel open probabilities were determined using the patch clamp technique. The mRNA and protein expressions of BK channel subunits were measured using qRT-PCR and Western blots. The coronary artery tension and coronary SMC Ca2+ concentrations were measured using a myograph system and fluorescence Ca2+ indicator. RESULTS Compared to nondiabetic control rats, the BK channel function was impaired with a reduced response to EPA and DHA in freshly isolated SMCs of diabetic rats. Oral administration of n-3 PUFAs had no effects on protein expressions of BK channel subunits in nondiabetic rats, but significantly enhanced those of BK-β1 in diabetic rats without altering BK-α protein levels. Moreover, coronary ring tension induced by iberiotoxin (a specific BK channel blocker) was increased and cytosolic Ca2+ concentrations in coronary SMCs were decreased in diabetic rats, but no changes were found in nondiabetic rats. CONCLUSIONS n-3 PUFAs protect the coronary BK channel function and coronary vasoreactivity in diabetic rats as a result of not only increasing BK-β1 protein expressions, but also decreasing coronary artery tension and coronary smooth muscle cytosolic Ca2+ concentrations.
Collapse
Affiliation(s)
- Xu Tang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Vancauwenberghe E, Noyer L, Derouiche S, Lemonnier L, Gosset P, Sadofsky LR, Mariot P, Warnier M, Bokhobza A, Slomianny C, Mauroy B, Bonnal JL, Dewailly E, Delcourt P, Allart L, Desruelles E, Prevarskaya N, Roudbaraki M. Activation of mutated TRPA1 ion channel by resveratrol in human prostate cancer associated fibroblasts (CAF). Mol Carcinog 2017; 56:1851-1867. [PMID: 28277613 DOI: 10.1002/mc.22642] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/10/2017] [Accepted: 03/03/2017] [Indexed: 12/18/2022]
Abstract
Previous studies showed the effects of resveratrol (RES) on several cancer cells, including prostate cancer (PCa) cell apoptosis without taking into consideration the impact of the tumor microenvironment (TME). The TME is composed of cancer cells, endothelial cells, blood cells, and cancer-associated fibroblasts (CAF), the main source of growth factors. The latter cells might modify in the TME the impact of RES on tumor cells via secreted factors. Recent data clearly show the impact of CAF on cancer cells apoptosis resistance via secreted factors. However, the effects of RES on PCa CAF have not been studied so far. We have investigated here for the first time the effects of RES on the physiology of PCa CAF in the context of TME. Using a prostate cancer CAF cell line and primary cultures of CAF from prostate cancers, we show that RES activates the N-terminal mutated Transient Receptor Potential Ankyrin 1 (TRPA1) channel leading to an increase in intracellular calcium concentration and the expression and secretion of growth factors (HGF and VEGF) without inducing apoptosis in these cells. Interestingly, in the present work, we also show that when the prostate cancer cells were co-cultured with CAF, the RES-induced cancer cell apoptosis was reduced by 40%, an apoptosis reduction canceled in the presence of the TRPA1 channel inhibitors. The present work highlights CAF TRPA1 ion channels as a target for RES and the importance of the channel in the epithelial-stromal crosstalk in the TME leading to resistance to the RES-induced apoptosis.
Collapse
Affiliation(s)
- Eric Vancauwenberghe
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Lucile Noyer
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Sandra Derouiche
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Loïc Lemonnier
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Pierre Gosset
- Faculté Libre de Médecine, Laboratoire d'Anatomie et de Cytologie Pathologique du groupement hospitalier de l'Institut Catholique de Lille, Lille, France
| | - Laura R Sadofsky
- Cardiovascular and Respiratory Studies, The University of Hull, Castle Hill Hospital, Cottingham, United Kingdom
| | - Pascal Mariot
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Marine Warnier
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Alexandre Bokhobza
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Christian Slomianny
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Brigitte Mauroy
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, Lille, France.,Service d'Urologie de l'hôpital St-Philibert, Lille, France
| | - Jean-Louis Bonnal
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, Lille, France.,Service d'Urologie de l'hôpital St-Philibert, Lille, France
| | - Etienne Dewailly
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Philippe Delcourt
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Laurent Allart
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Emilie Desruelles
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Natalia Prevarskaya
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Morad Roudbaraki
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| |
Collapse
|
10
|
Luyten T, Welkenhuyzen K, Roest G, Kania E, Wang L, Bittremieux M, Yule DI, Parys JB, Bultynck G. Resveratrol-induced autophagy is dependent on IP 3Rs and on cytosolic Ca 2. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:947-956. [PMID: 28254579 DOI: 10.1016/j.bbamcr.2017.02.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/22/2017] [Accepted: 02/25/2017] [Indexed: 12/14/2022]
Abstract
Previous work revealed that intracellular Ca2+ signals and the inositol 1,4,5-trisphosphate (IP3) receptors (IP3R) are essential to increase autophagic flux in response to mTOR inhibition, induced by either nutrient starvation or rapamycin treatment. Here, we investigated whether autophagy induced by resveratrol, a polyphenolic phytochemical reported to trigger autophagy in a non-canonical way, also requires IP3Rs and Ca2+ signaling. Resveratrol augmented autophagic flux in a time-dependent manner in HeLa cells. Importantly, autophagy induced by resveratrol (80μM, 2h) was completely abolished in the presence of 10μM BAPTA-AM, an intracellular Ca2+-chelating agent. To elucidate the IP3R's role in this process, we employed the recently established HEK 3KO cells lacking all three IP3R isoforms. In contrast to the HEK293 wt cells and to HEK 3KO cells re-expressing IP3R1, autophagic responses in HEK 3KO cells exposed to resveratrol were severely impaired. These altered autophagic responses could not be attributed to alterations in the mTOR/p70S6K pathway, since resveratrol-induced inhibition of S6 phosphorylation was not abrogated by chelating cytosolic Ca2+ or by knocking out IP3Rs. Finally, we investigated whether resveratrol by itself induced Ca2+ release. In permeabilized HeLa cells, resveratrol neither affected the sarco- and endoplasmic reticulum Ca2+ ATPase (SERCA) activity nor the IP3-induced Ca2+ release nor the basal Ca2+ leak from the ER. Also, prolonged (4 h) treatment with 100μM resveratrol did not affect subsequent IP3-induced Ca2+ release. However, in intact HeLa cells, although resveratrol did not elicit cytosolic Ca2+ signals by itself, it acutely decreased the ER Ca2+-store content irrespective of the presence or absence of IP3Rs, leading to a dampened agonist-induced Ca2+ signaling. In conclusion, these results reveal that IP3Rs and cytosolic Ca2+ signaling are fundamentally important for driving autophagic flux, not only in response to mTOR inhibition but also in response to non-canonical autophagy inducers like resveratrol. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Tomas Luyten
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-I box 802, Herestraat 49, 3000 Leuven, Belgium
| | - Kirsten Welkenhuyzen
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-I box 802, Herestraat 49, 3000 Leuven, Belgium
| | - Gemma Roest
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-I box 802, Herestraat 49, 3000 Leuven, Belgium
| | - Elzbieta Kania
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-I box 802, Herestraat 49, 3000 Leuven, Belgium
| | - Liwei Wang
- University of Rochester, Department of Pharmacology and Physiology, Rochester, NY 14642, USA
| | - Mart Bittremieux
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-I box 802, Herestraat 49, 3000 Leuven, Belgium
| | - David I Yule
- University of Rochester, Department of Pharmacology and Physiology, Rochester, NY 14642, USA
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-I box 802, Herestraat 49, 3000 Leuven, Belgium.
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-I box 802, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
11
|
Santofimia-Castaño P, Salido GM, Gonzalez A. Interferences of resveratrol with fura-2-derived fluorescence in intracellular free-Ca(2+) concentration determinations. Cytotechnology 2016; 68:1369-1380. [PMID: 26091617 PMCID: PMC4960185 DOI: 10.1007/s10616-015-9898-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/15/2015] [Indexed: 01/09/2023] Open
Abstract
Resveratrol (3,4',5-trihydroxy-trans-stilbene) is an antioxidant widely employed in cell physiology studies. It has been reported that it interferes with fura-2-derived fluorescence, making the employment of this dye nonviable. In this work, the interference of resveratrol with fura-2 determinations of intracellular free-Ca(2+) concentration ([Ca(2+)]c) was examined. Solutions containing different concentrations of resveratrol, with or without fura-2, in the presence or in the absence of Ca(2+), were analyzed by spectrofluorimetry. AR42J tumor cells were employed to study the influence of resveratrol on fura-2 fluorescence in living cells, by single cell fluorimetry. Resveratrol impaired the detection of fura-2-fluorescence emission (510 nm) at the 340, 360 and 380 nm excitation wavelengths. Resveratrol emitted fluorescence at 510 nm when lighted at all three excitation wavelengths. In addition, resveratrol emitted fluorescence at 380 nm when excited at 340 nm. Our observations suggest that the employment of the ratiometric properties of fura-2 to follow changes in [Ca(2+)]c in the presence of resveratrol is not viable. However, we think that the 380 nm excitation light could be employed. Results could be expressed as F0/F380, where F0 is the resting fluorescence and F380 is the value of fluoresce at a certain time point. We could follow changes in [Ca(2+)]c evoked by CCK-8, and we also detected Ca(2+) mobilization by 100 µM resveratrol in AR42J cells. This investigation presents evidence demonstrating that resveratrol interferes with fura-2 fluorescence spectra. Nevertheless, a chance still exists if the 380 nm excitation wavelength is employed in the middle or low micromolar concentrations of resveratrol.
Collapse
Affiliation(s)
- Patricia Santofimia-Castaño
- Cell Physiology Research Group, Department of Physiology, University of Extremadura, Avenida Universidad s/n, 10003, Cáceres, Spain
| | - Gines M Salido
- Cell Physiology Research Group, Department of Physiology, University of Extremadura, Avenida Universidad s/n, 10003, Cáceres, Spain
| | - Antonio Gonzalez
- Cell Physiology Research Group, Department of Physiology, University of Extremadura, Avenida Universidad s/n, 10003, Cáceres, Spain.
| |
Collapse
|
12
|
Peterson JA, Oblad RV, Mecham JC, Kenealey JD. Resveratrol inhibits plasma membrane Ca 2+-ATPase inducing an increase in cytoplasmic calcium. Biochem Biophys Rep 2016; 7:253-258. [PMID: 28955914 PMCID: PMC5613515 DOI: 10.1016/j.bbrep.2016.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 06/17/2016] [Accepted: 06/29/2016] [Indexed: 02/03/2023] Open
Abstract
Plasma membrane Ca2+-ATPase (PMCA) plays a vital role in maintaining cytosolic calcium concentration ([Ca2+]i). Given that many diseases have modified PMCA expression and activity, PMCA is an important potential target for therapeutic treatment. This study demonstrates that the non-toxic, naturally-occurring polyphenol resveratrol (RES) induces increases in [Ca2+]i via PMCA inhibition in primary dermal fibroblasts and MDA-MB-231 breast cancer cells. Our results also illustrate that RES and the fluorescent intracellular calcium indicator Fura-2, are compatible for simultaneous use, in contrast to previous studies, which indicated that RES modulates the Fura-2 fluorescence independent of calcium concentration. Because RES has been identified as a PMCA inhibitor, further studies may be conducted to develop more specific PMCA inhibitors from RES derivatives for potential therapeutic use. Resveratrol induces a rise in [Ca2+]i via plasma membrane Ca2+-ATPase inhibition. FURA-2 is compatible with resveratrol in measuring [Ca2+]i. PMCA inhibition is novel to resveratrol among naturally occurring polyphenols.
Collapse
Key Words
- BAPTA, BAPTA-Acetoxymethyl ester
- Calcium signaling
- DMEM, Dulbecco's modified Eagle medium
- DMSO, dimethyl sulfoxide
- EGCG, epigallocatechin gallate
- ER, endoplasmic reticulum
- FBS, fetal bovine serum
- Fura-2
- Fura-2, Fura-2-Acetoxymethyl ester
- HBSS, Ca2+- and Mg2+-free Hank's Balanced Salt Solution
- PBS, phosphate-buffered saline
- PMCA, plasma membrane Ca2+-ATPase
- Plasma membrane Ca2+-ATPase
- RES, resveratrol
- ROI, region of interest
- Resveratrol
- SERCA, sarcoendoplasmic reticular Ca2+-ATPase
- TG, thapsigargin
- [Ca2+]i, cytosolic calcium concentration
Collapse
Affiliation(s)
- Joshua Allen Peterson
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, ESC S-127, Provo, UT, United States
| | - Richard Vernon Oblad
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, ESC S-127, Provo, UT, United States
| | - Jeffrey Chad Mecham
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, ESC S-127, Provo, UT, United States
| | - Jason Donald Kenealey
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, ESC S-127, Provo, UT, United States
| |
Collapse
|
13
|
Marchetti C, Ribulla S, Magnelli V, Patrone M, Burlando B. Resveratrol induces intracellular Ca(2+) rise via T-type Ca(2+) channels in a mesothelioma cell line. Life Sci 2016; 148:125-31. [PMID: 26845536 DOI: 10.1016/j.lfs.2016.01.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/14/2016] [Accepted: 01/29/2016] [Indexed: 12/13/2022]
Abstract
AIMS Intracellular calcium (Ca(2+)) is known to play an important role in cancer development and growth. Resveratrol (Res) is a stilbene polyphenol occurring in several plant species and known for various possible beneficial effects, including its ability to inhibit proliferation and to induce apoptosis in cancer cells. This study was designed to determine whether Res affects Ca(2+) signaling in cancer cells. MAIN METHODS We used the REN human mesothelioma cell line, as an in vitro cancer cell model, and the non-malignant human mesothelial MeT5A cell line, as normal cell model. Cytosolic Ca(2+) concentration was measured by the fluorescent indicator Fura-2. Immunofluorescence, Western blot, and siRNA technique were employed to assess the involvement of T-type Ca(2+) channels. Cell viability was determined by the calcein assay. KEY FINDINGS REN cells transiently exposed to 1-10μM Res showed increasing peaks of Ca(2+) that were absent in Ca(2+)-free medium and were reduced by non-selective (Ni(2+)), and highly selective (NNC 55-0396) T-type Ca(2+) channels antagonist, and by siRNA knockout of Cav3.2T-type Ca(2+) channel gene. Dose-dependent curve of Res-induced Ca(2+) peaks showed a rightward shift in normal MeT-5A mesothelial cells (EC50=4.9μM) with respect to REN cells (EC50=2.7μM). Moreover, incubation with 3 and 10μM Res for 7days resulted in cell growth inhibition for REN, but not for MeT-5A cells. SIGNIFICANCE Res induces Ca(2+) influx, possibly mediated through T-type Ca(2+) channels, with significant selectivity towards mesothelioma cells, suggesting a possible use as an adjuvant to chemotherapy drugs for mesothelioma clinical treatment.
Collapse
Affiliation(s)
- Carla Marchetti
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, via De Marini 6, 16149 Genova, Italy.
| | - Stefania Ribulla
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, viale T. Michel 11, 15121 Alessandria, Italy
| | - Valeria Magnelli
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, viale T. Michel 11, 15121 Alessandria, Italy
| | - Mauro Patrone
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, viale T. Michel 11, 15121 Alessandria, Italy
| | - Bruno Burlando
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, via De Marini 6, 16149 Genova, Italy; Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, viale T. Michel 11, 15121 Alessandria, Italy
| |
Collapse
|
14
|
Yang JX, He YB, Lai LN, Li JB, Song XL. Electrochemical sensors using gold submicron particles modified electrodes based on calcium complexes formed with alizarin red S for determination of Ca2+ in isolated rat heart mitochondria. Biosens Bioelectron 2015; 66:417-22. [DOI: 10.1016/j.bios.2014.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/29/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022]
|