1
|
Abdelfadiel E, Gunta R, Villuri BK, Afosah DK, Sankaranarayanan NV, Desai UR. Designing Smaller, Synthetic, Functional Mimetics of Sulfated Glycosaminoglycans as Allosteric Modulators of Coagulation Factors. J Med Chem 2023; 66:4503-4531. [PMID: 37001055 PMCID: PMC10108365 DOI: 10.1021/acs.jmedchem.3c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Indexed: 04/03/2023]
Abstract
Natural glycosaminoglycans (GAGs) are arguably the most diverse collection of natural products. Unfortunately, this bounty of structures remains untapped. Decades of research has realized only one GAG-like synthetic, small-molecule drug, fondaparinux. This represents an abysmal output because GAGs present a frontier that few medicinal chemists, and even fewer pharmaceutical companies, dare to undertake. GAGs are heterogeneous, polymeric, polydisperse, highly water soluble, synthetically challenging, too rapidly cleared, and difficult to analyze. Additionally, GAG binding to proteins is not very selective and GAG-binding sites are shallow. This Perspective attempts to transform this negative view into a much more promising one by highlighting recent advances in GAG mimetics. The Perspective focuses on the principles used in the design/discovery of drug-like, synthetic, sulfated small molecules as allosteric modulators of coagulation factors, such as antithrombin, thrombin, and factor XIa. These principles will also aid the design/discovery of sulfated agents against cancer, inflammation, and microbial infection.
Collapse
Affiliation(s)
- Elsamani
I. Abdelfadiel
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Rama Gunta
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Bharath Kumar Villuri
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Daniel K. Afosah
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Nehru Viji Sankaranarayanan
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Umesh R. Desai
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
2
|
Afosah DK, Al-Horani RA. Sulfated Non-Saccharide Glycosaminoglycan Mimetics as Novel Drug Discovery Platform for Various Pathologies. Curr Med Chem 2020; 27:3412-3447. [PMID: 30457046 PMCID: PMC6551317 DOI: 10.2174/0929867325666181120101147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/06/2018] [Accepted: 11/13/2018] [Indexed: 01/14/2023]
Abstract
Glycosaminoglycans (GAGs) are very complex, natural anionic polysaccharides. They are polymers of repeating disaccharide units of uronic acid and hexosamine residues. Owing to their template-free, spatiotemporally-controlled, and enzyme-mediated biosyntheses, GAGs possess enormous polydispersity, heterogeneity, and structural diversity which often translate into multiple biological roles. It is well documented that GAGs contribute to physiological and pathological processes by binding to proteins including serine proteases, serpins, chemokines, growth factors, and microbial proteins. Despite advances in the GAG field, the GAG-protein interface remains largely unexploited by drug discovery programs. Thus, Non-Saccharide Glycosaminoglycan Mimetics (NSGMs) have been rationally developed as a novel class of sulfated molecules that modulate GAG-protein interface to promote various biological outcomes of substantial benefit to human health. In this review, we describe the chemical, biochemical, and pharmacological aspects of recently reported NSGMs and highlight their therapeutic potentials as structurally and mechanistically novel anti-coagulants, anti-cancer agents, anti-emphysema agents, and anti-viral agents. We also describe the challenges that complicate their advancement and describe ongoing efforts to overcome these challenges with the aim of advancing the novel platform of NSGMs to clinical use.
Collapse
Affiliation(s)
- Daniel K. Afosah
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219
| | - Rami A. Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125
| |
Collapse
|
3
|
Boothello RS, Patel NJ, Sharon C, Abdelfadiel EI, Morla S, Brophy DF, Lippman HR, Desai UR, Patel BB. A Unique Nonsaccharide Mimetic of Heparin Hexasaccharide Inhibits Colon Cancer Stem Cells via p38 MAP Kinase Activation. Mol Cancer Ther 2019; 18:51-61. [PMID: 30337351 PMCID: PMC6332501 DOI: 10.1158/1535-7163.mct-18-0104] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 07/23/2018] [Accepted: 10/12/2018] [Indexed: 12/13/2022]
Abstract
Targeting of cancer stem cells (CSC) is expected to be a paradigm-shifting approach for the treatment of cancers. Cell surface proteoglycans bearing sulfated glycosaminoglycan (GAG) chains are known to play a critical role in the regulation of stem cell fate. Here, we show for the first time that G2.2, a sulfated nonsaccharide GAG mimetic (NSGM) of heparin hexasaccharide, selectively inhibits colonic CSCs in vivo G2.2-reduced CSCs (CD133+/CXCR4+, Dual hi) induced HT-29 and HCT 116 colon xenografts' growth in a dose-dependent fashion. G2.2 also significantly delayed the growth of colon xenograft further enriched in CSCs following oxaliplatin and 5-fluorouracil treatment compared with vehicle-treated xenograft controls. In fact, G2.2 robustly inhibited CSCs' abundance (measured by levels of CSC markers, e.g., CD133, DCMLK1, LGR5, and LRIG1) and self-renewal (quaternary spheroids) in colon cancer xenografts. Intriguingly, G2.2 selectively induced apoptosis in the Dual hi CSCs in vivo eluding to its CSC targeting effects. More importantly, G2.2 displayed none to minimal toxicity as observed through morphologic and biochemical studies of vital organ functions, blood coagulation profile, and ex vivo analyses of normal intestinal (and bone marrow) progenitor cell growth. Through extensive in vitro, in vivo, and ex vivo mechanistic studies, we showed that G2.2's inhibition of CSC self-renewal was mediated through activation of p38α, uncovering important signaling that can be targeted to deplete CSCs selectively while minimizing host toxicity. Hence, G2.2 represents a first-in-class (NSGM) anticancer agent to reduce colorectal CSCs.
Collapse
Affiliation(s)
- Rio S Boothello
- Division of Hematology and Oncology, Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
- McGuire VA Medical Center, Richmond, Virginia
| | - Nirmita J Patel
- McGuire VA Medical Center, Richmond, Virginia
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia
| | | | - Elsamani I Abdelfadiel
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia
| | - Shravan Morla
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia
| | - Donald F Brophy
- Department of Pharmacotherapy and Outcomes Sciences, Virginia Commonwealth University, Richmond, Virginia
| | | | - Umesh R Desai
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia.
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia
| | - Bhaumik B Patel
- Division of Hematology and Oncology, Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia.
- McGuire VA Medical Center, Richmond, Virginia
| |
Collapse
|
4
|
Lira AL, Ferreira RS, Torquato RJS, Oliva MLV, Schuck P, Sousa AA. Allosteric inhibition of α-thrombin enzymatic activity with ultrasmall gold nanoparticles. NANOSCALE ADVANCES 2019; 1:378-388. [PMID: 30931428 PMCID: PMC6394888 DOI: 10.1039/c8na00081f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/21/2018] [Indexed: 05/20/2023]
Abstract
The catalytic activity of enzymes can be regulated by interactions with synthetic nanoparticles (NPs) in a number of ways. To date, however, the potential use of NPs as allosteric effectors has not been investigated in detail. Importantly, targeting allosteric (distal) sites on the enzyme surface could afford unique ways to modulate the activity, allowing for either enzyme activation, partial or full inhibition. Using p-mercaptobenzoic acid-coated ultrasmall gold NPs (AuMBA) and human α-thrombin as a model system, here we experimentally tested the hypothesis that enzyme activity could be regulated through ultrasmall NP interactions at allosteric sites. We show that AuMBA interacted selectively and reversibly around two positively charged regions of the thrombin surface (exosites 1 and 2) and away from the active site. NP complexation at the exosites transmitted long-range structural changes over to the active site, altering both substrate binding affinity and catalysis. Significantly, thrombin activity was partially reduced - but not completely inhibited - by interactions with AuMBA. These findings indicate that interactions of proteins with ultrasmall NPs may mimic a typical biomolecular complexation event, and suggest the prospect of using ultrasmall particles as synthetic receptors to allosterically regulate protein function.
Collapse
Affiliation(s)
- André L Lira
- Department of Biochemistry , Federal University of São Paulo , São Paulo , SP , Brazil .
| | - Rodrigo S Ferreira
- Department of Biochemistry , Federal University of São Paulo , São Paulo , SP , Brazil .
| | - Ricardo J S Torquato
- Department of Biochemistry , Federal University of São Paulo , São Paulo , SP , Brazil .
| | - Maria Luiza V Oliva
- Department of Biochemistry , Federal University of São Paulo , São Paulo , SP , Brazil .
| | - Peter Schuck
- National Institute of Biomedical Imaging and Bioengineering , National Institutes of Health , Bethesda , MD , USA
| | - Alioscka A Sousa
- Department of Biochemistry , Federal University of São Paulo , São Paulo , SP , Brazil .
| |
Collapse
|
5
|
Abdel Aziz MH, Desai UR. Novel heparin mimetics reveal cooperativity between exosite 2 and sodium-binding site of thrombin. Thromb Res 2018; 165:61-67. [PMID: 29573721 DOI: 10.1016/j.thromres.2018.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 02/28/2018] [Accepted: 03/16/2018] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Thrombin is a primary target of most anticoagulants. Yet, thrombin's dual and opposing role in pro- as well as anti- coagulant processes imposes considerable challenges in discovering finely tuned regulators that maintain homeostasis, rather than disproportionately changing the equilibrium to one side. In this connection, we have been studying exosite 2-mediated allosteric modulation of thrombin activity using synthetic agents called low molecular weight lignins (LMWLs). Although the aromatic scaffold of LMWLs is completely different from the polysaccharidic scaffold of heparin, the presence of multiple negatively charged groups on both ligands induces binding to exosite 2 of thrombin. This work characterizes the nature of interactions between LMWLs and thrombin to understand the energetic cooperativity between exosite 2 and active site of thrombin. MATERIALS AND METHODS The thermodynamics of thrombin-LMWL complexes was studied using spectrofluorimetric titrations as a function of ionic strength and temperature of the buffer. The contributions of enthalpy and entropy to binding were evaluated using classic thermodynamic equations. Label-free surface plasmon resonance was used to assess the role of sodium ion in LMWL binding to thrombin at a fixed ionic strength. RESULTS AND CONCLUSIONS Exosite 2-induced conformational change in thrombin's active site is strongly dependent on the structure of the ligand, which has consequences with respect to regulation of thrombin. The ionic and non-ionic contributions to binding affinity and the thermodynamic signature were highly ligand specific. Interestingly, LMWLs display preference for the sodium-bound form of thrombin, which supports the existence of an energetic coupling between exosite 2 and sodium-binding site of thrombin.
Collapse
Affiliation(s)
- May H Abdel Aziz
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, United States
| | - Umesh R Desai
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, United States; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, United States.
| |
Collapse
|
6
|
Allosteric Partial Inhibition of Monomeric Proteases. Sulfated Coumarins Induce Regulation, not just Inhibition, of Thrombin. Sci Rep 2016; 6:24043. [PMID: 27053426 PMCID: PMC4823711 DOI: 10.1038/srep24043] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/14/2016] [Indexed: 11/26/2022] Open
Abstract
Allosteric partial inhibition of soluble, monomeric proteases can offer major regulatory advantages, but remains a concept on paper to date; although it has been routinely documented for receptors and oligomeric proteins. Thrombin, a key protease of the coagulation cascade, displays significant conformational plasticity, which presents an attractive opportunity to discover small molecule probes that induce sub-maximal allosteric inhibition. We synthesized a focused library of some 36 sulfated coumarins to discover two agents that display sub-maximal efficacy (~50%), high potency (<500 nM) and high selectivity for thrombin (>150-fold). Michaelis-Menten, competitive inhibition, and site-directed mutagenesis studies identified exosite 2 as the site of binding for the most potent sulfated coumarin. Stern-Volmer quenching of active site-labeled fluorophore suggested that the allosteric regulators induce intermediate structural changes in the active site as compared to those that display ~80–100% efficacy. Antithrombin inactivation of thrombin was impaired in the presence of the sulfated coumarins suggesting that allosteric partial inhibition arises from catalytic dysfunction of the active site. Overall, sulfated coumarins represent first-in-class, sub-maximal inhibitors of thrombin. The probes establish the concept of allosteric partial inhibition of soluble, monomeric proteins. This concept may lead to a new class of anticoagulants that are completely devoid of bleeding.
Collapse
|
7
|
Mehta AY, Mohammed BM, Martin EJ, Brophy DF, Gailani D, Desai UR. Allosterism-based simultaneous, dual anticoagulant and antiplatelet action: allosteric inhibitor targeting the glycoprotein Ibα-binding and heparin-binding site of thrombin. J Thromb Haemost 2016; 14:828-38. [PMID: 26748875 PMCID: PMC4828251 DOI: 10.1111/jth.13254] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/24/2015] [Indexed: 12/01/2022]
Abstract
BACKGROUND Allosteric inhibition is a promising approach for developing a new group of anticoagulants with potentially reduced bleeding consequences. Recently, we designed sulfated β-O4 lignin (SbO4L) as an allosteric inhibitor that targets exosite 2 of thrombin to reduce fibrinogen cleavage through allostery and compete with glycoprotein Ibα to reduce platelet activation. OBJECTIVE To assess: (i) the antithrombotic potential of a novel approach of simultaneous exosite 2-dependent allosteric inhibition of thrombin and competitive inhibition of platelet activation; and (ii) the promise of SbO4L as the first-in-class antithrombotic agent. METHODS A combination of whole blood thromboelastography, hemostasis analysis, mouse arterial thrombosis models and mouse tail bleeding studies were used to assess antithrombotic potential. RESULTS AND CONCLUSIONS SbO4L extended the clot initiation time, and reduced maximal clot strength, platelet contractile force, and the clot elastic modulus, suggesting dual anticoagulant and antiplatelet effects. These effects were comparable to those observed with enoxaparin. A dose of 1 mg of SbO4L per mouse prevented occlusion in 100% of arteries, and lower doses resulted in a proportionally reduced response. Likewise, the time to occlusion increased by ~ 70% with a 0.5-mg dose in the mouse Rose Bengal thrombosis model. Finally, tail bleeding studies demonstrated that SbO4L does not increase bleeding propensity. In comparison, a 0.3-mg dose of enoxaparin increased the bleeding time and blood volume loss. Overall, this study highlights the promise of the allosteric inhibition approach, and presents SbO4L as a novel anticoagulant with potentially reduced bleeding side effects.
Collapse
Affiliation(s)
- Akul Y. Mehta
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Bassem M. Mohammed
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Erika J. Martin
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Donald F. Brophy
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - David Gailani
- Department of Pathology, Immunology and Microbiology, Vanderbilt University Medical Center, Nashville, TN 37203
| | - Umesh R. Desai
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
| |
Collapse
|
8
|
He LW, Dai WC, Li NG. Development of Orally Active Thrombin Inhibitors for the Treatment of Thrombotic Disorder Diseases. Molecules 2015; 20:11046-62. [PMID: 26083038 PMCID: PMC6272601 DOI: 10.3390/molecules200611046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/10/2015] [Indexed: 12/16/2022] Open
Abstract
Thrombotic disorders represent the major share of the various cardiovascular diseases, and significant progress has been made in the development of synthetic thrombin inhibitors as new anticoagulants. In addition to the development of highly potent and selective inhibitors with improved safety and suitable half-life, several allosteric inhibitors have been designed and synthesized, that did not fully nullify the procoagulant signal and thus could result in reduced bleeding complications. Furthermore, natural products with thrombin inhibitory activity have been isolated, and some natural products have been modified in order to improve their inhibitory activity and metabolic stability. This review summarizes the development of orally active thrombin inhibitors for the treatment of thrombotic disorder diseases, which could serve as a reference for the interested researchers.
Collapse
Affiliation(s)
- Li-Wei He
- Department of Medicinal Chemistry, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Wei-Chen Dai
- Department of Medicinal Chemistry, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Nian-Guang Li
- Department of Medicinal Chemistry, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|