1
|
Cheng JC, Miller AL, Webb SE. Actin-mediated endocytosis in the E-YSL helps drive epiboly in zebrafish. ZYGOTE 2023; 31:517-526. [PMID: 37533161 DOI: 10.1017/s0967199423000357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
In zebrafish, a punctate band of F-actin is reported to develop in the external yolk syncytial layer (E-YSL) during the latter part of epiboly in zebrafish embryos. Here, electron microscopy (EM) and fluorescence confocal microscopy were conducted to investigate dynamic changes in the E-YSL membrane during epiboly. Using scanning EM, we report that the surface of the E-YSL is highly convoluted, consisting of a complex interwoven network of branching membrane surface microvilli-like protrusions. The region of membrane surface protrusions was relatively wide at 30% epiboly but narrowed as epiboly progressed. This narrowing was coincident with the formation of the punctate actin band. We also demonstrated using immunogold transmission EM that actin clusters were localized at the membrane surface mainly within the protrusions as well as in deeper locations of the E-YSL. Furthermore, during the latter part of epiboly, the punctate actin band was coincident with a region of highly dynamic endocytosis. Treatment with cytochalasin B led to the disruption of the punctate actin band and the membrane surface protrusions, as well as the attenuation of endocytosis. Together, our data suggest that, in the E-YSL, the region encompassing the membrane surface protrusions and its associated punctate actin band are likely to be an integral part of the localized endocytosis, which is important for the progression of epiboly in zebrafish embryos.
Collapse
Affiliation(s)
- Jackie C Cheng
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Andrew L Miller
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Sarah E Webb
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| |
Collapse
|
2
|
Tran MH, Nguyen TVA, Do HG, Kieu TK, Nguyen TKT, Le HD, Guerrero-Limon G, Massoz L, Nivelle R, Zappia J, Pham HT, Nguyen LT, Muller M. Testing biological actions of medicinal plants from northern Vietnam on zebrafish embryos and larvae: Developmental, behavioral, and putative therapeutical effects. PLoS One 2023; 18:e0294048. [PMID: 37934745 PMCID: PMC10629648 DOI: 10.1371/journal.pone.0294048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/13/2023] [Indexed: 11/09/2023] Open
Abstract
Evaluating the risks and benefits of using traditional medicinal plants is of utmost importance for a huge fraction of the human population, in particular in Northern Vietnam. Zebrafish are increasingly used as a simple vertebrate model for testing toxic and physiological effects of compounds, especially on development. Here, we tested 12 ethanolic extracts from popular medicinal plants collected in northern Vietnam for their effects on zebrafish survival and development during the first 4 days after fertilization. We characterized more in detail their effects on epiboly, hatching, growth, necrosis, body curvature, angiogenesis, skeletal development and mostly increased movement behavior. Finally, we confirm the effect on epiboly caused by the Mahonia bealei extract by staining the actin filaments and performing whole genome gene expression analysis. Further, we show that this extract also inhibits cell migration of mouse embryo fibroblasts. Finally, we analyzed the chemical composition of the Mahonia bealei extract and test the effects of its major components. In conclusion, we show that traditional medicinal plant extracts are able to affect zebrafish early life stage development to various degrees. In addition, we show that an extract causing delay in epiboly also inhibits mammalian cell migration, suggesting that this effect may serve as a preliminary test for identifying extracts that inhibit cancer metastasis.
Collapse
Affiliation(s)
- My Hanh Tran
- Laboratory for Organogenesis and Regeneration, GIGA I3, Université de Liège, Liège, Belgium
- Department of Microbiology, Vietnam National University of Science, Faculty of Biology, Hanoi, Vietnam
| | - Thi Van Anh Nguyen
- Department of Microbiology, Vietnam National University of Science, Faculty of Biology, Hanoi, Vietnam
| | - Hoang Giang Do
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Trung Kien Kieu
- GREENLAB, Center for Life Science Research (CELIFE), Vietnam National University of Science, Faculty of Biology, Hanoi, Vietnam
| | - Thi Kim Thanh Nguyen
- Department of Plant Science, Vietnam National University of Science, Faculty of Biology, Hanoi, Vietnam
| | - Hong Diep Le
- Department of Plant Science, Vietnam National University of Science, Faculty of Biology, Hanoi, Vietnam
| | - Gustavo Guerrero-Limon
- Laboratory for Organogenesis and Regeneration, GIGA I3, Université de Liège, Liège, Belgium
| | - Laura Massoz
- Zebrafish Development and Disease Model laboratory, GIGA Stem cells, Université de Liège, Liège, Belgium
| | - Renaud Nivelle
- Laboratory for Organogenesis and Regeneration, GIGA I3, Université de Liège, Liège, Belgium
| | - Jérémie Zappia
- Laboratory for Organogenesis and Regeneration, GIGA I3, Université de Liège, Liège, Belgium
| | - Hai The Pham
- Department of Microbiology, Vietnam National University of Science, Faculty of Biology, Hanoi, Vietnam
- GREENLAB, Center for Life Science Research (CELIFE), Vietnam National University of Science, Faculty of Biology, Hanoi, Vietnam
| | - Lai Thanh Nguyen
- GREENLAB, Center for Life Science Research (CELIFE), Vietnam National University of Science, Faculty of Biology, Hanoi, Vietnam
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration, GIGA I3, Université de Liège, Liège, Belgium
| |
Collapse
|
3
|
Chen Y, Wang J, Yu Z, Xiao L, Xu J, Zhao K, Zhang H, Shang X, Liu C. Transcriptomic and metabolomic analyses revealed epiboly delayed mechanisms of 2,5-dichloro-1, 4-benuinone on zebrafish embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27145-4. [PMID: 37165267 DOI: 10.1007/s11356-023-27145-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/17/2023] [Indexed: 05/12/2023]
Abstract
2,5-Dichloro-1,4-benzenediol (2,5-DCBQ) is a putative disinfection by-product that belongs to the halogenated benzoquinone class. However, its developmental toxicity and related mechanism remained unclarified. In our study, we used zebrafish embryos as the model and exposed them to graded concentrations of 2,5-DCBQ (100, 200, 300, 400 μg/L). We found that the rate of epiboly abnormalities increased significantly in a concentration-dependent manner. The results of whole-mount in situ hybridization (WISH) indicated that the expression patterns and levels of chordin (dorsoventral marker), foxa2 (endodermal marker), eve1 (ventral mesodermal marker), and foxb1a (ectodermal marker) were altered, suggesting that 2,5-DCBQ might affect the germ layer development of zebrafish embryos. Integrated transcriptomic and metabolomic analyses were adopted to explore the molecular mechanisms of embryonic developmental delays. The results showed that 2,5-DCBQ exposure induced 1163 differentially expressed genes (DEGs) and 37 differential metabolites (DEMs). Bioinformatic analysis enriched the most affected molecular pathways (Wnt signaling pathway, cell adhesion molecules, actin cytoskeleton regulation) and metabolic pathways (purine metabolism, aminoacyl-tRNA biosynthesis, arginine and proline metabolism) in zebrafish embryos. To summarize, our findings broadened the molecular mechanisms of 2,5-DCBQ embryotoxicity through multi-omics and bioinformatic analyses.
Collapse
Affiliation(s)
- Yuanyao Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, Wuhan, 430030, People's Republic of China
| | - Jingming Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, Wuhan, 430030, People's Republic of China
| | - Zhiquan Yu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, Wuhan, 430030, People's Republic of China
| | - Lin Xiao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, Wuhan, 430030, People's Republic of China
| | - Jia Xu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, Wuhan, 430030, People's Republic of China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, Wuhan, 430030, People's Republic of China
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, Wuhan, 430030, People's Republic of China
| | - Xuejun Shang
- Department of Andrology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, People's Republic of China
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
4
|
Zhang Q, Gao Q, Zhao L, Li X, Wang X, Wang Y, Chen D. Evaluation of the effect of green tea and its constituents on embryo development in a zebrafish model. J Appl Toxicol 2023; 43:287-297. [PMID: 35982029 DOI: 10.1002/jat.4380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 01/17/2023]
Abstract
As one of the most popular beverages, green tea has attracted much interest for its beneficial effects on human health. However, the toxicity of green tea and its underlying mechanism are still poorly understood. Here, we evaluated the effect of green tea and its constituents on development by exposing zebrafish embryos to them. Morphologic results demonstrated that 0.1% and 0.2% green tea increased mortality, delayed epiboly of gastrulation, and shortened body length. Green tea altered the expression pattern of dlx3, cstlb, myod, and papc and decreased the expression levels of wnt5 and wnt11, suggesting that green tea disturbed convergence and extension movement through the downregulation of wnt5 and wnt11. The increased expression of the dorsal gene chordin and reduced expression of wnt8 and its target genes vox and vent in embryos exposed to 0.1% and 0.2% green tea indicated that green tea could affect dorsoventral differentiation by inhibiting the wnt8 signaling pathway. Additionally, green tea could inhibit epiboly progression by disrupting F-actin organization or removing F-actin in vegetal yolks during gastrulation. However, no malformation was caused by exposure to the five catechins and gallic acid individually. The mixture of constituents showed a similar effect to green tea solution on the embryos, such as smaller eyes and head, shorter body length, and slower heart rate, which indicated that the effect of green tea solution on embryo development was mainly due to the comprehensive effect of multiple components in the green tea solution.
Collapse
Affiliation(s)
- Qiuping Zhang
- School of Medicine, Nankai University, Tianjin, China
| | - Qian Gao
- School of Medicine, Nankai University, Tianjin, China
| | - Lin Zhao
- School of Medicine, Nankai University, Tianjin, China
| | - Xu Li
- School of Medicine, Nankai University, Tianjin, China
| | - Xixi Wang
- School of Medicine, Nankai University, Tianjin, China
| | - Yuhua Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Dongyan Chen
- School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
5
|
Li JT, Cheng XN, Zhang C, Shi DL, Shao M. The Adaptor Protein Lurap1 Is Required for Cell Cohesion during Epiboly Movement in Zebrafish. BIOLOGY 2021; 10:biology10121337. [PMID: 34943252 PMCID: PMC8699034 DOI: 10.3390/biology10121337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 11/23/2022]
Abstract
Simple Summary Cell adhesion and active cell shape changes play an important role in morphogenetic movements during embryonic development. Zebrafish is an attractive model for the study of cellular and molecular mechanisms underlying these processes. Epiboly is a conserved gastrulation cell movement, which describes the thinning and spreading of an external sheet of cells to cover other groups of cells in the embryo. It involves differential cellular adhesive properties and dynamic cytoskeletal organization across the embryo, but how these are regulated remains elusive. We found that the adaptor protein Lurap1, which interacts with other proteins required for cell migration, plays a role in cell adhesion during epiboly. In zebrafish mutants with loss of Lurap1 function, there is a reduced cellular cohesion in the epithelial blastoderm cells and a delayed epiboly movement. Our observations suggest that Lurap1 is implicated in the regulation of cellular behavior changes for coordinated morphogenetic movements in vertebrate embryos. Abstract Cell adhesion and polarized cellular behaviors play critical roles in a wide variety of morphogenetic events. In the zebrafish embryo, epiboly represents an important process of epithelial morphogenesis that involves differential cell adhesion and dynamic cell shape changes for coordinated movements of different cell populations, but the underlying mechanism remains poorly understood. The adaptor protein Lurap1 functions to link myotonic dystrophy kinase-related Rac/Cdc42-binding kinase with MYO18A for actomyosin retrograde flow in cell migration. We previously reported that it interacts with Dishevelled in convergence and extension movements during gastrulation. Here, we show that it regulates blastoderm cell adhesion and radial cell intercalation during epiboly. In zebrafish mutant embryos with loss of both maternal and zygotic Lurap1 function, deep cell multilayer of the blastoderm exhibit delayed epiboly with respect to the superficial layer. Time-lapse imaging reveals that these deep cells undergo unstable intercalation, which impedes their expansion over the yolk cell. Cell sorting and adhesion assays indicate reduced cellular cohesion of the blastoderm. These defects are correlated with disrupted cytoskeletal organization in the cortex of blastoderm cells. Thus, the present results extend our previous works by demonstrating that Lurap1 is required for cell adhesion and cell behavior changes to coordinate cell movements during epithelial morphogenesis. They provide insights for a further understanding of the regulation of cytoskeletal organization during gastrulation cell movements.
Collapse
Affiliation(s)
- Ji-Tong Li
- School of Life Sciences, Shandong University, Qingdao 266237, China; (J.-T.L.); (C.Z.)
| | - Xiao-Ning Cheng
- Laboratory of Zebrafish Model for Development and Disease, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China;
| | - Chong Zhang
- School of Life Sciences, Shandong University, Qingdao 266237, China; (J.-T.L.); (C.Z.)
| | - De-Li Shi
- Laboratory of Zebrafish Model for Development and Disease, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China;
- Laboratory of Developmental Biology, CNRS-UMR7622, Institut de Biologie Paris-Seine, Sorbonne University, 75005 Paris, France
- Correspondence: (D.-L.S.); (M.S.)
| | - Ming Shao
- School of Life Sciences, Shandong University, Qingdao 266237, China; (J.-T.L.); (C.Z.)
- Correspondence: (D.-L.S.); (M.S.)
| |
Collapse
|
6
|
Li YL, Cheng XN, Lu T, Shao M, Shi DL. Syne2b/Nesprin-2 Is Required for Actin Organization and Epithelial Integrity During Epiboly Movement in Zebrafish. Front Cell Dev Biol 2021; 9:671887. [PMID: 34222245 PMCID: PMC8248263 DOI: 10.3389/fcell.2021.671887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/28/2021] [Indexed: 11/25/2022] Open
Abstract
Syne2b/nesprin-2 is a giant protein implicated in tethering the nucleus to the cytoskeleton and plays an important role in maintaining cellular architecture. Epiboly is a conserved morphogenetic movement that involves extensive spreading and thinning of the epithelial blastoderm to shape the embryo and organize the three germ layers. Dynamic cytoskeletal organization is critical for this process, but how it is regulated remains elusive. Here we generated a zebrafish syne2b mutant line and analyzed the effects of impaired Syne2b function during early development. By CRISPR/Cas9-mediated genome editing, we obtained a large deletion in the syne2b locus, predicted to cause truncation of the nuclear localization KASH domain in the translated protein. Maternal and zygotic syne2b embryos showed delayed epiboly initiation and progression without defects in embryonic patterning. Remarkably, disruption of Syne2b function severely impaired cytoskeletal organization across the embryo, leading to aberrant clustering of F-actin at multiple cell contact regions and abnormal cell shape changes. These caused disintegration of the epithelial blastoderm before the end of gastrulation in most severely affected embryos. Moreover, the migration of yolk nuclear syncytium also became defective, likely due to disorganized cytoskeletal networks at the blastoderm margin and in the yolk cell. These findings demonstrate an essential function of Syne2b in maintaining cytoskeletal architecture and epithelial integrity during epiboly movement.
Collapse
Affiliation(s)
- Yu-Long Li
- School of Life Sciences, Shandong University, Qingdao, China
| | | | - Tong Lu
- School of Life Sciences, Shandong University, Qingdao, China
| | - Ming Shao
- School of Life Sciences, Shandong University, Qingdao, China
| | - De-Li Shi
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Laboratory of Developmental Biology, CNRS-UMR 7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, Paris, France
| |
Collapse
|
7
|
A Paradigm in Immunochemistry, Revealed by Monoclonal Antibodies to Spatially Distinct Epitopes on Syntenin-1. Int J Mol Sci 2019; 20:ijms20236035. [PMID: 31795513 PMCID: PMC6928784 DOI: 10.3390/ijms20236035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 12/11/2022] Open
Abstract
Syntenin-1 is an essential multi-functional adaptor protein, which has multiple roles in membrane trafficking and exosome biogenesis, as well as scaffolding interactions with either the actin cytoskeleton or focal adhesions. However, how this functional multiplicity relates to syntenin-1 distribution in different endosome compartments or other intracellular locations and its underlying involvement in cancer pathogenesis have yet to be fully defined. To help facilitate the investigation of syntenin-1 biology, we developed two specific monoclonal antibodies (Synt-2C6 and Synt-3A11) to spatially distinct linear sequence epitopes on syntenin-1, which were each designed to be unique at the six-amino acid level. These antibodies produced very different intracellular staining patterns, with Synt-2C6 detecting endosomes and Synt-3A11 producing a fibrillar staining pattern suggesting a cytoskeletal localisation. Treatment of cells with Nocodazole altered the intracellular localisation of Synt-3A11, which was consistent with the syntenin-1 protein interacting with microtubules. In prostate tissue biopsies, Synt-3A11 defined atrophy and early-stage prostate cancer, whereas Synt-2C6 only showed minimal interaction with atrophic tissue. This highlights a critical need for site-specific antibodies and a knowledge of their reactivity to define differential protein distributions, interactions and functions, which may differ between normal and malignant cells.
Collapse
|
8
|
Zhang W, Zhang Y, Li S, Wu Z, Yan Y, Li Y. Prmt7 regulates epiboly and gastrulation cell movements by facilitating syntenin. Acta Biochim Biophys Sin (Shanghai) 2018; 50:1280-1287. [PMID: 30383201 DOI: 10.1093/abbs/gmy136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Indexed: 02/01/2023] Open
Abstract
Epiboly spreads and thins the blastoderm over the yolk cell during zebrafish gastrulation. Despite of its fundamental function, little is known about the molecular mechanisms that control this coordinated cell movement. In this study, we investigated protein arginine methyltransferase 7 (Prmt7) morphants with an epibolic delay defect in zebrafish. The ratio of morphants with epiboly delay phenotypes increased as the dose of the injected morpholino (MO) increased. Here, syntenin transcripts are maternally deposited and ubiquitously expressed from the oocyte period to the early larva stage. Furthermore, we demonstrated that Prmt7 modulates epibolic movements of the enveloping layer by regulating F-actin organization. These defects can be partially rescued by re-expression of Prmt7 or syntenin protein. Analysis of the earliest cellular defects suggested a role of Prmt7 in the autonomous vegetal expansion of the yolk syncytial layer and the rearrangement of the actin cytoskeleton in extra-embryonic tissues. By a combination of knockdown studies and rescue experiments in zebrafish, we showed that epiboly relies on the molecular networking of Prmt7 by facilitating syntenin, which acts as a regulator for cytoskeleton. This study identifies the important function of the Prmt7 for the progression of zebrafish epiboly and establishes its key role in directional cell movements during early development.
Collapse
Affiliation(s)
- Wuwen Zhang
- Department of Reproductive Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunbin Zhang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shifeng Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhili Wu
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuanchang Yan
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yiping Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
9
|
Duncan KM, Mukherjee K, Cornell RA, Liao EC. Zebrafish models of orofacial clefts. Dev Dyn 2017; 246:897-914. [PMID: 28795449 DOI: 10.1002/dvdy.24566] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/06/2017] [Accepted: 07/31/2017] [Indexed: 12/12/2022] Open
Abstract
Zebrafish is a model organism that affords experimental advantages toward investigating the normal function of genes associated with congenital birth defects. Here we summarize zebrafish studies of genes implicated in orofacial cleft (OFC). The most common use of zebrafish in this context has been to explore the normal function an OFC-associated gene product in craniofacial morphogenesis by inhibiting expression of its zebrafish ortholog. The most frequently deployed method has been to inject embryos with antisense morpholino oligonucleotides targeting the desired transcript. However, improvements in targeted mutagenesis strategies have led to widespread adoption of CRISPR/Cas9 technology. A second application of zebrafish has been for functional assays of gene variants found in OFC patients; such in vivo assays are valuable because the success of in silico methods for testing allele severity has been mixed. Finally, zebrafish have been used to test the tissue specificity of enhancers that harbor single nucleotide polymorphisms associated with risk for OFC. We review examples of each of these approaches in the context of genes that are implicated in syndromic and non-syndromic OFC. Developmental Dynamics 246:897-914, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kaylia M Duncan
- Department of Anatomy and Cell Biology, Molecular and Cell Biology Graduate Program, University of Iowa, Iowa City, Iowa
| | - Kusumika Mukherjee
- Center for Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Robert A Cornell
- Department of Anatomy and Cell Biology, Molecular and Cell Biology Graduate Program, University of Iowa, Iowa City, Iowa
| | - Eric C Liao
- Center for Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
10
|
McFarland RJ, Brown SP, Vital E, Werner JM, Brewster RM. Use of Immunolabeling to Analyze Stable, Dynamic, and Nascent Microtubules in the Zebrafish Embryo. J Vis Exp 2017. [PMID: 28994750 DOI: 10.3791/55792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Microtubules (MTs) are dynamic and fragile structures that are challenging to image in vivo, particularly in vertebrate embryos. Immunolabeling methods are described here to analyze distinct populations of MTs in the developing neural tube of the zebrafish embryo. While the focus is on neural tissue, this methodology is broadly applicable to other tissues. The procedures are optimized for early to mid-somitogenesis-stage embryos (1 somite to 12 somites), however they can be adapted to a range of other stages with relatively minor adjustments. The first protocol provides a method to assess the spatial distribution of stable and dynamic MTs and perform a quantitative analysis of these populations with image-processing software. This approach complements existing tools to image microtubule dynamics and distribution in real-time, using transgenic lines or transient expression of tagged constructs. Indeed, such tools are very useful, however they do not readily distinguish between dynamic and stable MTs. The ability to image and analyze these distinct microtubule populations has important implications for understanding mechanisms underlying cell polarization and morphogenesis. The second protocol outlines a technique to analyze nascent MTs specifically. This is accomplished by capturing the de novo growth properties of MTs over time, following microtubule depolymerization with the drug nocodazole and a recovery period after drug washout. This technique has not yet been applied to the study of MTs in zebrafish embryos, but is a valuable assay for investigating the in vivo function of proteins implicated in microtubule assembly.
Collapse
Affiliation(s)
| | - Sharlene P Brown
- Department of Biological Sciences, University of Maryland, Baltimore County
| | - Eudorah Vital
- Department of Biological Sciences, University of Maryland, Baltimore County
| | - Jonathan M Werner
- Department of Biological Sciences, University of Maryland, Baltimore County
| | - Rachel M Brewster
- Department of Biological Sciences, University of Maryland, Baltimore County;
| |
Collapse
|
11
|
Li YL, Shao M, Shi DL. Rac1 signalling coordinates epiboly movement by differential regulation of actin cytoskeleton in zebrafish. Biochem Biophys Res Commun 2017; 490:1059-1065. [PMID: 28668387 DOI: 10.1016/j.bbrc.2017.06.165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 06/27/2017] [Indexed: 10/24/2022]
Abstract
Dynamic cytoskeleton organization is essential for polarized cell behaviours in a wide variety of morphogenetic events. In zebrafish, epiboly involves coordinated cell shape changes and expansion of cell layers to close the blastopore, but many important regulatory aspects are still unclear. Especially, the spatio-temporal regulation and function of actin structures remain to be determined for a better understanding of the mechanisms that coordinate epiboly movement. Here we show that Rac1 signalling, likely functions downstream of phosphatiditylinositol-3 kinase, is required for F-actin organization during epiboly progression in zebtafish. Using a dominant negative mutant of Rac1 and specific inhibitors to block the activation of this pathway, we find that marginal contractile actin ring is sensitive to inhibition of Rac1 signalling. In particular, we identify a novel function for this actin structure in retaining the external yolk syncytial nuclei within the margin of enveloping layer for coordinated movement toward the vegetal pole. Furthermore, we find that F-actin bundles, progressively formed in the vegetal cortex of the yolk cell, act in concert with marginal actin ring and play an active role in pulling external yolk syncytial nuclei toward the vegetal pole direction. This study uncovers novel roles of different actin structures in orchestrating epiboly movement. It helps to provide insight into the mechanisms regulating cellular polarization during early development.
Collapse
Affiliation(s)
- Yu-Long Li
- School of Life Sciences, Shandong University, 27, Shanda Nan Road, Jinan 250100, China
| | - Ming Shao
- School of Life Sciences, Shandong University, 27, Shanda Nan Road, Jinan 250100, China
| | - De-Li Shi
- School of Life Sciences, Shandong University, 27, Shanda Nan Road, Jinan 250100, China; Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR7622, IBPS-Developmental Biology Laboratory, 75005 Paris, France.
| |
Collapse
|
12
|
Lan X, Li L, Hu J, Zhang Q, Dang Y, Huang Y. A Quantitative Method for Microtubule Analysis in Fluorescence Images. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2015; 21:1582-1590. [PMID: 26417862 DOI: 10.1017/s1431927615015202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Microtubule analysis is of significant value for a better understanding of normal and pathological cellular processes. Although immunofluorescence microscopic techniques have proven useful in the study of microtubules, comparative results commonly rely on a descriptive and subjective visual analysis. We developed an objective and quantitative method based on image processing and analysis of fluorescently labeled microtubular patterns in cultured cells. We used a multi-parameter approach by analyzing four quantifiable characteristics to compose our quantitative feature set. Then we interpreted specific changes in the parameters and revealed the contribution of each feature set using principal component analysis. In addition, we verified that different treatment groups could be clearly discriminated using principal components of the multi-parameter model. High predictive accuracy of four commonly used multi-classification methods confirmed our method. These results demonstrated the effectiveness and efficiency of our method in the analysis of microtubules in fluorescence images. Application of the analytical methods presented here provides information concerning the organization and modification of microtubules, and could aid in the further understanding of structural and functional aspects of microtubules under normal and pathological conditions.
Collapse
Affiliation(s)
- Xiaodong Lan
- State Key Laboratory of Trauma,Burns and Combined Injury,Institute of Burn Research,Southwest Hospital,The Third Military Medical University,Chongqing 400038,China
| | - Lingfei Li
- State Key Laboratory of Trauma,Burns and Combined Injury,Institute of Burn Research,Southwest Hospital,The Third Military Medical University,Chongqing 400038,China
| | - Jiongyu Hu
- State Key Laboratory of Trauma,Burns and Combined Injury,Institute of Burn Research,Southwest Hospital,The Third Military Medical University,Chongqing 400038,China
| | - Qiong Zhang
- State Key Laboratory of Trauma,Burns and Combined Injury,Institute of Burn Research,Southwest Hospital,The Third Military Medical University,Chongqing 400038,China
| | - Yongming Dang
- State Key Laboratory of Trauma,Burns and Combined Injury,Institute of Burn Research,Southwest Hospital,The Third Military Medical University,Chongqing 400038,China
| | - Yuesheng Huang
- State Key Laboratory of Trauma,Burns and Combined Injury,Institute of Burn Research,Southwest Hospital,The Third Military Medical University,Chongqing 400038,China
| |
Collapse
|
13
|
Bruce AE. Zebrafish epiboly: Spreading thin over the yolk. Dev Dyn 2015; 245:244-58. [DOI: 10.1002/dvdy.24353] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 01/07/2023] Open
Affiliation(s)
- Ashley E.E. Bruce
- Department of Cell and Systems Biology; University of Toronto; Toronto ON Canada
| |
Collapse
|
14
|
Zhang WW, Zhang YB, Zhao XX, Hua Y, Wu ZL, Yan YC, Li YP. Prmt7 regulates epiboly by facilitating 2-OST and modulating actin cytoskeleton: Figure 1. J Mol Cell Biol 2015; 7:489-91. [DOI: 10.1093/jmcb/mjv040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Dendritic Cell-Based Immunotherapy Treatment for Glioblastoma Multiforme. BIOMED RESEARCH INTERNATIONAL 2015; 2015:717530. [PMID: 26167495 PMCID: PMC4488155 DOI: 10.1155/2015/717530] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/08/2015] [Indexed: 12/23/2022]
Abstract
Glioblastoma multiforme (GBM) is the most malignant glioma and patients diagnosed with this disease had poor outcomes even treated with the combination of conventional treatment (surgery, chemotherapy, and radiation). Dendritic cells (DCs) are the most powerful antigen presenting cells and DC-based vaccination has the potential to target and eliminate GBM cells and enhance the responses of these cells to the existing therapies with minimal damage to the healthy tissues around them. It can enhance recognition of GBM cells by the patients' immune system and activate vast, potent, and long-lasting immune reactions to eliminate them. Therefore, this therapy can prolong the survival of GBM patients and has wide and bright future in the treatment of GBM. Also, the efficacy of this therapy can be strengthened in several ways at some degree: the manipulation of immune regulatory components or costimulatory molecules on DCs; the appropriate choices of antigens for loading to enhance the effectiveness of the therapy; regulation of positive regulators or negative regulators in GBM microenvironment.
Collapse
|
16
|
Matsui T, Ishikawa H, Bessho Y. Cell collectivity regulation within migrating cell cluster during Kupffer's vesicle formation in zebrafish. Front Cell Dev Biol 2015; 3:27. [PMID: 26000276 PMCID: PMC4423447 DOI: 10.3389/fcell.2015.00027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/22/2015] [Indexed: 02/04/2023] Open
Abstract
Although cell adhesion is thought to fasten cells tightly, cells that adhere to each other can migrate directionally. This group behavior, called “collective cell migration,” is observed during normal development, wound healing, and cancer invasion. Loss-of-function of cell adhesion molecules in several model systems of collective cell migration results in delay or inhibition of migration of cell groups but does not lead to dissociation of the cell groups, suggesting that mechanisms of cells staying assembled as a single cell cluster, termed as “cell collectivity,” remain largely unknown. During the formation of Kupffer's vesicle (KV, an organ of laterality in zebrafish), KV progenitors form a cluster and migrate together toward the vegetal pole. Importantly, in this model system of collective cell migration, knockdown of cell adhesion molecules or signal components leads to failure of cell collectivity. In this review, we summarize recent findings in cell collectivity regulation during collective migration of KV progenitor cells and describe our current understanding of how cell collectivity is regulated during collective cell migration.
Collapse
Affiliation(s)
- Takaaki Matsui
- Gene Regulation Research, Nara Institute of Science and Technology Nara, Japan
| | - Hiroshi Ishikawa
- Gene Regulation Research, Nara Institute of Science and Technology Nara, Japan
| | - Yasumasa Bessho
- Gene Regulation Research, Nara Institute of Science and Technology Nara, Japan
| |
Collapse
|